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Abstract—Learning-based control schemes that can preserve
safety without overly constricting the learning process are
beneficial to ensure safe operation while a robotic system is
learning about its environment and to enable the system to
update safety guarantees as it obtains new information. A pre-
viously developed safe learning control scheme was successful
in utilizing reachability analysis to enable a system to safely
generate a model of its environment and update its safety
guarantees based on this model [1]. However, this scheme
was not able to efficiently update the safety analysis online,
due to the computational intensity of reachability analysis.
This limited the applicability of this control scheme to high-
dimensional systems, which suffer most from high computation
times. Recent work has developed a method of warm-start
reachability analysis to improve computation time of safety up-
dates by initializing safety analysis with previous computations
[2]. The work in this paper improves upon the previous safe
learning control scheme by utilizing warm-start reachability
analysis to decrease computation time and create an efficient
safe learning framework for robotic systems. This lowered
computation time presents the potential to apply the efficient
safe learning control scheme to high-dimensional systems in
unstructured environments.

I. INTRODUCTION

Through reinforcement learning, a user can give a system
a task to complete without specifying the specific series
of actions it must perform to complete that task. Instead,
the system learns how to complete the task with minimal
human intervention by receiving rewards for choosing actions
that progress it towards the completion of the task. This is
extremely beneficial when the system operates in an unstruc-
tured environment and needs to be able to adapt to changes
in its environment. However, since the system is not designed
to handle constraint satisfaction, systems that operate solely
through reinforcement learning are unemployable in safety-
critical situations. Conversely, Hamilton-Jacobi (HJ) reacha-
bility analysis is a technique that determines the safe region
within a state space by assuming the system operates under
the worst-case conditions. Reachability analysis is robust
and computationally intensive, specifying the constraints of
the system and ensuring performance and safety guarantees.
While reachability analysis differs from reinforcement learn-
ing in that it can allow for safety guarantees, this technique
works most effectively when the dynamics of the system
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Fig. 1: Computations of safe sets for a quadcopter in a room. The red set
defines the target set: the set of states that the quadcopter must remain
in. In this case the target set represents the constraints on altitude and
velocity of the quadcopter. The original safe region (green) is computed
using a given disturbance bound. When inside of this bound the quadcopter
is guaranteed to not violate the target set despite worst-case disturbances.
As the knowledge of the disturbance grows, the updated safe set (blue) is
computed using warm-start reachability.

and the environment are known and unchanging. This is due
to the fact that HJ reachability analysis is computationally
intensive and therefore is typically used offline as a precom-
putation. This presents the desire to combine reinforcement
learning with reachability analysis to enable systems to learn
about their environment, while guaranteeing safety.

Previous work has been done to create a safe learn-
ing framework that combines reinforcement learning with
reachability analysis by using Gaussian Processes (GPs) to
compute a model of the environment and HJ reachability
analysis to guarantee safety [1]. This work was successful
in guaranteeing the safe operation of a quadcopter exploring
an environment with unexpected disturbances, while mini-
mally interfering with the learning process. Furthermore, the
authors were successful in refining the safety analysis as
the system learned more about its environment, forcing the
system to operate more or less conservatively as necessary.
However, this work found difficulty in recomputing and refin-
ing this safety analysis in real time due to the computational
burden of HJ reachability analysis.

Since this safe learning framework was established, addi-
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tional work has been completed to combat the computational
intensity that limits the ability of a system to update safety
guarantees online using HJ reachability analysis. A technique
termed warm-start reachability analysis is able to produce
the same solution as the original method of reachability
analysis in less time by updating the safety analysis from
the previously computed solution, rather than restarting the
analysis from scratch [2]. This presents the opportunity to
improve on the issues present in the original safe learning
framework by using warm-start reachability techniques to
shorten computation time.

In this paper we describe a framework for combining
safe learning with warm-start reachability and use a sim-
ulated quadcopter to demonstrate the improved efficiency
in updating the safety analysis in response to unexpected
disturbances. Fig. 1 depicts the ability combine the safe
learning framework with warm-start reachability to use the
original safety analysis (green) to generate an updated safety
analysis (blue).

II. PROBLEM FORMULATION

A. Hamilton-Jacobi Reachability Analysis

Hamilton-Jacobi (HJ) reachability analysis is a formal
verification method that ensures systems operate according
to pre-specified safety constraints. In reachability analysis,
the target set is defined as the region of the state space that
the system aims to reach or the region it aims to avoid to
ensure the safety of the system. In Fig. 2, the target set
is in red and represents safety constraints for a quadcopter
(comprised of constraints on altitude and vertical velocity).
The goal of HJ reachability analysis is to find the set of states
from which the system can reach the target set if the system
applies the optimal control under the worst-case disturbance.
This provides either the set of states the system must remain
within or the set of states the system must avoid to guarantee
safety for all possible disturbance values. The control action
is bounded within a range of values u ∈ U , and the optimal
control is chosen as the best action within this range to ensure
that the system reaches or avoids the target set. Similarly,
the disturbance is also bounded within a range of values
d ∈ D, and the worst-case disturbance is the disturbance
within this range that acts against the optimal control action
most significantly. The dynamics of the system are provided
as differential equations that describe how the state of a
system changes ẋ = f(x, u, d). In the setup described by
Fig. 2, the disturbance can be, for example, external wind.

In HJ reachability analysis, the cost function l(x) is defined
as a measure of how far the system is from the target set for a
given state x. The cost function is negative when the system
is within the target set, positive when the system is outside of
the target set, and zero when the system is on the boundary
of the target set. If the control aims to minimize the cost
function, and the disturbance aims to maximize the cost, the
value of a state at time t is given by

V (x, t) = min
u

max
d

l(x). (1)

Fig. 2: Scenario of simulated demonstration. The red box represents the
target set, where the quadcopter must remain to avoid crashing into the
ceiling or floor.

If a state has a negative value, optimal trajectories originating
from that state will end within the target set. Therefore,
the set of states that have a negative value comprise the
safe region in which the system can operate to ensure that
it will remain within the target set under the worst-case
disturbance. The solution V (x, t) is found by solving the
Hamilton-Jacobi-Isaacs variational inequality (HJI VI)

min
{
DtV (x, t) +H

(
V (x, t),f(x, u, d)

)
,

l(x)− V (x, t)
}
= 0.

(2)

where H is the Hamiltonian,

H = min
u

max
d
〈∇V (x(t), t), f(x, u, d)〉. (3)

For more information on the derivation of the equations used
for HJ reachability analysis, see [3–5].

This verification tool is very beneficial because it is robust
and can compute strong safety guarantees if the dynamics
of the system and the bounds on the disturbance are known.
While it is can also be applied to numerous different systems
with any number of dimensions, there are limitations on the
ability to apply reachability analysis to some real-world sys-
tems. First, reachability analysis is computationally intensive,
which leads to high computation times, particularly for high-
dimensional systems. The safety analysis is also only valid if
the assumptions on the dynamics of the system and bounds
on the disturbance hold true.

B. Warm-Start Reachability Analysis

One of the challenges of HJ reachability analysis is im-
proved upon through a method termed warm-starting, which
lowers computation time when updating the safety analysis



[2]. Assumptions about the dynamics of a system and the
bounds on the disturbance acting on the system often change
with time. As new knowledge is acquired, it is desirable
to update the safety analysis to more accurately reflect the
dynamics of the system and the bounds on the disturbance to
improve safety guarantees. Rather than restarting the safety
analysis as new assumptions are made, warm-start reachabil-
ity presents a method to initialize reachability computations
with the previously computed safe set. Previous work has
demonstrated that this technique is effective in producing
exact solutions in less time than similar reachability methods
that do not utilize warm-starting [2]. Warm-start reachability
analysis is a general analysis method that can be applied
to a variety of systems to update safety guarantees when
the system obtains information about its dynamics or its
environment.

C. Safe Learning

Through safe learning, initial assumptions about the distur-
bance bounds can be updated as a system learns more about
its environment [1]. This process begins by performing HJ
reachability analysis, using the initial assumptions about the
bounds on the disturbance, to compute the safe region of
operation. The control of the system is chosen to allow the
system to learn about its environment, while remaining within
this safe region. If the system learns that the disturbance
is not within the bounds it originally assumed, the system
becomes more conservative, staying in a smaller region
within the calculated safe set where initial assumptions are
still valid. The system then continues to gather data about
its environment within this confined region of the safe set
until it has enough information to compute a model of the
disturbance within its environment. It uses GPs to generate
a model of disturbance over the state space; the 95th percent
confidence intervals on the resulting GP are set as the new
bounds on the disturbance. These new assumptions are then
used to recompute the safety analysis to better reflect the true
disturbances.

This safe learning framework is effective in ensuring
the safe operation of a system and recomputing the safety
analysis [1]. However, this updating of the safety analysis
is time-consuming, and it is often not feasible to perform
these computations online. By introducing warm-starting
techniques, safety analysis can be updated from its initial
assumptions, rather than recomputing safety analysis with-
out these initializations. This has the potential to improve
computation time and improve the feasibility of performing
these computations online.

III. EFFICIENT SAFETY UPDATES IN UNCERTAIN
SYSTEMS

We aim to combine previous safe learning work with
warm-start reachability analysis to create a framework for
efficient safety updates in uncertain robotic systems. The goal
is to efficiently update the safe set as the system acquires
information about the disturbance in its environment.

Through our framework, the safe set is initially computed
using our assumptions of the bounds on the disturbance. The
system then aims to create a model of the disturbance to up-
date this safe set. Until the system has collected enough data
to create a model, it explores its environment. The system
begins by calculating the disturbance at its given state. If this
disturbance is not within the bounds it originally assumed, the
system becomes more conservative and contracts its safety
region. The system then calculates the relative safety level of
its current state to produce a safe control action that attempts
to follow a specified trajectory. This control is then used
to update the state of the system. Upon collecting enough
data about the disturbance, Gaussian Processes are used to
update the bounds of the disturbance, which are then used
to compute the updated safety analysis. See Algorithm 1 for
details on the efficient safety update framework.

Algorithm 1: Efficient safe learning demonstration
Result: Updated safe set

1 Initialize: dynamics, uBounds, dBounds, target,
trajectory, dSamples;

2 [SafetyController, safe set] = HJReachability(dynamics,
uBounds, dBounds, target);

3 t = 0;
4

5 while length(dSamples) < minimum samples do
6 while t < t experiment do
7 d(x) = MeasureDisturbance(x(t), x(t-1));
8 dSamples(end+1) = d(x);
9

10 if d(x) /∈ dBounds then
11 safe set = ContractSet(x, safe set);
12 end
13

14 safety level = ComputeSafetyLevel(x, safe set);
15 u perf = PerformanceController(x, dynamics,

trajectory);
16 u safe = SafetyController(x, dynamics);
17 u = VerifierController(u perf, u safe,

safety level);
18 x = UpdateState(x, dynamics, u, t);
19 end
20

21 dBounds = GaussianProcessUpdate(dSamples);
22 target = safe set;
23 [SafetyController, safe set] =

HJReachability(dynamics, uBounds, dBounds,
target);

24 end

IV. DEMONSTRATION

To test the performance of our efficient safety updates,
we are simulating a scenario in which a quadcopter moves
vertically within a room, learning about its environment while



Fig. 3: (a) The trajectory of the system uses a combination of the safety and performance controller. The performance controller aims to move between the
points in the reference trajectory, and the safety controller overrides this control when the system is at risk of leaving the safety region. (b) The safe region
contracts when the system observes a disturbance that is stronger than expected, limiting the space in which the system can safely move. (c) Original safe
region computed using assumed disturbance and updated safe region computed using model of disturbance without warm-starting.

remaining safe. The goal is for the quadcopter to learn how
to move around within the space and avoid crashing into the
floor or ceiling, despite the fact that the system is not fully
aware of the disturbance in the environment. This scenario
can be seen in Fig. 2.

The quadcopter operates under the following dynamics:[
ẋ1

ẋ2

]
=

[
x2

kT ∗ u+ g + k0 + d

]
(4)

with altitude x1 and vertical velocity x2, where kT , g, and
k0 are constants. The control u ∈ [5, 8] is the motor thrust
command, and the disturbance is initially assumed to be
bounded such that d ∈ [−2, 2]. In order to avoid crashing
into the floor or ceiling, the center of the quadcopter must
remain between an altitude of 0.35m and 2.8m, while its
vertical velocity must remain between −3.5m/s and 3.5m/s.
This is the target set, which can be visualized by the red box
in Fig. 2.

While we are initially assuming that the disturbance is
within the range d ∈ [−2, 2], the actual disturbance present
in the environment is different than our assumptions. We are
considering a case in which there is a fan on the ground that
produces a disturbance of which the quadcopter is initially
unaware. This disturbance is modeled by the function

d(x1) =
3

1 + e2x1−4
(5)

which produces a disturbance that is stronger than we had
anticipated near the ground and approaches zero as altitude
increases as shown in Fig. 4. Intuitively, we would expect
that increased wind speeds at lower altitudes would cause
this region of the state space to be less safe, whereas the
decreased wind speeds at higher altitudes would cause this
region to be more safe.

Before the quadcopter can begin its trajectory, we compute
the safe region (Fig. 3a), given the assumed disturbance
with no knowledge of the actual disturbance. We then create

Fig. 4: Model of actual disturbance for simulation, where disturbance is high
for low altitudes and approaches zero for higher altitudes.

a performance controller that computes the linear-quadratic
regulator (LQR) control to enable the system to follow a
given trajectory, and a safety controller that computes the
optimal control to remain within the safe region. These
controllers are averaged based on the systems relative safety
level to create a controller that enables the system to follow
the given trajectory with minimal resistance, until the system
comes close to the boundary of the safe region. The trajectory
of the system is shown in Fig. 3a.

As the system moves within the state space, it calculates
the disturbance at various altitudes. If the disturbance is
higher in magnitude than the maximum or minimum dis-
turbance that it originally assumed, the system becomes
more conservative, immediately contracting the safe region
(Fig. 3b). By using the systems current state to recompute
the boundary of the safe region, we ensure that the system
remains safe as it continues to learn about its environment.



Fig. 5: Model of disturbance and actual disturbance for various altitudes.
Model provides the range of disturbances in which we assume the actual
disturbance resides with 95% confidence.

Once the system has computed a sufficient number of
disturbance measurements for various altitudes, Gaussian
Processes (GPs) are used to generate a model of the dis-
turbance for every altitude within the target set. For every
altitude within the target set, this model provides a prediction
of the disturbance and the range of disturbances that the
actual disturbance resides in with 95% confidence. This
model is shown in Fig. 5.

Using this model of disturbance, the safe region can be
recomputed, using the bounds of the confidence interval
as the new assumptions of the maximum and minimum
disturbance. These computations have been performed both
with and without warm-starting. The updated safe region
that used warm-starting techniques to update it from the
previously computed safe region (Fig. 1) is nearly identical
to the updated region that was computed by restarting the
computations without warm-starting (Fig. 3c). The time it
took to complete safety analysis without warm-starting was
5.169 seconds, while the time required to complete safety
analysis without warm-starting was 4.758 seconds.

V. DISCUSSION & CONCLUSION

This work creates an efficient method for a system to
learn about its environment and update safety guarantees
by combining the previous safe learning framework with
warm-start reachability analysis. This presents the potential
to improve computation time when updating safety analysis,
which would allow computations to be performed online in
real-time. For a system with only two dimensions, the dif-
ference in computation time with and without warm-starting
is evident but minimal. However, this safety framework is
applicable to high-dimensional systems, which benefit much
more from warm-starting [2]. Previously, the safe-learning
framework could not effectively be applied to systems with

a large number of dimensions due to the high computation
time. Combining the safe learning framework with warm-
start reachability would allow high-dimensional systems to
benefit from improved methods of safe learning in uncertain
robotic systems.

Future work aims to demonstrate this improved safe
learning framework on real-world systems with the goal
of applying this work to more realistic, high-dimensional
systems. Additionally, we aim to implement a performance
controller that uses reinforcement learning, rather than an
LQR controller, to improve the system’s ability to travel in
and learn about its environment. We also aim to perform
reachability analysis online, performing safety analysis and
collecting disturbance data in parallel to allow for real-time
updates to the safe set.
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