Files
abomonation
abomonation_derive
ansi_term
async_trait
atty
bincode
bitflags
byteorder
bytes
cfg_if
chrono
clap
dirs
dirs_sys
erdos
fixedbitset
fnv
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
indexmap
iovec
lazy_static
libc
log
memchr
mio
net2
num_cpus
num_integer
num_traits
petgraph
pin_project_lite
pin_utils
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rand_hc
rand_isaac
rand_jitter
rand_os
rand_pcg
rand_xorshift
serde
serde_derive
sha1
slab
slog
slog_term
strsim
syn
synstructure
term
textwrap
thread_local
time
tokio
future
io
loom
macros
net
park
runtime
stream
sync
task
time
util
tokio_macros
tokio_serde
tokio_serde_bincode
tokio_util
unicode_width
unicode_xid
uuid
vec_map
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use Rng;
use distributions::Distribution;
use distributions::uniform::{UniformSampler, SampleUniform, SampleBorrow};
use ::core::cmp::PartialOrd;
use core::fmt;

// Note that this whole module is only imported if feature="alloc" is enabled.
#[cfg(not(feature="std"))] use alloc::vec::Vec;

/// A distribution using weighted sampling to pick a discretely selected
/// item.
///
/// Sampling a `WeightedIndex` distribution returns the index of a randomly
/// selected element from the iterator used when the `WeightedIndex` was
/// created. The chance of a given element being picked is proportional to the
/// value of the element. The weights can use any type `X` for which an
/// implementation of [`Uniform<X>`] exists.
///
/// # Performance
///
/// A `WeightedIndex<X>` contains a `Vec<X>` and a [`Uniform<X>`] and so its
/// size is the sum of the size of those objects, possibly plus some alignment.
///
/// Creating a `WeightedIndex<X>` will allocate enough space to hold `N - 1`
/// weights of type `X`, where `N` is the number of weights. However, since
/// `Vec` doesn't guarantee a particular growth strategy, additional memory
/// might be allocated but not used. Since the `WeightedIndex` object also
/// contains, this might cause additional allocations, though for primitive
/// types, ['Uniform<X>`] doesn't allocate any memory.
///
/// Time complexity of sampling from `WeightedIndex` is `O(log N)` where
/// `N` is the number of weights.
///
/// Sampling from `WeightedIndex` will result in a single call to
/// `Uniform<X>::sample` (method of the [`Distribution`] trait), which typically
/// will request a single value from the underlying [`RngCore`], though the
/// exact number depends on the implementaiton of `Uniform<X>::sample`.
///
/// # Example
///
/// ```
/// use rand::prelude::*;
/// use rand::distributions::WeightedIndex;
///
/// let choices = ['a', 'b', 'c'];
/// let weights = [2,   1,   1];
/// let dist = WeightedIndex::new(&weights).unwrap();
/// let mut rng = thread_rng();
/// for _ in 0..100 {
///     // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c'
///     println!("{}", choices[dist.sample(&mut rng)]);
/// }
///
/// let items = [('a', 0), ('b', 3), ('c', 7)];
/// let dist2 = WeightedIndex::new(items.iter().map(|item| item.1)).unwrap();
/// for _ in 0..100 {
///     // 0% chance to print 'a', 30% chance to print 'b', 70% chance to print 'c'
///     println!("{}", items[dist2.sample(&mut rng)].0);
/// }
/// ```
///
/// [`Uniform<X>`]: crate::distributions::uniform::Uniform
/// [`RngCore`]: rand_core::RngCore
#[derive(Debug, Clone)]
pub struct WeightedIndex<X: SampleUniform + PartialOrd> {
    cumulative_weights: Vec<X>,
    weight_distribution: X::Sampler,
}

impl<X: SampleUniform + PartialOrd> WeightedIndex<X> {
    /// Creates a new a `WeightedIndex` [`Distribution`] using the values
    /// in `weights`. The weights can use any type `X` for which an
    /// implementation of [`Uniform<X>`] exists.
    ///
    /// Returns an error if the iterator is empty, if any weight is `< 0`, or
    /// if its total value is 0.
    ///
    /// [`Uniform<X>`]: crate::distributions::uniform::Uniform
    pub fn new<I>(weights: I) -> Result<WeightedIndex<X>, WeightedError>
        where I: IntoIterator,
              I::Item: SampleBorrow<X>,
              X: for<'a> ::core::ops::AddAssign<&'a X> +
                 Clone +
                 Default {
        let mut iter = weights.into_iter();
        let mut total_weight: X = iter.next()
                                      .ok_or(WeightedError::NoItem)?
                                      .borrow()
                                      .clone();

        let zero = <X as Default>::default();
        if total_weight < zero {
            return Err(WeightedError::NegativeWeight);
        }

        let mut weights = Vec::<X>::with_capacity(iter.size_hint().0);
        for w in iter {
            if *w.borrow() < zero {
                return Err(WeightedError::NegativeWeight);
            }
            weights.push(total_weight.clone());
            total_weight += w.borrow();
        }

        if total_weight == zero {
            return Err(WeightedError::AllWeightsZero);
        }
        let distr = X::Sampler::new(zero, total_weight);

        Ok(WeightedIndex { cumulative_weights: weights, weight_distribution: distr })
    }
}

impl<X> Distribution<usize> for WeightedIndex<X> where
    X: SampleUniform + PartialOrd {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> usize {
        use ::core::cmp::Ordering;
        let chosen_weight = self.weight_distribution.sample(rng);
        // Find the first item which has a weight *higher* than the chosen weight.
        self.cumulative_weights.binary_search_by(
            |w| if *w <= chosen_weight { Ordering::Less } else { Ordering::Greater }).unwrap_err()
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_weightedindex() {
        let mut r = ::test::rng(700);
        const N_REPS: u32 = 5000;
        let weights = [1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7];
        let total_weight = weights.iter().sum::<u32>() as f32;

        let verify = |result: [i32; 14]| {
            for (i, count) in result.iter().enumerate() {
                let exp = (weights[i] * N_REPS) as f32 / total_weight;
                let mut err = (*count as f32 - exp).abs();
                if err != 0.0 {
                    err /= exp;
                }
                assert!(err <= 0.25);
            }
        };

        // WeightedIndex from vec
        let mut chosen = [0i32; 14];
        let distr = WeightedIndex::new(weights.to_vec()).unwrap();
        for _ in 0..N_REPS {
            chosen[distr.sample(&mut r)] += 1;
        }
        verify(chosen);

        // WeightedIndex from slice
        chosen = [0i32; 14];
        let distr = WeightedIndex::new(&weights[..]).unwrap();
        for _ in 0..N_REPS {
            chosen[distr.sample(&mut r)] += 1;
        }
        verify(chosen);

        // WeightedIndex from iterator
        chosen = [0i32; 14];
        let distr = WeightedIndex::new(weights.iter()).unwrap();
        for _ in 0..N_REPS {
            chosen[distr.sample(&mut r)] += 1;
        }
        verify(chosen);

        for _ in 0..5 {
            assert_eq!(WeightedIndex::new(&[0, 1]).unwrap().sample(&mut r), 1);
            assert_eq!(WeightedIndex::new(&[1, 0]).unwrap().sample(&mut r), 0);
            assert_eq!(WeightedIndex::new(&[0, 0, 0, 0, 10, 0]).unwrap().sample(&mut r), 4);
        }

        assert_eq!(WeightedIndex::new(&[10][0..0]).unwrap_err(), WeightedError::NoItem);
        assert_eq!(WeightedIndex::new(&[0]).unwrap_err(), WeightedError::AllWeightsZero);
        assert_eq!(WeightedIndex::new(&[10, 20, -1, 30]).unwrap_err(), WeightedError::NegativeWeight);
        assert_eq!(WeightedIndex::new(&[-10, 20, 1, 30]).unwrap_err(), WeightedError::NegativeWeight);
        assert_eq!(WeightedIndex::new(&[-10]).unwrap_err(), WeightedError::NegativeWeight);
    }
}

/// Error type returned from `WeightedIndex::new`.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum WeightedError {
    /// The provided iterator contained no items.
    NoItem,

    /// A weight lower than zero was used.
    NegativeWeight,

    /// All items in the provided iterator had a weight of zero.
    AllWeightsZero,
}

impl WeightedError {
    fn msg(&self) -> &str {
        match *self {
            WeightedError::NoItem => "No items found",
            WeightedError::NegativeWeight => "Item has negative weight",
            WeightedError::AllWeightsZero => "All items had weight zero",
        }
    }
}

#[cfg(feature="std")]
impl ::std::error::Error for WeightedError {
    fn description(&self) -> &str {
        self.msg()
    }
    fn cause(&self) -> Option<&::std::error::Error> {
        None
    }
}

impl fmt::Display for WeightedError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.msg())
    }
}