
A Modular Framework for Socially Compliant Robot Navigation in
Complex Indoor Environments

Sara Pohland∗1,2, Alvin Tan∗1, Corban Rivera2, I-Jeng Wang2, Prabal Dutta1, Claire Tomlin1

Abstract— An important challenge in developing assistive
robots is the design of socially compliant robot navigation
policies that enable safe and comfortable movement around
people. Previous works demonstrate that deep reinforcement
learning (DRL) methods are effective in developing such naviga-
tion strategies. However, existing DRL policies are designed for
simple, open-space environments, and through our experiments,
we find that such policies do not generalize well to more
realistic environments containing walls and other stationary
objects. In this paper, we present a modular approach to social
navigation in complex environments, in which we combine a
DRL policy with a global path planner and a deterministic
safety controller. By designing each component of the modular
architecture to handle different, and potentially conflicting,
navigation objectives, we divide the indoor navigation problem
into logically distinct and manageable steps. This allows us
to extend the applicability of existing DRL policies to complex
indoor spaces. When compared against a traditional navigation
technique that does not employ learning, we find that our
approach results in fewer collisions, comparable navigation
times, and higher success rates when guiding a robot through
complex environments. We also implement our approach on
a physical robot, which successfully navigates indoor spaces
containing various humans and stationary objects. Our results
demonstrate the value of using learning-based methods as a
single component in a larger framework to develop socially
compliant robot navigation policies that are effective in real-
world settings.

I. INTRODUCTION

Socially assistive robots (SARs) provide assistance to hu-
man users through social interaction [1]. Such robots are par-
ticularly helpful in assisting elderly populations, individuals
in convalescent care, individuals with physical impairments,
and individuals with social and mental disorders in hospitals,
assisted living homes, and schools [1]. To effectively employ
SARs in any of these environments, these robots need to
be equipped with socially compliant navigation algorithms
that enable them to traverse complex indoor spaces while
maintaining personal safety and comfort.

There are currently four main approaches to socially
compliant navigation: human trajectory models, imitation
learning, inverse reinforcement learning (IRL), and deep
reinforcement learning (DRL). The first approach attempts
to explicitly model the trajectories of pedestrians in the
environment and plan a path around these trajectories. While
this method works well in settings with very few pedestrians,
it does not scale well to environments with heavy pedestrian
traffic [2]. Approaches that use imitation learning or IRL

* Both authors contributed equally to this work.
1 Dept. of EECS, UC Berkeley, Berkeley, CA, USA.
2 Johns Hopkins University Applied Physics Lab, Laurel, MD, USA.

Fig. 1: TurtleBot navigating both simulated and real-world
environments with humans and stationary objects, using a
modular framework for socially compliant robot navigation.

produce navigation strategies from implicit or explicit human
feedback. These approaches can generate robot behavior
that mimics a human demonstrator, but a lack of negative
examples, such as collisions, can lead to a model that does
not consider comfort or safety [3].

With these considerations in mind, we believe DRL is a
promising direction to explore for socially compliant robot
navigation. Recently there has been substantial progress in
designing navigation policies that use DRL to effectively
navigate crowded environments while maintaining human so-
cial norms [4], [5], [6], [7], [8], [2], [9], [10]. However, such
algorithms are designed for simple, open-space environments
that do not contain walls or other stationary obstacles. We
find that as a result, such algorithms are unable to generalize
to more complex and realistic environments.

To extend the use of socially compliant DRL policies
to complex indoor environments, we propose a modular
framework that uses a DRL policy as a single component
of a larger system. Our proposed framework consists of a
socially-aware DRL policy, a global path planning algorithm,
and a custom safety controller. We demonstrate the utility of
our approach by navigating both a simulated robot and a
physical robot through complex indoor spaces (Figure 1).
Our contributions are:

• A modular framework that extends the applicability of
socially-aware DRL policies to diverse environments
without retraining;

• A socially-aware DRL policy that considers both dy-



namic humans and stationary objects;
• Results in simulated and real environments that demon-

strate the efficacy of our approach; and
• Software extensions to the CrowdNav simulation [2] to

support further complex indoor navigation research.

II. BACKGROUND & RELATED WORK

Our modular approach seeks to combine recent advances
in DRL robot navigation algorithms with traditional naviga-
tion techniques to realize the benefits of both methods.

A. DRL-Based Socially Compliant Navigation

When using DRL, a robot learns a policy that maximizes
its expected accumulation of a developer-designed reward
through trial and error. In the case of socially compliant
navigation, this approach generally encodes comfort criteria
into the reward function to encourage the robot to learn
behaviors that avoid annoyance and stress for humans [11].
In particular, a socially compliant robot learns to maintain
enough distance between itself and nearby humans to prevent
discomfort. Chen et al. developed a popular approach to
DRL-based socially compliant navigation that used an atten-
tive pooling mechanism to learn the collective importance
of neighboring humans with respect to their future states
[2]. Through various experiments, this approach proved to be
more effective than competing methods. Despite its success,
when we performed additional experiments, we found that
this algorithm does not generalize to environments with walls
and other stationary objects. To the best of our knowledge,
there are currently no straightforward methods to incorporate
useful information about walls into training or balance com-
peting near-term and long-term navigation objectives that are
present in more complex spaces.

B. Standard Navigation Techniques

The traditional approach to robot navigation uses path
planning algorithms to find safe and efficient paths between
the robot’s initial and goal positions while avoiding collisions
with obstacles [12]. Path planning algorithms can be divided
into two categories, which differ in their time horizon and
assumptions about the environmental information acquired
during navigation [13]. The first category is global planners,
which use a static global map to generate a fixed, collision-
free path from the robot’s initial position to its goal. There are
many global planners, but one popular algorithm is the prob-
abilistic roadmap (PRM) planner, which constructs a map
of feasible paths between collision-free points, then searches
this map for a path joining the initial and goal positions [14].
The second category is local planners, which use knowledge
of static and dynamic obstacles to generate shorter paths
that change during navigation. Arguably, the most effective
local planner is the optimal reciprocal collision avoidance
(ORCA) planner, which considers the reactive behavior of
other agents and the acceleration constraints of the robot to
generate maneuvers that avoid collisions [15]. Typically, a
local and global planner are used together to navigate robots
through complex spaces with static and dynamic obstacles.

While this navigation approach is generally effective, it does
not necessarily generate socially compliant behavior.

III. PROBLEM FORMULATION

Our objective is to enable a robot to navigate complex
indoor spaces while avoiding collisions and limiting close
encounters with humans. Because SARs generally operate
in familiar spaces, we assume the robot has access to a map
of the walls in its environment during navigation and that
it can locate and orient itself within its environment. We
also assume that the robot can identify nearby obstacles and
distinguish between static objects and dynamic humans. We
only consider cases where the robot has a clear path from its
initial position to its goal and assume that this path is never
completely blocked for extended periods of time.

A. Observation Space

We assume that the robot has access to its full state but
only knows part of the state of each human and object in
its environment. The observable state of the robot, the ith
human, and the jth object are represented by o(r), o(hi), and
o(o j) respectively and are defined as follows:

o(r)=
[

p(r)x p(r)y v(r)x v(r)y r(r) g(r)x g(r)y v(r)pre f θ (r)
]

o(hi) =
[

p(hi)
x p(hi)

y v(hi)
x v(hi)

y r(hi) 1
]

o(o j) =
[

p
(o j)
x p

(o j)
y v

(o j)
x v

(o j)
y r(o j) 0

]
where (px, py) is the current position, (vx,vy) is the velocity,
r is the radius, (gx,gy) is the goal position, vpre f is the
preferred speed, and θ is the turning angle of the agent. The
radius is measured assuming each agent can be represented
by a circle. The preferred velocity is the maximum allowable
speed of each agent, which is the speed at which it would
travel if nothing is obstructing its path. The last value of the
observable state for humans and objects is a flag that allows
the robot policy to distinguish between these agents.

To make our policy viable for real-world environments,
the robot’s observations are restricted to those that could be
realistically obtained. Assuming a 360◦ field of view with
a four-meter detection range, only humans and stationary
objects that are within this range are visible to the robot.
The robot also cannot view humans and objects that are
obstructed by another human, object, or wall. If N humans
and M objects are visible to the robot, its observation is:

o =
[
o(r) o(h1) . . . o(hN) o(o1) . . . o(oM)

]
.

B. Action Space

Our policy outputs a velocity command that controls
the robot. The action space is discretized into 5 speeds
exponentially spaced in the range (0,v(r)pre f ] and 16 directions
evenly spaced in the range [0,2π). The robot is also able to
receive a stop command, resulting in 81 possible actions.



Socially-Aware
DRL PolicyEnvironment

Global Path
Planner

Safety
Controller

Robot

walls

state

waypoints

safe action
space

action

updated state

Navigation Policy

Fig. 2: Our policy is composed of three components: a socially-aware DRL policy, a global path planning algorithm
that constructs waypoints between the robot and its goal, and a custom safety controller that avoids wall collisions by
temporarily limiting the action space of the robot. An optimal action for the robot is chosen using these three components.

IV. PROPOSED POLICY ARCHITECTURE

While DRL algorithms are effective in designing socially
compliant robot navigation strategies, previously developed
algorithms are not designed to operate in complex indoor
environments with walls and other stationary objects. Con-
versely, standard navigation techniques enable robots to nav-
igate in complex environments but are not designed to gener-
ate socially compliant behavior. We combine the benefits of
these approaches by using the modular architecture shown
in Figure 2, which consists of three main components: a
socially-aware DRL policy, a global path planning algorithm,
and a custom safety controller. We train a DRL policy that
uses knowledge of humans and small stationary objects, such
as chairs, to develop a socially compliant local planner. We
use a global path planning algorithm to generate waypoints
used as local goals by the DRL policy. We design a separate
safety controller that uses knowledge of walls to determine
the set of safe actions from which the DRL policy selects
the optimal action.

We chose this modular architecture in order to lever-
age the benefits of socially-aware DRL policies without
overloading the capabilities of these algorithms. The most
effective existing DRL policies focus on near-term inter-
actions with dynamic humans within close proximity of
the robot. A simple extension of these algorithms enables
robots to consider interactions with small stationary objects
as well. Conversely, global path planners address longer-
horizon considerations driven by the environment layout and
the robot’s ultimate goal. Relying on a single DRL policy
to address both these goals simultaneously would likely lead
to an undesirable trade-off between these objectives. Thus,
combining a DRL policy with a global path planner does not
seem unreasonable. Additionally, it is difficult to incorporate
useful information about the environment layout into the

DRL policy effectively. This creates the need for a separate
safety controller designed specifically to avoid collisions with
walls. For these reasons, we propose a modular framework
that can leverage the strengths of existing socially-aware
DRL policies without placing too many additional demands
on these algorithms.

A. Socially-Aware DRL Policy

The DRL policy was trained in a simulation environment
built on OpenAI Gym. Each time a training simulation is run,
a square room is generated with a single robot at one edge
of the room whose goal is to move to the opposite side. The
number of humans and objects and their physical attributes
are randomly sampled from uniform distributions. Each ob-
ject is stationary and is given a random fixed position. Each
human is given a random starting position and goal within
its field of view, and its velocities are controlled using the
ORCA policy [15]. Once the human has reached its goal, it
receives a new goal, so that humans are perpetually moving.
The robot is always visible to each human, assuming their
360◦ view is not obstructed, and the simulated humans treat
the robot as another human operating under the same policy.
After initialization, the robot chooses an action according
to its policy at each time step and each human chooses an
action according to its policy until the robot reaches its goal,
runs out of time, or collides with an obstacle.

To design a policy that enables a robot to reach its
goal, while avoiding collisions and maintaining human social
norms, we use the following reward function:

r = H(0.3−dgoal)−0.15H(−dob j)

−0.25H(−dhum)+0.5dhumH(0.1−dhum).

In this function, dgoal is the distance from the robot to the
goal, dob j is the distance from the robot to the closest object,
dhum is the distance from the robot to the closest human, and



MLP Layers

1 Linear(14, 150) → ReLU → Linear(150, 100) → ReLU
2 Linear(100, 100) → ReLU → Linear(100, 50)
3 Linear(200, 100) → ReLU → Linear(100, 100) → ReLU → Linear(100, 1)
4 Linear(56, 150) → ReLU → Linear(150, 100) → ReLU → Linear(100, 100) → ReLU → Linear(100, 1)

TABLE I: The four MLPs in the value network used for the DRL policy are composed of Rectified Linear Unit (ReLU)
activation functions and linear layers, whose input and output sizes are as shown.

Fig. 3: Given observation õr, MLP1 is used to obtain an embedding vector ei, which models the pairwise interaction
between the robot and each of the n humans and objects. This embedding vector is passed through MLP2 to obtain
the pairwise interaction feature hi for each human or object. A self-attention mechanism passes each of the embedding
vectors ei, along with their mean ē, into MLP3 to determine the attention score αi, which reflects the relative importance
of each human/object. The softmax function is then applied to each attention score to obtain a normalized set of weights
ωi. A compact representation c of the entire set of humans and objects is obtained by computing a linear combination of
the pairwise interaction features. The representation c has a fixed size, regardless of the number of humans and objects,
and can be passed into MLP4, along with the robot’s state s, to obtain an estimate of the value function V̂ .

H(·) is the Heavyside step function. The first term rewards
the robot for reaching the goal within a nominal 0.3-meter
radius, the second penalizes the robot for colliding with a
stationary object, the third penalizes the robot for colliding
with a human, and the fourth penalizes the robot for getting
within an uncomfortable distance (0.1 meters) of a human.

We use a value network algorithm to generate our DRL
policy, in which observations are fed into a neural network
to generate a model of the value function. The value network
architecture is shown in Figure 3. This network is composed
of four sets of multilayer perceptrons (MLPs) whose layers
are given in Table I. Before the observation o is passed into
the neural network, the observation is first transformed and
rotated to a robot-centric coordinate frame to obtain a new
observation õr. Each row of õr reflects the interaction of the
robot and a single human or object.

After generating a model of the value function, this model
is used to design a policy expected to result in high rewards.
Given the current state of the environment, the expected next
state is determined for each action in the discrete action
space, using a simple model to approximate the motion of
the robot and humans. The next state is then used as input
to the value network to determine the value associated with
each discrete action and to choose the optimal action.

Comparing against existing socially-aware DRL policies,
we find that our policy is more effective at dealing with static
humans and objects, as well as humans that suddenly change
direction. This is because previous DRL policies are trained
with the assumption that humans are constantly moving
towards a fixed goal. By removing this assumption, our
policy is better suited to operate in real-world environments.

B. Global Path Planner

The PRM planner is used to generate a path from the
robot’s starting position to its goal position, while avoiding
walls specified by the map of the environment. This plan-
ning algorithm relies on a network graph whose nodes are
unoccupied points in the environment and whose edges are
collision-free paths between these points [14].

After finding a collision-free path from the robot’s initial
position to its goal, we use this path to generate waypoints
for the robot. Waypoints are chosen to be more dense around
corners and doorways and less dense in open spaces to give
the robot more guidance in challenging maneuvers and more
freedom when the navigation task is simple. Based on the
robot’s current position, its local goal is chosen from the
list of waypoints. Initially, its local goal is the first waypoint
after its starting position. Once the robot has entered within a
one-meter radius of this waypoint, its local goal is set to the



next waypoint in the sequence. This process continues until
the robot’s local goal is its final goal. The PRM planner uses
knowledge of walls in the robot’s environment but does not
consider other objects, which may not be fixed for the robot’s
lifetime. For this reason, it is possible for a local goal to be
placed in the same location as a stationary object. To deal
with this issue, if the next waypoint in the robot’s path is
in the same location as an object, the robot’s local goal is
adjusted to be on either side of the obstacle.

C. Safety Controller

Rather than generating a representation of walls that can
be passed into the DRL policy, wall avoidance is handled by
limiting the action space of the policy. At each time step,
before deciding the optimal action with the DRL policy, the
safety controller first determines which actions in the full
action space are expected to result in a collision with a wall.
The DRL policy then computes the value of each action
among the set of actions that are not expected to result in a
wall collision, and the action with the largest value among
those safe actions is provided to the robot.

V. EXPERIMENTAL EVALUATION

We designed 17 environment configurations of varying
sizes and complexities, chosen to reflect the majority of
possible scenarios a SAR may encounter when navigating
a hospital, assisted living home, or school, where these
robots typically operate. These configurations are shown in
Figure 4. 100 trials were performed within each of these
environment configurations. In our analysis, we grouped the
17 configurations into five qualitatively distinct sections to
better evaluate our approach. These five sections in roughly
increasing difficulty are:

• Open Space: the goal is 10m away from the starting
position with walls only on the boundary.

• Hallways: the goal is further from the starting position
but can still be reached by a straight path.

• Intersections: the robot must navigate around a single
corner at a four-way intersection to reach the goal.

• Doorways: the robot must navigate through doorways.
• Corners: the robot must move around multiple corners.

A. Evaluation Metrics

We evaluated various policies based on robot navigation
performance and social compliance. For robot navigation
performance, the metrics represent the quality of the robot’s
ability to navigate to the goal quickly without collision. To
assess social compliance, we quantified how the robot main-
tained distance among humans. Specifically, we measured:

• Success Rate: the percentage of trials in which the robot
successfully reaches its goal within 100 seconds.

• Collision Rate: the percentage of trials in which the
robot collides with a human, an object, or a wall.

• Navigation Time Increase: the percentage of additional
time required to navigate to the goal, relative to the
baseline, compared across mutually successful trials.

• Average Speed: the average speed of the robot in suc-
cessful trials.

• Average Distance: the average distance between the
robot and the closest human in successful trials.

• Minimum Distance: the closest the robot gets to any
human, collected across successful trials.

• Discomfort Time: percentage of time spent in a discom-
fort zone (0.1m-radius circle around each human).

B. Controller Components & Performance

As described previously, the robot controller we designed
is composed of a socially-aware DRL policy, a global path
planner used to generate waypoints, and a safety controller
designed to limit collisions with walls. Table II helps demon-
strate how each component impacts the overall performance.

The DRL policy by itself performs well in the open
space environment, which is similar to the environment
used while training. However, as the environment gets more
complicated, the success rate quickly drops, indicating that
the policy is unable to generalize to more complex layouts,
in which the robot must adjust for walls and perform more
complicated maneuvers around corners and doorways.

Adding a global path planner to guide the robot dramati-
cally increases the success rate in moderately complex envi-
ronments. However, since the DRL policy has no knowledge
of walls in its environment, there is still a nontrivial number
of wall collisions in the most complex environments.

Using our safety controller to limit the DRL action space
reduces the wall collision rate to zero in all environment
configurations and improves the success rate in the most
complex environments. By recording the number of times
the safety controller adjusted the action that the DRL policy
would have chosen, we find that the safety controller is
almost never active in open spaces and hallways. It is active
around 1.5% of the time in intersection environments, 4.0%
of the time in environments with doorways, and 2.1% of the
time in environments with multiple corners. These values are
very low, which indicates that the DRL policy is able to take
the socially optimal action the vast majority of the time.

C. Learning & Performance

A key component of our robot controller is the DRL pol-
icy, which is designed to enable socially compliant behavior.
It is interesting to consider how learning can enable more
effective robotic behavior around crowds of humans and
stationary objects. To demonstrate the impact of learning,
we compare our full modular policy to a baseline policy that
uses ORCA as a local planner and the PRM algorithm as the
global planner. Because ORCA is a popular and effective
local planner that does not rely on deep learning, this
controller serves as a good baseline to analyze the impact of
learning on social compliance and navigation performance.

As seen in Table II, our approach generally provides higher
success rates and lower object collision rates than the base-
line. This difference becomes progressively more apparent
as the environment gets more complex and more reflective
of real-world spaces. By individually inspecting successful



Fig. 4: Seventeen environment configurations of varying sizes and complexities used for evaluation. For each configuration,
walls are shown in black, the blue circle is the robot’s initial position, and the red star is the robot’s goal position.
Randomized obstacles are generated and added to the environments for each trial.

TABLE II: Aggregate results from 1700 trials split into five groups describing progressively more complex environments.
We evaluate the utility of each component in our approach through an ablation study and collect metrics on robot navigation
performance and social compliance. We compare our approach to a non-learning-based baseline policy comprised of the
ORCA local planner and the PRM global planner. The bold numbers reflect the best performance for each metric.

Navigation Success Collision Rate (%) Nav. Time Average Average Minimum Discomfort
Policy Rate (%) Human Object Wall Increase (%) Speed (m/s) Dist. (m) Dist. (m) Time (%)

O
pe

n

DRL 100.0 0.0 0.0 0.0 4.3 ± 7.5 1.00 ± 0.00 1.58 ± 0.74 0.08 0.0 ± 0.3
DRL, Planner 100.0 0.0 0.0 0.0 0.5 ± 3.1 1.00 ± 0.00 1.58 ± 0.74 0.10 0.0 ± 0.0
DRL, Planner, Safety 100.0 0.0 0.0 0.0 0.5 ± 3.1 1.00 ± 0.00 1.58 ± 0.74 0.10 0.0 ± 0.0
Baseline 99.0 0.0 1.0 0.0 0.0 0.98 ± 0.06 1.57 ± 0.73 0.04 0.2 ± 2.1

H
al

lw
ay

s DRL 33.3 0.0 0.0 66.3 18.2 ± 15.4 0.99 ± 0.03 1.89 ± 1.26 0.04 0.0 ± 0.1
DRL, Planner 99.7 0.0 0.0 0.0 1.5 ± 3.2 1.00 ± 0.00 1.97 ± 1.40 0.00 0.1 ± 0.5
DRL, Planner, Safety 99.7 0.0 0.0 0.0 1.5 ± 3.1 1.00 ± 0.00 1.97 ± 1.40 0.00 0.1 ± 0.6
Baseline 97.3 0.0 1.3 0.0 0.0 0.99 ± 0.05 1.96 ± 1.41 0.02 0.2 ± 0.9

In
te

rs
ec

ts DRL 1.8 0.0 0.0 98.0 7.7 ± 8.3 0.99 ± 0.02 2.10 ± 1.38 0.20 0.0 ± 0.0
DRL, Planner 99.8 0.0 0.0 0.2 1.3 ± 2.3 1.00 ± 0.00 2.21 ± 1.45 0.04 0.0 ± 0.3
DRL, Planner, Safety 99.8 0.0 0.0 0.0 2.1 ± 6.3 1.00 ± 0.01 2.21 ± 1.46 0.04 0.0 ± 0.2
Baseline 97.2 0.0 1.8 0.0 0.0 0.99 ± 0.05 2.18 ± 1.44 0.03 0.2 ± 1.4

D
oo

rw
ay

s DRL 0.5 0.0 0.0 99.5 3.5 ± 2.8 1.00 ± 0.00 1.69 ± 1.13 0.24 0.0 ± 0.0
DRL, Planner 96.8 0.5 0.0 2.0 1.2 ± 4.2 1.00 ± 0.00 2.04 ± 1.41 0.02 0.1 ± 0.3
DRL, Planner, Safety 99.0 0.0 0.0 0.0 2.5 ± 9.4 0.99 ± 0.05 2.05 ± 1.41 0.02 0.1 ± 0.3
Baseline 93.0 0.5 3.5 0.8 0.0 0.99 ± 0.06 2.07 ± 1.44 0.01 0.1 ± 0.8

C
or

ne
rs DRL 0.0 0.0 0.0 99.8 – – – – –

DRL, Planner 95.4 0.2 0.2 3.2 2.4 ± 7.0 1.00 ± 0.00 2.21 ± 1.73 0.00 0.1 ± 0.5
DRL, Planner, Safety 98.6 0.2 0.0 0.0 3.8 ± 9.5 0.99 ± 0.03 2.22 ± 1.75 0.00 0.1 ± 0.6
Baseline 92.2 0.0 4.0 0.0 0.0 0.99 ± 0.05 2.18 ± 1.72 0.03 0.2 ± 0.7

and unsuccessful trials, we find that the improvement in
success rate is a result of our DRL policy’s ability to learn
more difficult maneuvers. In the majority of cases where
our learning-based controller is successful and the baseline
controller is unsuccessful, the ORCA policy is unable to
maneuver around clumps of stationary objects. The robot
controlled by the baseline controller either attempts to move
around the group of objects and hits one, or it gets stuck at
the group of objects and runs out of time.

Our approach also maintains a larger distance from hu-
mans in the environment on average and spends less time in

people’s discomfort zones, compared to the baseline. How-
ever, this difference is not very large. Both policies maintain
a reasonable distance from humans, typically intruding on
discomfort zones for less than 0.2% of the time. Thus,
our modular policy is able to successfully navigate more
scenarios than the baseline while remaining social compliant.

Although our approach results in longer navigation times,
this increase is less than 4% on average for all environments.
Using our policy, the robot maintains a velocity close to its
preferred velocity of one meter per second, indicating that
the robot chooses slightly longer paths to avoid collisions,



Fig. 5: The TurtleBot controller communicates with the camera, mobile base, and our policy to control the robot. This
figure depicts the messages that are sent between these components during the hardware demonstrations.

compared to the baseline. This small increase in path length
significantly increases success rates, suggesting that this is a
fair trade-off and that our policy outperforms the baseline in
terms of navigation performance.

VI. HARDWARE DEMONSTRATIONS

To demonstrate the applicability of our modular approach
to real-world systems, we implement our algorithm on a
physical robot. For these demonstrations, we use a TurtleBot
kit, which includes a Kobuki mobile base, an Orbbec Astra
camera, and a Gigabyte laptop computer. To control the
TurtleBot, we design a controller that receives odometry
measurements from the mobile base and receives color and
depth images from the camera to determine the state of the
robot and obstacles. This information is fed into our modular
policy architecture, along with predefined information about
the walls in the environment, to determine the desired
velocity of the robot. The TurtleBot controller receives this
velocity and sends the appropriate command to the mobile
base to move the robot. This entire process is summarized
in Figure 5.

A. Obstacle Detection & Tracking

To determine the position and radius of each obstacle in
the robot’s field of view, we use the “You Only Look Once”
(YOLO) object detection system [16]. This system passes a
color image through a neural network to generate bounding
boxes for each human and object in the image. We use the
bounding boxes obtained from YOLO in combination with
the depth image to determine the distance of each object
from the robot. We then find the angle between the obstacle
and robot, which we use with the distance measurement to
determine the obstacle’s position. We estimate the radius of
the obstacle based on its width in the image and its distance
from the robot.

The TurtleBot only has a front-facing camera, so its
visibility is considerably limited, presenting a need to track
detected obstacles. Every time the robot observes a new
obstacle, it stores the obstacle’s observable state in memory.

If a detected obstacle intersects with the expected position
of an existing obstacle, these obstacles are assumed to be
the same. When the robot detects an obstacle it has already
seen, the obstacle’s state is updated based on the state stored
in memory and the state determined from the current image.
Based on the number of times an obstacle was detected, it
remains in memory for some time after it was last seen.

B. Real-World Performance

We conduct an ablation study to demonstrate how the
robot behaves with and without the global path planner, as
well as with and without the safety controller in a real-world
environment. We set up stationary objects in a hallway such
that all three components of our modular policy would be
actively engaged at various points along the robot’s path
through the hallway. We find that the DRL policy by itself
fails to navigate this crowded indoor space and frequently
collides with walls. Adding the global path planner and
safety controller adjusts the robot’s behavior such that the full
modular policy successfully traverses the hallway. Qualita-
tively, the global planner improves the maneuverability of the
robot around stationary objects, while the safety controller
improves behavior around walls. To show the performance
of our approach in other complex environments, we set up
situations where the robot uses our policy to navigate around
corners and through hallways and doorways, in the presence
of both stationary objects and moving people. Videos of these
trials can be found in the supplementary video attachment.

VII. CONCLUSIONS

We demonstrate the value of using standard robot naviga-
tion methods to enable the effective usage of DRL navigation
policies for socially compliant robot navigation in complex
indoor spaces. In particular, we combine a socially-aware
DRL policy with a global path planning algorithm and a
custom safety controller in a modular architecture. Using
all three components, a simulated robot could reach its
goal from an arbitrary starting position, while limiting close



encounters with humans and avoiding collisions with hu-
mans, objects, and walls. Compared to a baseline navigation
policy that does not use a learning-based component, our
policy resulted in fewer collisions, comparable navigation
times, and higher success rates when guiding the robot
through complex environments. Overall, our modular policy
outperforms the baseline in terms of navigation performance
and successfully navigates more scenarios than the baseline
while remaining socially compliant. We also demonstrated
the real-world applicability of our approach on a physical
robot operating in complex indoor spaces.

Our work presents several directions for future research.
To account for more real-world complexities, it could be
useful to explore cases where there are multiple paths a robot
could take to its goal, and to consider ways to select an
optimal path and adapt if the path is completely blocked. To
deploy SARs in safety-sensitive environments, it is necessary
to consider worst-case robotic behavior and to incorporate
probabilistic safety guarantees for socially compliant naviga-
tion. Another potential area for future work is in designing
waypoints for task planning, where a robot has multiple tasks
to complete in several locations. More generally for DRL
policies, work could be done in designing reward functions
to capture different methods of maintaining comfort around
humans. For instance, robots could slow down around hu-
mans or avoid approaching humans from behind. Lastly,
beyond the comfort aspect of socially compliant behavior,
work could also be done on enhancing a robot’s sociability by
adhering to higher-order social norms, such as walking on a
particular side of the hallway to avoid oncoming pedestrians.

ACKNOWLEDGMENTS
This work was supported in part by the Johns Hopkins

University Institute for Assured Autonomy; and by the
CONIX Research Center, one of six centers in JUMP, a
Semiconductor Research Corporation (SRC) program spon-
sored by DARPA. Special thanks to Jared Markowitz, Chien-
Ming Huang, Kapil Katyal, Yuxiang Gao, Matt Podolsky,
Meghan Clark, Jean-Luc Watson, Shishir Patil, Tess Despres,
Sean Zhang, Victor Zhang, and Varun Tolani for their advice
and assistance throughout this project.

REFERENCES

[1] D. Feil-Seifer and M. Mataric, “Socially Assistive Robotics,” in 9th
International Conference on Rehabilitation Robotics, 2005. ICORR
2005. Chicago, IL, USA: IEEE, 2005, pp. 465–468. [Online].
Available: http://ieeexplore.ieee.org/document/1501143/

[2] C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-Robot Interaction:
Crowd-aware Robot Navigation with Attention-based Deep
Reinforcement Learning,” arXiv:1809.08835 [cs], Feb. 2019, arXiv:
1809.08835. [Online]. Available: http://arxiv.org/abs/1809.08835

[3] C.-E. Tsai and J. Oh, “NaviGAN: A Generative Approach for Socially
Compliant Navigation,” arXiv:2007.05616 [cs], Jul. 2020, arXiv:
2007.05616. [Online]. Available: http://arxiv.org/abs/2007.05616

[4] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized
Non-communicating Multiagent Collision Avoidance with Deep
Reinforcement Learning,” arXiv:1609.07845 [cs], Sep. 2016, arXiv:
1609.07845. [Online]. Available: http://arxiv.org/abs/1609.07845

[5] M. Everett, Y. F. Chen, and J. P. How, “Motion Planning
Among Dynamic, Decision-Making Agents with Deep Reinforcement
Learning,” arXiv:1805.01956 [cs], May 2018, arXiv: 1805.01956.
[Online]. Available: http://arxiv.org/abs/1805.01956

[6] P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards
Optimally Decentralized Multi-Robot Collision Avoidance via Deep
Reinforcement Learning,” arXiv:1709.10082 [cs], May 2018, arXiv:
1709.10082. [Online]. Available: http://arxiv.org/abs/1709.10082

[7] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially
Aware Motion Planning with Deep Reinforcement Learning,”
arXiv:1703.08862 [cs], May 2018, arXiv: 1703.08862. [Online].
Available: http://arxiv.org/abs/1703.08862

[8] Y. Chen, C. Liu, M. Liu, and B. E. Shi, “Robot Navigation in Crowds
by Graph Convolutional Networks with Attention Learned from
Human Gaze,” arXiv:1909.10400 [cs], Sep. 2019, arXiv: 1909.10400.
[Online]. Available: http://arxiv.org/abs/1909.10400

[9] L. Liu, D. Dugas, G. Cesari, R. Siegwart, and R. Dube,
“Robot Navigation in Crowded Environments Using Deep
Reinforcement Learning,” in 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). Las Vegas, NV,
USA: IEEE, Oct. 2020, pp. 5671–5677. [Online]. Available:
https://ieeexplore.ieee.org/document/9341540/

[10] K. Katyal, Y. Gao, J. Markowitz, I.-J. Wang, and C.-M. Huang,
“Group-Aware Robot Navigation in Crowded Environments,”
arXiv:2012.12291 [cs], Dec. 2020, arXiv: 2012.12291. [Online].
Available: http://arxiv.org/abs/2012.12291

[11] T. Kruse, A. K. Pandey, R. Alami, and A. Kirsch, “Human-aware
robot navigation: A survey,” Robotics and Autonomous Systems,
vol. 61, no. 12, pp. 1726–1743, Dec. 2013. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0921889013001048

[12] K. Karur, N. Sharma, C. Dharmatti, and J. E. Siegel, “A
Survey of Path Planning Algorithms for Mobile Robots,” Vehicles,
vol. 3, no. 3, pp. 448–468, Aug. 2021. [Online]. Available:
https://www.mdpi.com/2624-8921/3/3/27

[13] K. Cai, C. Wang, J. Cheng, C. W. De Silva, and M. Q.-H. Meng,
“Mobile Robot Path Planning in Dynamic Environments: A Survey,”
arXiv:2006.14195 [cs], Mar. 2021, arXiv: 2006.14195. [Online].
Available: http://arxiv.org/abs/2006.14195

[14] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars,
“Probabilistic roadmaps for path planning in high-dimensional
configuration spaces,” IEEE Transactions on Robotics and Automation,
vol. 12, no. 4, pp. 566–580, Aug. 1996. [Online]. Available:
http://ieeexplore.ieee.org/document/508439/

[15] J. van den Berg, J. Snape, S. J. Guy, and D. Manocha,
“Reciprocal collision avoidance with acceleration-velocity obstacles,”
in 2011 IEEE International Conference on Robotics and Automation.
Shanghai, China: IEEE, May 2011, pp. 3475–3482. [Online].
Available: http://ieeexplore.ieee.org/document/5980408/

[16] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You
Only Look Once: Unified, Real-Time Object Detection,”
arXiv:1506.02640 [cs], May 2016, arXiv: 1506.02640. [Online].
Available: http://arxiv.org/abs/1506.02640


