Group-Aware Navigation

Learning a Group-Aware Policy for Robot Navigation in Crowded Environments

Human-aware robot navigation promises a range of applications in which mobile robots bring versatile assistance to people in common human environments. While prior research has mostly focused on modeling pedestrians as independent, intentional individuals, people move in groups; consequently, it is imperative for mobile robots to respect human groups when navigating around people. This project explores learning group-aware navigation policies based on dynamic group formation using deep reinforcement learning. Through simulation experiments, we show that group-aware policies, compared to baseline policies that neglect human groups, achieve greater robot navigation performance (e.g., fewer collisions), minimize violation of social norms and discomfort, and reduce the robot's movement impact on pedestrians. We also provide hardware demonstrations on a physical robot to present the applicability of our group-aware policy to real-world robotic systems. Our results contribute to the development of social navigation and the integration of mobile robots into human environments.
Related Paper: "Learning a Group-Aware Policy for Robot Navigation"

Safe Learning

Safe Learning for High-Dimensional Robotic Systems in Unstructured Environments

Machine learning techniques have become an effective way for intelligent systems to analyze data and generate a model of their environment with minimal human intervention. However, unlike methods that rely on robust control theory, machine learning techniques are limited in their ability to guarantee safety, which limits their applicability to safety-critical systems. This project aims to combine machine learning techniques with control theory to learn safety constraints without overly constraining the freedom of the system. In order to ensure safety, Hamilton-Jacobi-Isaacs (HJI) reachability methods will determine the safe region within the state space where the system can operate. This safe region will be updated as the system learns more about its environment, allowing it to become more or less conservative when appropriate. The system can then move freely according to any planning algorithm when well within the safe region, but when the system approaches an unsafe region, a safety override is performed to ensure that the system statays within the safe region.
Related Paper: "Efficient Safe Learning for Robotic Systems in Unstructured Environments"

Human Movement

Application of Control Theory Principles to Human Movement to Ensure the Safe Operation of Robots

As robotic systems enter our workplaces, roads, and homes, it is becoming increasingly important to ensure that robots are able to work safely and effectively with and around humans. Understanding the ways in which humans move in their environment and communicating this understanding to robotic systems can allow robots to operate safely and productively around humans. This project uses empirical data to gain understanding of the regularities in human movement and to find motion laws that reflect the movement of humans in cluttered environments. The data collected through this project supports the idea that human walking patterns exhibit a power law relationship between the speed and curvature of human feet, regardless of the trajectory of motion. This project considers both a single human walking in set patterns and around obstacles and two humans walking in a shared, and perhaps cluttered, space. With a better understanding of these walking patterns, planning algorithms can leverage the steering laws used by humans to better control the behavior of robots that operate in the same environment as people.
Related Paper: "Application of Control Theory Principles to Human Movement to Ensure the Safe Operation of Robots"

Robotic Surgery

Investigating a Cooperative System of Sensing and Transmitting Haptic Feedback of Soft Tissue for Robotic Surgical Applications

Robotic-Assisted Surgery (RAS) improves upon traditional minimally invasive (MIS) and open surgical techniques by maintaining the benefits of MIS while also providing surgeons with a wider range of motion, increased depth perception, and control for tremors. However, an inherent limitation of the technology is that surgeons performing RAS must rely solely on visual feedback and lose the sense of touch, creating a steep learning curve for the technique. To address this, we proposed a proof-of-concept addition to RAS systems that relays the firmness of soft tissue to surgeons. We constructed a probe containing a force-sensitive resistor (FSR) to collect information on silicone samples of known varying firmness that mimic soft tissue. From the FSR, currents were generated and amplified into a solenoid actuator. By pressing on the actuator, the user feels a force corresponding to the firmness of the silicone. Preliminary testing of the integrated feedback system indicated that users were able to successfully distinguish between varying silicone firmnesses.
Related Paper: "Investigating a Cooperative System of Sensing and Transmitting Haptic Feedback of Soft Tissue for Robotic Surgical Applications"