Lecture Videos
The lecture videos from the most recent offerings of CS188 are posted below.
Spring 2014 Lecture Videos
Fall 2013 Lecture Videos
Spring 2013 Lecture Videos
Fall 2012 Lecture Videos
Step-By-Step Supplementary Videos
Spring 2014
Lecture Title | Lecturer | Notes | |
Lecture 1 | Introduction | Pieter Abbeel | |
Lecture 2 | Uninformed Search | Pieter Abbeel | |
Lecture 3 | Informed Search | Pieter Abbeel | |
Lecture 4 | Constraint Satisfaction Problems I | Pieter Abbeel | Recording is a bit flaky, see Fall 2013 Lecture 4 for alternative |
Lecture 5 | Constraint Satisfaction Problems II | Pieter Abbeel | |
Lecture 6 | Adversarial Search | Pieter Abbeel | |
Lecture 7 | Expectimax and Utilities | Pieter Abbeel | |
Lecture 8 | Markov Decision Processes I | Pieter Abbeel | |
Lecture 9 | Markov Decision Processes II | Pieter Abbeel | |
Lecture 10 | Reinforcement Learning I | Pieter Abbeel | |
Lecture 11 | Reinforcement Learning II | Pieter Abbeel | |
Lecture 12 | Probability | Pieter Abbeel | |
Lecture 13 | Markov Models | Pieter Abbeel | |
Lecture 14 | Hidden Markov Models | Pieter Abbeel | Recording is a bit flaky, see Fall 2013 Lecture 18 for alternative |
Lecture 15 | Applications of HMMs / Speech | Pieter Abbeel | |
Lecture 16 | Bayes' Nets: Representation | Pieter Abbeel | |
Lecture 17 | Bayes' Nets: Independence | Pieter Abbeel | |
Lecture 18 | Bayes' Nets: Inference | Pieter Abbeel | |
Lecture 19 | Bayes' Nets: Sampling | Pieter Abbeel | Unrecorded, see Fall 2013 Lecture 16 |
Lecture 20 | Decision Diagrams / Value of Perfect Information | Pieter Abbeel | |
Lecture 21 | Machine Learning: Naive Bayes | Nicholas Hay | |
Lecture 22 | Machine Learning: Perceptrons | Pieter Abbeel | |
Lecture 23 | Machine Learning: Kernels and Clustering | Pieter Abbeel | |
Lecture 24 | Advanced Applications: NLP, Games, and Robotic Cars | Pieter Abbeel | |
Lecture 25 | Advanced Applications: Computer Vision and Robotics | Pieter Abbeel | |
Lecture 26 | Conclusion | Pieter Abbeel | Unrecorded |
Fall 2013
Lecture Title | Lecturer | Notes | |
Lecture 1 | Introduction | Dan Klein | |
Lecture 2 | Uninformed Search | Dan Klein | |
Lecture 3 | Informed Search | Dan Klein | |
Lecture 4 | Constraint Satisfaction Problems I | Dan Klein | |
Lecture 5 | Constraint Satisfaction Problems II | Dan Klein | |
Lecture 6 | Adversarial Search | Dan Klein | |
Lecture 7 | Expectimax and Utilities | Dan Klein | |
Lecture 8 | Markov Decision Processes I | Dan Klein | |
Lecture 9 | Markov Decision Processes II | Dan Klein | |
Lecture 10 | Reinforcement Learning I | Dan Klein | |
Lecture 11 | Reinforcement Learning II | Dan Klein | |
Lecture 12 | Probability | Pieter Abbeel | |
Lecture 13 | Bayes' Nets: Representation | Pieter Abbeel | |
Lecture 14 | Bayes' Nets: Independence | Dan Klein | |
Lecture 15 | Bayes' Nets: Inference | Pieter Abbeel | |
Lecture 16 | Bayes' Nets: Sampling | Pieter Abbeel | |
Lecture 17 | Decision Diagrams / Value of Perfect Information | Pieter Abbeel | |
Lecture 18 | Hidden Markov Models | Dan Klein | |
Lecture 19 | Applications of HMMs / Speech | Dan Klein | |
Lecture 20 | Machine Learning: Naive Bayes | Dan Klein | |
Lecture 21 | Machine Learning: Perceptrons | Dan Klein | |
Lecture 22 | Machine Learning: Kernels and Clustering | Pieter Abbeel | |
Lecture 23 | Machine Learning: Decision Trees and Neural Nets | Pieter Abbeel | |
Lecture 24 | Advanced Applications: NLP and Robotic Cars | Dan Klein | Unrecorded, see Spring 2013 Lecture 24 |
Lecture 25 | Advanced Applications: Computer Vision and Robotics | Pieter Abbeel | |
Lecture 26 | Conclusion | Dan Klein, Pieter Abbeel |
Unrecorded |
Spring 2013
Lecture Title | Lecturer | Notes | |
Lecture 1 | Introduction | Pieter Abbeel | Video Down |
Lecture 2 | Uninformed Search | Pieter Abbeel | |
Lecture 3 | Informed Search | Pieter Abbeel | |
Lecture 4 | Constraint Satisfaction Problems I | Pieter Abbeel | |
Lecture 5 | Constraint Satisfaction Problems II | Pieter Abbeel | Unrecorded, see Fall 2012 Lecture 5 |
Lecture 6 | Adversarial Search | Pieter Abbeel | |
Lecture 7 | Expectimax and Utilities | Pieter Abbeel | |
Lecture 8 | Markov Decision Processes I | Pieter Abbeel | |
Lecture 9 | Markov Decision Processes II | Pieter Abbeel | |
Lecture 10 | Reinforcement Learning I | Pieter Abbeel | |
Lecture 11 | Reinforcement Learning II | Pieter Abbeel | |
Lecture 12 | Probability | Pieter Abbeel | |
Lecture 13 | Bayes' Nets: Representation | Pieter Abbeel | |
Lecture 14 | Bayes' Nets: Independence | Pieter Abbeel | |
Lecture 15 | Bayes' Nets: Inference | Pieter Abbeel | |
Lecture 16 | Bayes' Nets: Sampling | Pieter Abbeel | |
Lecture 17 | Decision Diagrams / Value of Perfect Information | Pieter Abbeel | |
Lecture 18 | Hidden Markov Models | Pieter Abbeel | |
Lecture 19 | Applications of HMMs / Speech | Pieter Abbeel | |
Lecture 20 | Machine Learning: Naive Bayes | Pieter Abbeel | |
Lecture 21 | Machine Learning: Perceptrons I | Nicholas Hay | |
Lecture 22 | Machine Learning: Perceptrons II | Pieter Abbeel | |
Lecture 23 | Machine Learning: Kernels and Clustering | Pieter Abbeel | |
Lecture 24 | Advanced Applications: NLP and Robotic Cars | Pieter Abbeel | |
Lecture 25 | Advanced Applications: Computer Vision and Robotics | Pieter Abbeel | |
Lecture 26 | Conclusion | Pieter Abbeel | Unrecorded |
Fall 2012
Lecture Title | Lecturer | Notes | |
Lecture 1 | Introduction | Dan Klein | |
Lecture 2 | Uninformed Search | Dan Klein | |
Lecture 3 | Informed Search | Dan Klein | |
Lecture 4 | Constraint Satisfaction Problems I | Dan Klein | |
Lecture 5 | Constraint Satisfaction Problems II | Dan Klein | |
Lecture 6 | Adversarial Search | Dan Klein | |
Lecture 7 | Expectimax and Utilities | Dan Klein | |
Lecture 8 | Markov Decision Processes I | Dan Klein | |
Lecture 9 | Markov Decision Processes II | Dan Klein | |
Lecture 10 | Reinforcement Learning I | Dan Klein | |
Lecture 11 | Reinforcement Learning II | Dan Klein | |
Lecture 12 | Probability | Pieter Abbeel | |
Lecture 13 | Bayes' Nets: Representation | Pieter Abbeel | |
Lecture 14 | Bayes' Nets: Independence | Pieter Abbeel | |
Lecture 15 | Bayes' Nets: Inference | Pieter Abbeel | |
Lecture 16 | Bayes' Nets: Sampling | Pieter Abbeel | |
Lecture 17 | Decision Diagrams / Value of Perfect Information | Pieter Abbeel | |
Lecture 18 | Hidden Markov Models | Pieter Abbeel | |
Lecture 19 | Applications of HMMs / Speech | Dan Klein | |
Lecture 20 | Machine Learning: Naive Bayes | Dan Klein | |
Lecture 21 | Machine Learning: Perceptrons | Dan Klein | |
Lecture 22 | Machine Learning: Kernels and Clustering | Dan Klein | |
Lecture 23 | Machine Learning: Decision Trees and Neural Nets | Pieter Abbeel | |
Lecture 24 | Advanced Applications: Computer Vision and Robotics | Pieter Abbeel | |
Lecture 25 | Advanced Applications: NLP and Robotic Cars | Dan Klein, Pieter Abbeel |
Unrecorded |
Lecture 26 | Conclusion | Dan Klein, Pieter Abbeel |
Unrecorded |
Step-By-Step Supplementary Videos
Lecture Title | Lecturer | Notes | |
SBS-1 | DFS and BFS | Pieter Abbeel | Lec: Uninformed Search |
SBS-2 | A* Search | Pieter Abbeel | Lec: Informed Search |
SBS-3 | Alpha-Beta Pruning | Pieter Abbeel | Lec: Game playing |
SBS-4 | D-Separation | Pieter Abbeel | Lec: Bayes' nets: Syntax and semantics |
SBS-5 | Elimination of One Variable | Pieter Abbeel | Lec: Bayes' nets: Exact inference |
SBS-6 | Variable Elimination | Pieter Abbeel | Lec: Bayes' Nets: Exact inference |
SBS-7 | Sampling | Pieter Abbeel | Lec: Bayes' nets: Approximate inference |
SBS-8 | Gibbs' Sampling | Michael Liang | Lec: Bayes' nets: Approximate inference |
SBS-9 | Perceptrons | Pieter Abbeel | Lec: Machine Learning: Neural networks |
SBS-10 | Maximum Likelihood | Pieter Abbeel | Lec: Machine Learning: Statistical learning |
SBS-11 | Laplace Smoothing | Pieter Abbeel | Lec: Machine Learning: Statistical learning |