Files
abomonation
abomonation_derive
ansi_term
async_trait
atty
bincode
bitflags
byteorder
bytes
cfg_if
chrono
clap
dirs
dirs_sys
erdos
fixedbitset
fnv
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
indexmap
iovec
lazy_static
libc
log
memchr
mio
net2
num_cpus
num_integer
num_traits
petgraph
pin_project_lite
pin_utils
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_hc
rand_isaac
rand_jitter
rand_os
rand_pcg
rand_xorshift
serde
serde_derive
sha1
slab
slog
slog_term
strsim
syn
synstructure
term
textwrap
thread_local
time
tokio
future
io
loom
macros
net
park
runtime
stream
sync
task
time
util
tokio_macros
tokio_serde
tokio_serde_bincode
tokio_util
unicode_width
unicode_xid
uuid
vec_map
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
use {memchr, memchr2, memchr3, memrchr, memrchr2, memrchr3};

macro_rules! iter_next {
    // Common code for the memchr iterators:
    // update haystack and position and produce the index
    //
    // self: &mut Self where Self is the iterator
    // search_result: Option<usize> which is the result of the corresponding
    // memchr function.
    //
    // Returns Option<usize> (the next iterator element)
    ($self_:expr, $search_result:expr) => {
        $search_result.map(move |index| {
            // split and take the remaining back half
            $self_.haystack = $self_.haystack.split_at(index + 1).1;
            let found_position = $self_.position + index;
            $self_.position = found_position + 1;
            found_position
        })
    };
}

macro_rules! iter_next_back {
    ($self_:expr, $search_result:expr) => {
        $search_result.map(move |index| {
            // split and take the remaining front half
            $self_.haystack = $self_.haystack.split_at(index).0;
            $self_.position + index
        })
    };
}

/// An iterator for `memchr`.
pub struct Memchr<'a> {
    needle: u8,
    // The haystack to iterate over
    haystack: &'a [u8],
    // The index
    position: usize,
}

impl<'a> Memchr<'a> {
    /// Creates a new iterator that yields all positions of needle in haystack.
    #[inline]
    pub fn new(needle: u8, haystack: &[u8]) -> Memchr {
        Memchr { needle: needle, haystack: haystack, position: 0 }
    }
}

impl<'a> Iterator for Memchr<'a> {
    type Item = usize;

    #[inline]
    fn next(&mut self) -> Option<usize> {
        iter_next!(self, memchr(self.needle, self.haystack))
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        (0, Some(self.haystack.len()))
    }
}

impl<'a> DoubleEndedIterator for Memchr<'a> {
    #[inline]
    fn next_back(&mut self) -> Option<Self::Item> {
        iter_next_back!(self, memrchr(self.needle, self.haystack))
    }
}

/// An iterator for `memchr2`.
pub struct Memchr2<'a> {
    needle1: u8,
    needle2: u8,
    // The haystack to iterate over
    haystack: &'a [u8],
    // The index
    position: usize,
}

impl<'a> Memchr2<'a> {
    /// Creates a new iterator that yields all positions of needle in haystack.
    #[inline]
    pub fn new(needle1: u8, needle2: u8, haystack: &[u8]) -> Memchr2 {
        Memchr2 {
            needle1: needle1,
            needle2: needle2,
            haystack: haystack,
            position: 0,
        }
    }
}

impl<'a> Iterator for Memchr2<'a> {
    type Item = usize;

    #[inline]
    fn next(&mut self) -> Option<usize> {
        iter_next!(self, memchr2(self.needle1, self.needle2, self.haystack))
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        (0, Some(self.haystack.len()))
    }
}

impl<'a> DoubleEndedIterator for Memchr2<'a> {
    #[inline]
    fn next_back(&mut self) -> Option<Self::Item> {
        iter_next_back!(
            self,
            memrchr2(self.needle1, self.needle2, self.haystack)
        )
    }
}

/// An iterator for `memchr3`.
pub struct Memchr3<'a> {
    needle1: u8,
    needle2: u8,
    needle3: u8,
    // The haystack to iterate over
    haystack: &'a [u8],
    // The index
    position: usize,
}

impl<'a> Memchr3<'a> {
    /// Create a new `Memchr3` that's initialized to zero with a haystack
    #[inline]
    pub fn new(
        needle1: u8,
        needle2: u8,
        needle3: u8,
        haystack: &[u8],
    ) -> Memchr3 {
        Memchr3 {
            needle1: needle1,
            needle2: needle2,
            needle3: needle3,
            haystack: haystack,
            position: 0,
        }
    }
}

impl<'a> Iterator for Memchr3<'a> {
    type Item = usize;

    #[inline]
    fn next(&mut self) -> Option<usize> {
        iter_next!(
            self,
            memchr3(self.needle1, self.needle2, self.needle3, self.haystack)
        )
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        (0, Some(self.haystack.len()))
    }
}

impl<'a> DoubleEndedIterator for Memchr3<'a> {
    #[inline]
    fn next_back(&mut self) -> Option<Self::Item> {
        iter_next_back!(
            self,
            memrchr3(self.needle1, self.needle2, self.needle3, self.haystack)
        )
    }
}