Files
abomonation
abomonation_derive
ansi_term
async_trait
atty
bincode
bitflags
byteorder
bytes
cfg_if
chrono
clap
dirs
dirs_sys
erdos
fixedbitset
fnv
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
indexmap
iovec
lazy_static
libc
log
memchr
mio
net2
num_cpus
num_integer
num_traits
petgraph
pin_project_lite
pin_utils
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_hc
rand_isaac
rand_jitter
rand_os
rand_pcg
rand_xorshift
serde
serde_derive
sha1
slab
slog
slog_term
strsim
syn
synstructure
term
textwrap
thread_local
time
tokio
future
io
loom
macros
net
park
runtime
stream
sync
task
time
util
tokio_macros
tokio_serde
tokio_serde_bincode
tokio_util
unicode_width
unicode_xid
uuid
vec_map
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
//! `UnionFind<K>` is a disjoint-set data structure.

use super::graph::IndexType;
use std::cmp::Ordering;

/// `UnionFind<K>` is a disjoint-set data structure. It tracks set membership of *n* elements
/// indexed from *0* to *n - 1*. The scalar type is `K` which must be an unsigned integer type.
///
/// <http://en.wikipedia.org/wiki/Disjoint-set_data_structure>
///
/// Too awesome not to quote:
///
/// “The amortized time per operation is **O(α(n))** where **α(n)** is the
/// inverse of **f(x) = A(x, x)** with **A** being the extremely fast-growing Ackermann function.”
#[derive(Debug, Clone)]
pub struct UnionFind<K> {
    // For element at index *i*, store the index of its parent; the representative itself
    // stores its own index. This forms equivalence classes which are the disjoint sets, each
    // with a unique representative.
    parent: Vec<K>,
    // It is a balancing tree structure,
    // so the ranks are logarithmic in the size of the container -- a byte is more than enough.
    //
    // Rank is separated out both to save space and to save cache in when searching in the parent
    // vector.
    rank: Vec<u8>,
}

#[inline]
unsafe fn get_unchecked<K>(xs: &[K], index: usize) -> &K {
    debug_assert!(index < xs.len());
    xs.get_unchecked(index)
}

#[inline]
unsafe fn get_unchecked_mut<K>(xs: &mut [K], index: usize) -> &mut K {
    debug_assert!(index < xs.len());
    xs.get_unchecked_mut(index)
}

impl<K> UnionFind<K>
where
    K: IndexType,
{
    /// Create a new `UnionFind` of `n` disjoint sets.
    pub fn new(n: usize) -> Self {
        let rank = vec![0; n];
        let parent = (0..n).map(K::new).collect::<Vec<K>>();

        UnionFind { parent, rank }
    }

    /// Return the representative for `x`.
    ///
    /// **Panics** if `x` is out of bounds.
    pub fn find(&self, x: K) -> K {
        assert!(x.index() < self.parent.len());
        unsafe {
            let mut x = x;
            loop {
                // Use unchecked indexing because we can trust the internal set ids.
                let xparent = *get_unchecked(&self.parent, x.index());
                if xparent == x {
                    break;
                }
                x = xparent;
            }
            x
        }
    }

    /// Return the representative for `x`.
    ///
    /// Write back the found representative, flattening the internal
    /// datastructure in the process and quicken future lookups.
    ///
    /// **Panics** if `x` is out of bounds.
    pub fn find_mut(&mut self, x: K) -> K {
        assert!(x.index() < self.parent.len());
        unsafe { self.find_mut_recursive(x) }
    }

    unsafe fn find_mut_recursive(&mut self, mut x: K) -> K {
        let mut parent = *get_unchecked(&self.parent, x.index());
        while parent != x {
            let grandparent = *get_unchecked(&self.parent, parent.index());
            *get_unchecked_mut(&mut self.parent, x.index()) = grandparent;
            x = parent;
            parent = grandparent;
        }
        x
    }

    /// Returns `true` if the given elements belong to the same set, and returns
    /// `false` otherwise.
    pub fn equiv(&self, x: K, y: K) -> bool {
        self.find(x) == self.find(y)
    }

    /// Unify the two sets containing `x` and `y`.
    ///
    /// Return `false` if the sets were already the same, `true` if they were unified.
    ///
    /// **Panics** if `x` or `y` is out of bounds.
    pub fn union(&mut self, x: K, y: K) -> bool {
        if x == y {
            return false;
        }
        let xrep = self.find_mut(x);
        let yrep = self.find_mut(y);

        if xrep == yrep {
            return false;
        }

        let xrepu = xrep.index();
        let yrepu = yrep.index();
        let xrank = self.rank[xrepu];
        let yrank = self.rank[yrepu];

        // The rank corresponds roughly to the depth of the treeset, so put the
        // smaller set below the larger
        match xrank.cmp(&yrank) {
            Ordering::Less => self.parent[xrepu] = yrep,
            Ordering::Greater => self.parent[yrepu] = xrep,
            Ordering::Equal => {
                self.parent[yrepu] = xrep;
                self.rank[xrepu] += 1;
            }
        }
        true
    }

    /// Return a vector mapping each element to its representative.
    pub fn into_labeling(mut self) -> Vec<K> {
        // write in the labeling of each element
        unsafe {
            for ix in 0..self.parent.len() {
                let k = *get_unchecked(&self.parent, ix);
                let xrep = self.find_mut_recursive(k);
                *self.parent.get_unchecked_mut(ix) = xrep;
            }
        }
        self.parent
    }
}