Files
abomonation
abomonation_derive
ansi_term
async_trait
atty
bincode
bitflags
byteorder
bytes
cfg_if
chrono
clap
dirs
dirs_sys
erdos
fixedbitset
fnv
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
indexmap
iovec
lazy_static
libc
log
memchr
mio
net2
num_cpus
num_integer
num_traits
petgraph
pin_project_lite
pin_utils
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_hc
rand_isaac
rand_jitter
rand_os
rand_pcg
rand_xorshift
serde
serde_derive
sha1
slab
slog
slog_term
strsim
syn
synstructure
term
textwrap
thread_local
time
tokio
future
io
loom
macros
net
park
runtime
stream
sync
task
time
util
tokio_macros
tokio_serde
tokio_serde_bincode
tokio_util
unicode_width
unicode_xid
uuid
vec_map
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
// Copyright 2018 Developers of the Rand project.
// Copyright 2013 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! The dirichlet distribution.

use Rng;
use distributions::Distribution;
use distributions::gamma::Gamma;

/// The dirichelet distribution `Dirichlet(alpha)`.
///
/// The Dirichlet distribution is a family of continuous multivariate
/// probability distributions parameterized by a vector alpha of positive reals.
/// It is a multivariate generalization of the beta distribution.
///
/// # Example
///
/// ```
/// use rand::prelude::*;
/// use rand::distributions::Dirichlet;
///
/// let dirichlet = Dirichlet::new(vec![1.0, 2.0, 3.0]);
/// let samples = dirichlet.sample(&mut rand::thread_rng());
/// println!("{:?} is from a Dirichlet([1.0, 2.0, 3.0]) distribution", samples);
/// ```

#[derive(Clone, Debug)]
pub struct Dirichlet {
    /// Concentration parameters (alpha)
    alpha: Vec<f64>,
}

impl Dirichlet {
    /// Construct a new `Dirichlet` with the given alpha parameter `alpha`.
    ///
    /// # Panics
    /// - if `alpha.len() < 2`
    ///
    #[inline]
    pub fn new<V: Into<Vec<f64>>>(alpha: V) -> Dirichlet {
        let a = alpha.into();
        assert!(a.len() > 1);
        for i in 0..a.len() {
            assert!(a[i] > 0.0);
        }

        Dirichlet { alpha: a }
    }

    /// Construct a new `Dirichlet` with the given shape parameter `alpha` and `size`.
    ///
    /// # Panics
    /// - if `alpha <= 0.0`
    /// - if `size < 2`
    ///
    #[inline]
    pub fn new_with_param(alpha: f64, size: usize) -> Dirichlet {
        assert!(alpha > 0.0);
        assert!(size > 1);
        Dirichlet {
            alpha: vec![alpha; size],
        }
    }
}

impl Distribution<Vec<f64>> for Dirichlet {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec<f64> {
        let n = self.alpha.len();
        let mut samples = vec![0.0f64; n];
        let mut sum = 0.0f64;

        for i in 0..n {
            let g = Gamma::new(self.alpha[i], 1.0);
            samples[i] = g.sample(rng);
            sum += samples[i];
        }
        let invacc = 1.0 / sum;
        for i in 0..n {
            samples[i] *= invacc;
        }
        samples
    }
}

#[cfg(test)]
mod test {
    use super::Dirichlet;
    use distributions::Distribution;

    #[test]
    fn test_dirichlet() {
        let d = Dirichlet::new(vec![1.0, 2.0, 3.0]);
        let mut rng = ::test::rng(221);
        let samples = d.sample(&mut rng);
        let _: Vec<f64> = samples
            .into_iter()
            .map(|x| {
                assert!(x > 0.0);
                x
            })
            .collect();
    }

    #[test]
    fn test_dirichlet_with_param() {
        let alpha = 0.5f64;
        let size = 2;
        let d = Dirichlet::new_with_param(alpha, size);
        let mut rng = ::test::rng(221);
        let samples = d.sample(&mut rng);
        let _: Vec<f64> = samples
            .into_iter()
            .map(|x| {
                assert!(x > 0.0);
                x
            })
            .collect();
    }

    #[test]
    #[should_panic]
    fn test_dirichlet_invalid_length() {
        Dirichlet::new_with_param(0.5f64, 1);
    }

    #[test]
    #[should_panic]
    fn test_dirichlet_invalid_alpha() {
        Dirichlet::new_with_param(0.0f64, 2);
    }
}