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Abstract—As robotic systems enter our workplaces, roads, and
homes, it is becoming increasingly important to ensure that robots
are able to work safely and effectively with and around humans.
Understanding the ways in which humans move in their environ-
ment and communicating this understanding to robotic systems
can allow robots to operate safely and productively around
humans. This project uses empirical data to gain understanding
of the regularities in human movement and to find motion laws
that reflect the movement of humans in cluttered environments.
The data collected through this project supports the idea that
human walking patterns exhibit a power law relationship between
the speed and curvature of human feet (Eq. 1), regardless of the
trajectory of motion. This project considers both a single human
walking in set patterns and around obstacles and two humans
walking in a shared, and perhaps cluttered, space (Fig. 1, 2). For
a single person walking through various patterns and around
obstacles, the exponent of the power law averaged at -0.8089
(Table I). For two people walking in a shared space while
performing avoidance maneuvers, the exponent averaged at -
0.7713 (Table I). Future work aims to further analyze human
walking patterns around obstacles and other humans, as well
as walking patterns around robots. With a better understanding
of these walking patterns, planning algorithms can leverage the
steering laws used by humans to better control the behavior of
robots that operate in the same environment as people.

I. INTRODUCTION

Human-robot interaction (HRI) is governed by the under-
standing, design, and evaluation of robotic systems that work
with and around humans. As the capabilities of robotic sys-
tems have expanded, interaction between humans and robots
has increased [1]. Improving this interaction is critical to
develop service robots that can perform tasks in numerous
nonindustrial settings. This will allow robots to work with
and benefit non-expert users in homes, hospitals, schools,
urban areas, and various other domains. Advancements in HRI
technology can lead to the success of health-care robots that
may improve patient care, search and rescue robots that may
benefit disaster victims and rescue workers, robotic teacher
aides that could assist students academically, and several other
types of interactive robots that can greatly benefit people [2].

In order to develop robots that can interact successfully
with humans, additional research needs to be conducted in the
field of human-robot interaction (HRI). In order for interactive
robots to be successful, they must be able to operate alongside
humans in a way that is robust, reliable, and safe. This requires
motion planning and control strategies that ensure the safety of

all humans in the shared space. A critical component of HRI
is the ability of robotic systems to monitor humans in their
environment to ensure the actions of the robot are safe [3]. By
using physiological signals from the humans, robots can gain
information about the humans’ reactions to the robots’ actions
and predict the humans’ movements [3]. One of the greatest
challenges surrounding HRI is the need for robots to reliably
identify and track human partners and to effectively model the
behavior of humans [2]. If a robotic system is able to monitor
humans and interpret their physiological signals appropriately,
it will be better prepared to develop pre-collision strategies to
ensure that the robot does not collide with a human.

II. PROBLEM FORMULATION

A. Human Collision Avoidance Behavior

The first step in enabling robots to monitor and interpret
physiological signals from humans is to gain an understand-
ing of natural human behavior. Numerous studies have been
conducted to better understand human collision avoidance
behavior–a critical component of human movement around
robotic systems. Studies derived from fundamental aspects
of game theory [4], as well as those that rely heavily on
empirical data [5], have helped increase the understanding of
how humans interact when around another human.

A critical component to ensuring the robots move in a
way that is reliable and socially acceptable is to be aware of
the mutual influence between humans and robots in a shared
environment. Humans are interaction-aware, meaning that their
actions are dependent on the assumptions that they make about
other people in their environment. For example, two humans
walking toward each other will both likely move slightly to
avoid the other and would expect the other person to behave
similarly. Rather than focusing on independent motion panning
of individuals, it is beneficial to consider the cooperative
behavior of humans. One method to consider human motion
planning is to approximate the human decision making with
the theory of Nash equilibrium in non-cooperative games,
where the Nash equilibrium is a best response for all agents
[4]. This idea, derived from game theory, was found to be more
effective than previous methods in approximating the decision
process behind human avoidance behavior [4]. This indicates
that it is important to consider interactions between humans,
as well as potential interactions between humans and robots,



rather than treating humans as independent agents, unaware of
those in their environment.

Further work has been done to collect empirical data
on the ways in which humans interact with other humans
and avoid collisions. The goal of this body of work is to
use motion capture data to better understand these interac-
tions and characterize human collision-avoidance behavior.
There are various measures to understand avoidance behavior–
collaboration, clearance, anticipation, and synchronization.
Collaboration indicates the extent to which lateral distance is
shared between two people, clearance considers how close two
people allow each other to pass, anticipation depends on the
spatial relation between deviation actions, and synchronization
reflects the temporal relation between deviation moments [5].
The way these measures impact human avoidance behavior
are somewhat dependent on the individuals, but they are all
significant to collision-avoidance [5]. These measures may
be significant to consider in robotic motion planning, as
they impact the ways in which humans behave around other
humans, the ways they may behave around robotic systems,
and the ways they may expect robots to behave around them.

B. Modeling Human Arm Movement

There has also been significant work on characterizing
coordinated human arm motion and finding regularities in
this movement. One idea to consider is that humans move
their hands in a smooth motion. Rather than making sharp,
disconnected movements, humans seem to naturally follow
smooth trajectories with their hands. Empirical studies have
found some truth in this prediction.

In assuming that humans seek to produce the smoothest
possible movement with their hands, researchers have consid-
ered that human hand motion aims to minimize the square
of the magnitude of jerk over the entire movement, which is
associated with the smoothness of the motion. Human subjects
performing voluntary unconstrained point-to-point movements
typically exhibited hand motions that followed a straight path
with a bell-shaped tangential velocity [6]. Similarly, when per-
forming unconstrained curved movements around an obstacle,
subjects’ motions tended to have portions of low and high
curvature, where curvature and tangential velocity were found
to be inversely related [6]. This is inline with the predictions
of a mathematical model whose objective is to minimize the
square of the magnitude of the jerk, suggesting that human
motions do, in fact, have some relation to jerk and smoothness.

Similar work has been derived from the idea that humans’
complex arm movements naturally tend to follow smooth
paths. The two-thirds power law was derived mathematically
from a smoothness cost function, and was found to be effective
in predicting human arm movements in some cases [8]. The
two-thirds power law further reflects the inverse relationship
between speed and curvature, claiming that

v = gκ−β (1)

where v is the velocity of arm movements, κ is the curvature, g
is a constant gain factor, and the commonly accepted exponent

β is 1/3. For simple movements, the gain factor is a constant
value that produces a single segment on a log(κ) vs. log(v)
plot. For more complex movements, the gain factor is more
often a piece-wise function. There is evidence to suggest the
velocity-curvature relation is robust, but the exponent is not
necessarily 1/3 in all cases, and the gain factor may not be a
constant value [8]. The power law is also not consistent with
all shapes and does not reflect straight-line motion or points of
inflection effectively. However, it does present valuable insight
into human arm movement and has proven to be effective in
characterizing some human arm motions [8].

C. Modeling Human Avoidance Behavior

There is great interest in the area of human-robot interaction
(HRI) to understand and model human avoidance behavior as
a way to better predict how a human will move in cluttered
environments around robots and other humans. With the ability
to find regularities in human movement, robots could be better
designed to interact with and around humans. With the ability
to accurately model human motion patterns, robots could
effectively navigate spaces around humans and avoid collision.
Human arm movements shows smooth motions that reflect
power laws that relate speed and curvature. We seek to extract
similar insights into the regularities of human walking patterns.
Through analysis of empirical data, we seek to determine the
extent to which power laws reflect human avoidance behavior
in various scenarios and consider how natural human walking
patterns may exhibit other regularities.

III. EXPERIMENTAL DESIGN

A. Equipment & Lab Space

The lab space is equipped with a Vicon motion tracking
system, consisting of 14 cameras–2 video cameras and 12
motion capture cameras that record the location and orientation
of an object every ten milliseconds. For every desired object,
Vicon can determine its x, y, and z coordinate points in
millimeters and its heading with respect to the origin in
degrees. To track the movement of humans walking in the
lab space, participants strap a motion tracking device to each
of their shoes. Each device contains markers placed in a
unique pattern, which allows Vicon to recognize each shoe as
a distinct object. We can then collect data on the coordinates
and heading of the feet of participants while walking in the
lab.

B. One Person Trials

To better understand the characteristics of human walking
behavior and the regularities that govern this movement, we
conduct numerous trials with a single participant for four set-
ups. Each of these trial types can be seen in Figure 1. In the
first three trials types, the participant walks in the lab space
following a given shape. In the first trial type, they walk in a
circle (Fig. 1a), in the second, they walk in an ellipse (Fig. 1b),
and in the third, they walk in a figure eight (Fig. 1c). In each
these figures, the green circle indicates where the participant
started, the red square indicates where they ended, and the



Fig. 1. Various set-ups with one person to understand human walking patterns.
a) Participant starts in center of lab and walked in a circle, returning to original
point. b) Participant starts in center of lab and walked in an ellipse, returning
to original point. c) Participant starts in center of lab and walked in a figure
eight shape, returning to original point. d) Participant starts at one end of the
lab and walked to the other side, avoiding an obstacle in the middle.

black line indicates the approximate path the participant is
expected to follow for a given trial. In the final single-person
trial type, the participant walks from one end of the room
to the other, avoiding an obstacle in the middle of the room.
They started at the green circle in Fig. 1d and walk to the red
square, avoiding the blue rectangle in the middle.

Fig. 2. Various set-ups with two people to understand human avoidance
patterns. a) Participants start opposite each other and move across the room,
while avoiding each other. b) Participants start apart and move diagonally,
while avoiding each other. c) Participants start apart and move diagonally,
while avoiding each other and an obstacle.

C. Two Person Trials

To better understand the characteristics of human avoidance
behavior, we conduct numerous trials with two participants for
three distinct set-ups. Each of these trial types can be seen
in Figure 2. In the first set-up, the participants are standing
directly across from each other at opposite sides of the room.
They must move to the point the other person is standing,
while avoiding each other along the way. Fig. 2a depicts
two people starting and ending at opposite points in the lab.
The green circle with the one indicates where participant one
started, and the the red square with the one indicates where
participant one finished. Similarly, the starting and ending
points of participant two are indicated. In the second set-
up, the participants start in two corners of the lab and move
diagonally across the room to the opposite corner of the lab,
while avoiding each other (Fig. 2b). In the third and final
set-up, participants start in two corners of the lab and move
diagonally to the opposite corner of the lab, while avoiding
each other and an obstacle in the center of the room (Fig. 2c).

Each participant is depicted in the figure as before, but there
is an additional blue rectangle to indicate an obstacle placed
intentionally to interfere with the paths of the participants.

IV. ANALYSIS OF HUMAN AVOIDANCE BEHAVIOR

A. Data Analysis Procedures

The Vicon system provides us with the coordinate and
heading of each foot at various times throughout a trial. Given
this information, we aim to relate the speed and curvature of
human walking trajectories across various trials for a particular
set-up. For a given set-up, we begin by looking at each trial
individually, compiling all of the usable data for that trial.
While a person is walking, we have data for both of their
feet individually, and we calculate the midpoint of the two
feet at each point in time. We then approximate velocity and
acceleration at each point of time, using the coordinate of the
midpoint and knowledge of the frame rate as follows:

vx =
x2 − x1

frame2 − frame1
∗ frame rate

vy =
y2 − y1

frame2 − frame1
∗ frame rate

vz =
z2 − z1

frame2 − frame1
∗ frame rate

(2)

ax =
vx2 − vx1

frame2 − frame1
∗ frame rate

ay =
vy2 − vy1

frame2 − frame1
∗ frame rate

az =
vz2 − vz1

frame2 − frame1
∗ frame rate

(3)

Velocity at a single point in time is represented as ~v =
[vx vy vz], and acceleration at a given point is the vector
~a = [ax ay az]. We then calculate normalized velocity at each
point in time:

~T =
~v

‖~v‖ (4)

With this, we can calculate the time derivative of the
normalized velocity at each point as follows:

~̇T =
(~a− (~a · ~T )~T )

‖~v‖
(5)

Finally, we compute the curvature at each point:

κ =

∥∥∥ ~̇T∥∥∥
‖~v‖

(6)

We now have the speed and curvature for the midpoint of
two feet walking in a lab at various points in time for a trial of
a particular type. We compute the same values for all twelve
trials of that type and compile them all together. We can then
compute a log-log plot of speed versus curvature and perform
a linear regression to analyze the relationship between speed
and curvature for human walking patterns. We perform those
same computations for each of the trial types individually and
present our results in the following sections.



Fig. 3. Trajectories of a sample trial for each single person trial type: a) Circle b) Ellipse c) Figure Eight d) Obstacle

Fig. 4. Curvature versus speed plots for each single person trial type: a) Circle b) Ellipse c) Figure Eight d) Obstacle

Fig. 5. Trajectories of a sample trial for each two person trial type: a) Opposite b) Diagonal - No Obstacle c) Diagonal - With Obstacle

Fig. 6. Curvature versus speed plots for each two person trial type: a) Opposite b) Diagonal - No Obstacle c) Diagonal - With Obstacle



B. One Person Analysis

Beginning with the trajectory data plotted in Fig. 3, which
we have for each trial within a given trial type, we compute the
speed versus curvature relation depicted in Fig. 4. For each of
the trial types, we perform a linear regression on the data and
found the slope and y-intercept of the line of best fit, which
are displayed Table I. Given this information, we can look at
the equations relating speed and curvature for these walking
patterns: circle (7), ellipse (8), figure eight (9), and obstacle
avoidance (10).

log(v) = −0.8154 ∗ log(κ) + 0.6349

v = 4.3142 ∗ κ−0.8154 (7)

log(v) = −0.7998 ∗ log(κ) + 0.5763

v = 3.7696 ∗ κ−0.7998 (8)

log(v) = −0.8170 ∗ log(κ) + 0.6599

v = 4.5698 ∗ κ−0.8170 (9)

log(v) = −0.8034 ∗ log(κ) + 0.6096

v = 4.0701 ∗ κ−0.8034 (10)

C. Two Person Analysis

Beginning with the trajectory data plotted in Fig. 5, which
we have for each trial within a given trial type, we compute
the speed versus curvature relation depicted in Fig. 6. For each
of the trial types, we perform a linear regression on the data
and found the slope and y-intercept of the line of best fit,
which are displayed Table I. Given this information, we can
look at the equations relating speed and curvature for various
walking patterns: participants walking in opposite directions
(11), participants crossing paths (12), and participants crossing
paths with an obstacle (13).

log(v) = −0.7775 ∗ log(κ) + 0.4926

v = 3.1089 ∗ κ−0.7775 (11)

log(v) = −0.7707 ∗ log(κ) + 0.5694

v = 3.7102 ∗ κ−0.7707 (12)

log(v) = −0.7712 ∗ log(κ) + 0.5955

v = 3.9400 ∗ κ−0.7712 (13)

TABLE I

Walking Power Law Coefficients
Walking Pattern Slope Y-Intercept R Squared
(1) Circle -0.8154 0.6349 0.9604
(1) Ellipse -0.7998 0.5763 0.9416
(1) Figure 8 -0.8170 0.6599 0.9579
(1) Obstacle -0.8034 0.6096 0.9439
(1) AVERAGE -0.8089 0.6202 ——–
(2) Opposite -0.7775 0.4926 0.9235
(2) Diagonal -0.7707 0.5694 0.9383
(2) Obstacle -0.7712 0.5955 0.9357
(2) AVERAGE -0.7713 0.5525 ——–

V. CONCLUSION & FUTURE WORK

Based on the results of this study, there is a power law
relationship between the speed and curvature of the midpoint
of human feet in simple walking patterns. This relationship
is given in the following form: v = gκ−β , where v is the
velocity of the midpoint of the feet, κ is the curvature, g is a
constant gain factor, and β is a constant exponent. For a single
human walking in a standard shape (circle, ellipse, figure
eight), there is a clear negative linear relationship between
the log of the curvature and log of the speed, indicating a
power law relationship for these walking patterns (Fig. 3, 4).
This same relationship was seen for a single human walking
around an obstacle (Fig. 3, 4), as well as two humans walking
past each other in opposite directions, two humans walking
diagonally across a room, and two humans walking diagonally
while avoiding an obstacle (Fig. 5, 6).

Previous work found the velocity-curvature power law re-
lationship to be relatively robust for human arm movements,
noting that the generally accepted value of the exponent is
−1/3 [8]. However, this power law did not always hold true
in practice, and the exponent varied in some cases, depending
on specific arm motions [8]. We found that the exponent in
the power law relationship of human feet varied some for
different walking patterns but remained at a relatively constant
value across trial types (Table I). For two people walking in
various patterns, the exponent remained around −0.7713 with
little variation. For a single person walking in various patterns,
there was a bit more variation, with the exponent averaging at
−0.8089. Note that the exponents we found for human walking
patterns varied significantly from the accepted exponent for
human arm movements, but the general relationship between
speed and curvature of our results is consistent with previous
findings.

Future work aims to consider other methods to analyze the
walking patterns of two humans in a shared space. Possible fu-
ture avenues of research would consider ideas from boundary
following and control laws exhibited by flocks. There is also
great interest in considering the interaction of humans with
robotic systems. While it is critical to have a general under-
standing of how humans move in a cluttered space and how
humans move in the presence of other humans, it is important
to consider how the typical behavior of humans may vary
in the presence of robots. Future work aims to characterize
how humans move around robots that are following various
planned trajectories. By increasing the understanding of how
humans move around stationary objects, other humans, and
robots, robotic systems can be better designed to interact safely
and effectively with humans.
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[3] D. Kulić and E. Croft, “Pre-collision safety strategies for human-robot
interaction,” Autonomous Robots, vol. 22, pp. 149–164, Oct. 2006.

[4] A. Turnwald et al., “Understanding human avoidance behavior:
Interaction-aware decision making based on game theory,” International
Journal of Social Robotics, vol. 8, pp. 331–351, Feb. 2016.

[5] B. J. H. van Basten, S. E. M. Jansen, and I. Karamouzas, “Exploiting
motion capture to enhance avoidance behaviour in games,” presented at
the International Workshop on Motion in Games, Zeist, The Netherlands,
Nov. 21–24, 2009.

[6] T. Flash and N. Hogan, “The coordination of arm movements: An exper-
imentally confirmed mathematical model,” The Journal of Neuroscience,
vol. 5, no. 7, pp. 1688-1703, July 1985.

[7] E. Todorov and M. I. Jordan, “Smoothness maximization along a
predefined path accurately predicts the speed profiles of complex arm
movements,” Journal of Neurophysiology, vol. 80, no. 2, pp. 696–714,
Aug. 1998.

[8] M. J. E. Richardson and T. Flash, “On the emulation of natural move-
ments by humanoid robots,” presented at the IEEE-RAS International
Conference on Humanoid Robots, Boston, MA, USA, Sept. 7–8, 2000.

[9] B. Dey and P. S. Krishnaprasad, “Trajectory smoothing as a linear opti-
mal control problem,” presented at the 50th Annual Allerton Conference
on Communication, Control, and Computing, Monticello, IL, USA, Oct.
1–5 2012.


