Files
abomonation
abomonation_derive
ansi_term
async_trait
atty
bincode
bitflags
byteorder
bytes
cfg_if
chrono
clap
dirs
dirs_sys
erdos
fixedbitset
fnv
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
indexmap
iovec
lazy_static
libc
log
memchr
mio
net2
num_cpus
num_integer
num_traits
petgraph
pin_project_lite
pin_utils
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_hc
rand_isaac
rand_jitter
rand_os
rand_pcg
rand_xorshift
serde
serde_derive
sha1
slab
slog
slog_term
strsim
syn
synstructure
term
textwrap
thread_local
time
tokio
future
io
loom
macros
net
park
runtime
stream
sync
task
time
util
tokio_macros
tokio_serde
tokio_serde_bincode
tokio_util
unicode_width
unicode_xid
uuid
vec_map
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
use std::{
    hash::Hash,
    iter::{from_fn, FromIterator},
};

use indexmap::IndexSet;

use crate::{
    visit::{IntoNeighborsDirected, NodeCount},
    Direction::Outgoing,
};

/// Returns iterator that produces all simple paths from `from` node to `to`, which contains at least `min_intermidiate_nodes` nodes
/// and at most `max_intermidiate_nodes`, if given, limited by graph's order otherwise
/// Simple path is path without repetitions
/// Algorithm is adopted from https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.simple_paths.all_simple_paths.html
pub fn all_simple_paths<TargetColl, G>(
    graph: G,
    from: G::NodeId,
    to: G::NodeId,
    min_intermidiate_nodes: usize,
    max_intermidiate_nodes: Option<usize>,
) -> impl Iterator<Item = TargetColl>
where
    G: NodeCount,
    G: IntoNeighborsDirected,
    G::NodeId: Eq + Hash,
    TargetColl: FromIterator<G::NodeId>,
{
    // how many nodes are allowed in simple path up to target node
    // it is min/max allowed path length minus one, because it is more appropriate when implementing lookahead
    // than constantly add 1 to length of current path
    let max_length = if let Some(l) = max_intermidiate_nodes {
        l + 1
    } else {
        graph.node_count() - 1
    };

    let min_length = min_intermidiate_nodes + 1;

    // list of visited nodes
    let mut visited: IndexSet<G::NodeId> = IndexSet::from_iter(Some(from));
    // list of childs of currently exploring path nodes,
    // last elem is list of childs of last visited node
    let mut stack = vec![graph.neighbors_directed(from, Outgoing)];

    from_fn(move || {
        while let Some(children) = stack.last_mut() {
            if let Some(child) = children.next() {
                if visited.len() < max_length {
                    if child == to {
                        if visited.len() >= min_length {
                            let path = visited
                                .iter()
                                .cloned()
                                .chain(Some(to))
                                .collect::<TargetColl>();
                            return Some(path);
                        }
                    } else if !visited.contains(&child) {
                        visited.insert(child);
                        stack.push(graph.neighbors_directed(child, Outgoing));
                    }
                } else {
                    if (child == to || children.any(|v| v == to)) && visited.len() >= min_length {
                        let path = visited
                            .iter()
                            .cloned()
                            .chain(Some(to))
                            .collect::<TargetColl>();
                        return Some(path);
                    }
                    stack.pop();
                    visited.pop();
                }
            } else {
                stack.pop();
                visited.pop();
            }
        }
        None
    })
}

#[cfg(test)]
mod test {
    use std::{collections::HashSet, iter::FromIterator};

    use itertools::assert_equal;

    use crate::{dot::Dot, prelude::DiGraph};

    use super::all_simple_paths;

    #[test]
    fn test_all_simple_paths() {
        let graph = DiGraph::<i32, i32, _>::from_edges(&[
            (0, 1),
            (0, 2),
            (0, 3),
            (1, 2),
            (1, 3),
            (2, 3),
            (2, 4),
            (3, 2),
            (3, 4),
            (4, 2),
            (4, 5),
            (5, 2),
            (5, 3),
        ]);

        let expexted_simple_paths_0_to_5 = vec![
            vec![0usize, 1, 2, 3, 4, 5],
            vec![0, 1, 2, 4, 5],
            vec![0, 1, 3, 2, 4, 5],
            vec![0, 1, 3, 4, 5],
            vec![0, 2, 3, 4, 5],
            vec![0, 2, 4, 5],
            vec![0, 3, 2, 4, 5],
            vec![0, 3, 4, 5],
        ];

        println!("{}", Dot::new(&graph));
        let actual_simple_paths_0_to_5: HashSet<Vec<_>> =
            all_simple_paths(&graph, 0u32.into(), 5u32.into(), 0, None)
                .map(|v: Vec<_>| v.into_iter().map(|i| i.index()).collect())
                .collect();
        assert_eq!(actual_simple_paths_0_to_5.len(), 8);
        assert_eq!(
            HashSet::from_iter(expexted_simple_paths_0_to_5),
            actual_simple_paths_0_to_5
        );
    }

    #[test]
    fn test_one_simple_path() {
        let graph = DiGraph::<i32, i32, _>::from_edges(&[(0, 1), (2, 1)]);

        let expexted_simple_paths_0_to_1 = &[vec![0usize, 1]];
        println!("{}", Dot::new(&graph));
        let actual_simple_paths_0_to_1: Vec<Vec<_>> =
            all_simple_paths(&graph, 0u32.into(), 1u32.into(), 0, None)
                .map(|v: Vec<_>| v.into_iter().map(|i| i.index()).collect())
                .collect();

        assert_eq!(actual_simple_paths_0_to_1.len(), 1);
        assert_equal(expexted_simple_paths_0_to_1, &actual_simple_paths_0_to_1);
    }

    #[test]
    fn test_no_simple_paths() {
        let graph = DiGraph::<i32, i32, _>::from_edges(&[(0, 1), (2, 1)]);

        println!("{}", Dot::new(&graph));
        let actual_simple_paths_0_to_2: Vec<Vec<_>> =
            all_simple_paths(&graph, 0u32.into(), 2u32.into(), 0, None)
                .map(|v: Vec<_>| v.into_iter().map(|i| i.index()).collect())
                .collect();

        assert_eq!(actual_simple_paths_0_to_2.len(), 0);
    }
}