COMBINATORIAL_BLAS  1.6
MersenneTwister.h
Go to the documentation of this file.
1 // MersenneTwister.h
2 // Mersenne Twister random number generator -- a C++ class MTRand
3 // Based on code by Makoto Matsumoto, Takuji Nishimura, and Shawn Cokus
4 // Richard J. Wagner v1.0 15 May 2003 rjwagner@writeme.com
5 
6 // The Mersenne Twister is an algorithm for generating random numbers. It
7 // was designed with consideration of the flaws in various other generators.
8 // The period, 2^19937-1, and the order of equidistribution, 623 dimensions,
9 // are far greater. The generator is also fast; it avoids multiplication and
10 // division, and it benefits from caches and pipelines. For more information
11 // see the inventors' web page at http://www.math.keio.ac.jp/~matumoto/emt.html
12 
13 // Reference
14 // M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-Dimensionally
15 // Equidistributed Uniform Pseudo-Random Number Generator", ACM Transactions on
16 // Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp 3-30.
17 
18 // Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
19 // Copyright (C) 2000 - 2003, Richard J. Wagner
20 // All rights reserved.
21 //
22 // Redistribution and use in source and binary forms, with or without
23 // modification, are permitted provided that the following conditions
24 // are met:
25 //
26 // 1. Redistributions of source code must retain the above copyright
27 // notice, this list of conditions and the following disclaimer.
28 //
29 // 2. Redistributions in binary form must reproduce the above copyright
30 // notice, this list of conditions and the following disclaimer in the
31 // documentation and/or other materials provided with the distribution.
32 //
33 // 3. The names of its contributors may not be used to endorse or promote
34 // products derived from this software without specific prior written
35 // permission.
36 //
37 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
41 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
42 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
43 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
44 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
45 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
46 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
47 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 
49 // The original code included the following notice:
50 //
51 // When you use this, send an email to: matumoto@math.keio.ac.jp
52 // with an appropriate reference to your work.
53 //
54 // It would be nice to CC: rjwagner@writeme.com and Cokus@math.washington.edu
55 // when you write.
56 
57 #ifndef MERSENNETWISTER_H
58 #define MERSENNETWISTER_H
59 
60 // Not thread safe (unless auto-initialization is avoided and each thread has
61 // its own MTRand object)
62 
63 #include <iostream>
64 #include <limits.h>
65 #include <stdio.h>
66 #include <time.h>
67 #include <math.h>
68 
69 class MTRand {
70 // Data
71 public:
72  typedef unsigned long uint32; // unsigned integer type, at least 32 bits
73 
74  enum { N = 624 }; // length of state vector
75  enum { SAVE = N + 1 }; // length of array for save()
76 
77 protected:
78  enum { M = 397 }; // period parameter
79 
80  uint32 state[N]; // internal state
81  uint32 *pNext; // next value to get from state
82  int left; // number of values left before reload needed
83 
84 
85 //Methods
86 public:
87  MTRand( const uint32& oneSeed ); // initialize with a simple uint32
88  MTRand( uint32 *const bigSeed, uint32 const seedLength = N ); // or an array
89  MTRand(); // auto-initialize with /dev/urandom or time() and clock()
90 
91  // Do NOT use for CRYPTOGRAPHY without securely hashing several returned
92  // values together, otherwise the generator state can be learned after
93  // reading 624 consecutive values.
94 
95  // Access to 32-bit random numbers
96  double rand(); // real number in [0,1]
97  double rand( const double& n ); // real number in [0,n]
98  double randExc(); // real number in [0,1)
99  double randExc( const double& n ); // real number in [0,n)
100  double randDblExc(); // real number in (0,1)
101  double randDblExc( const double& n ); // real number in (0,n)
102  uint32 randInt(); // integer in [0,2^32-1]
103  uint32 randInt( const uint32& n ); // integer in [0,n] for n < 2^32
104  double operator()() { return rand(); } // same as rand()
105 
106  // Access to 53-bit random numbers (capacity of IEEE double precision)
107  double rand53(); // real number in [0,1)
108 
109  // Access to nonuniform random number distributions
110  double randNorm( const double& mean = 0.0, const double& variance = 0.0 );
111 
112  // Re-seeding functions with same behavior as initializers
113  void seed( const uint32 oneSeed );
114  void seed( uint32 *const bigSeed, const uint32 seedLength = N );
115  void seed();
116 
117  // Saving and loading generator state
118  void save( uint32* saveArray ) const; // to array of size SAVE
119  void load( uint32 *const loadArray ); // from such array
120  friend std::ostream& operator<<( std::ostream& os, const MTRand& mtrand );
121  friend std::istream& operator>>( std::istream& is, MTRand& mtrand );
122 
123 protected:
124  void initialize( const uint32 oneSeed );
125  void reload();
126  uint32 hiBit( const uint32& u ) const { return u & 0x80000000UL; }
127  uint32 loBit( const uint32& u ) const { return u & 0x00000001UL; }
128  uint32 loBits( const uint32& u ) const { return u & 0x7fffffffUL; }
129  uint32 mixBits( const uint32& u, const uint32& v ) const
130  { return hiBit(u) | loBits(v); }
131  uint32 twist( const uint32& m, const uint32& s0, const uint32& s1 ) const
132  { return m ^ (mixBits(s0,s1)>>1) ^ (-loBit(s1) & 0x9908b0dfUL); }
133  static uint32 hash( time_t t, clock_t c );
134 };
135 
136 
137 inline MTRand::MTRand( const uint32& oneSeed )
138  { seed(oneSeed); }
139 
140 inline MTRand::MTRand( uint32 *const bigSeed, const uint32 seedLength )
141  { seed(bigSeed,seedLength); }
142 
144  { seed(); }
145 
146 inline double MTRand::rand()
147  { return double(randInt()) * (1.0/4294967295.0); }
148 
149 inline double MTRand::rand( const double& n )
150  { return rand() * n; }
151 
152 inline double MTRand::randExc()
153  { return double(randInt()) * (1.0/4294967296.0); }
154 
155 inline double MTRand::randExc( const double& n )
156  { return randExc() * n; }
157 
158 inline double MTRand::randDblExc()
159  { return ( double(randInt()) + 0.5 ) * (1.0/4294967296.0); }
160 
161 inline double MTRand::randDblExc( const double& n )
162  { return randDblExc() * n; }
163 
164 inline double MTRand::rand53()
165 {
166  uint32 a = randInt() >> 5, b = randInt() >> 6;
167  return ( a * 67108864.0 + b ) * (1.0/9007199254740992.0); // by Isaku Wada
168 }
169 
170 inline double MTRand::randNorm( const double& mean, const double& variance )
171 {
172  // Return a real number from a normal (Gaussian) distribution with given
173  // mean and variance by Box-Muller method
174  double r = sqrt( -2.0 * log( 1.0-randDblExc()) ) * variance;
175  double phi = 2.0 * 3.14159265358979323846264338328 * randExc();
176  return mean + r * cos(phi);
177 }
178 
180 {
181  // Pull a 32-bit integer from the generator state
182  // Every other access function simply transforms the numbers extracted here
183 
184  if( left == 0 ) reload();
185  --left;
186 
187  uint32 s1;
188  s1 = *pNext++;
189  s1 ^= (s1 >> 11);
190  s1 ^= (s1 << 7) & 0x9d2c5680UL;
191  s1 ^= (s1 << 15) & 0xefc60000UL;
192  return ( s1 ^ (s1 >> 18) );
193 }
194 
196 {
197  // Find which bits are used in n
198  // Optimized by Magnus Jonsson (magnus@smartelectronix.com)
199  uint32 used = n;
200  used |= used >> 1;
201  used |= used >> 2;
202  used |= used >> 4;
203  used |= used >> 8;
204  used |= used >> 16;
205 
206  // Draw numbers until one is found in [0,n]
207  uint32 i;
208  do
209  i = randInt() & used; // toss unused bits to shorten search
210  while( i > n );
211  return i;
212 }
213 
214 
215 inline void MTRand::seed( const uint32 oneSeed )
216 {
217  // Seed the generator with a simple uint32
218  initialize(oneSeed);
219  reload();
220 }
221 
222 
223 inline void MTRand::seed( uint32 *const bigSeed, const uint32 seedLength )
224 {
225  // Seed the generator with an array of uint32's
226  // There are 2^19937-1 possible initial states. This function allows
227  // all of those to be accessed by providing at least 19937 bits (with a
228  // default seed length of N = 624 uint32's). Any bits above the lower 32
229  // in each element are discarded.
230  // Just call seed() if you want to get array from /dev/urandom
231  initialize(19650218UL);
232  int i = 1;
233  uint32 j = 0;
234  int k = ( N > seedLength ? N : seedLength );
235  for( ; k; --k )
236  {
237  state[i] =
238  state[i] ^ ( (state[i-1] ^ (state[i-1] >> 30)) * 1664525UL );
239  state[i] += ( bigSeed[j] & 0xffffffffUL ) + j;
240  state[i] &= 0xffffffffUL;
241  ++i; ++j;
242  if( i >= N ) { state[0] = state[N-1]; i = 1; }
243  if( j >= seedLength ) j = 0;
244  }
245  for( k = N - 1; k; --k )
246  {
247  state[i] =
248  state[i] ^ ( (state[i-1] ^ (state[i-1] >> 30)) * 1566083941UL );
249  state[i] -= i;
250  state[i] &= 0xffffffffUL;
251  ++i;
252  if( i >= N ) { state[0] = state[N-1]; i = 1; }
253  }
254  state[0] = 0x80000000UL; // MSB is 1, assuring non-zero initial array
255  reload();
256 }
257 
258 
259 inline void MTRand::seed()
260 {
261  // Seed the generator with an array from /dev/urandom if available
262  // Otherwise use a hash of time() and clock() values
263 
264  // First try getting an array from /dev/urandom
265  FILE* urandom = fopen( "/dev/urandom", "rb" );
266  if( urandom )
267  {
268  uint32 bigSeed[N];
269  uint32 *s = bigSeed;
270  int i = N;
271  bool success = true;
272  while( success && i-- )
273  success = fread( s++, sizeof(uint32), 1, urandom );
274  fclose(urandom);
275  if( success ) { seed( bigSeed, N ); return; }
276  }
277 
278  // Was not successful, so use time() and clock() instead
279  seed( hash( time(NULL), clock() ) );
280 }
281 
282 
283 inline void MTRand::initialize( const uint32 seed )
284 {
285  // Initialize generator state with seed
286  // See Knuth TAOCP Vol 2, 3rd Ed, p.106 for multiplier.
287  // In previous versions, most significant bits (MSBs) of the seed affect
288  // only MSBs of the state array. Modified 9 Jan 2002 by Makoto Matsumoto.
289  uint32 *s = state;
290  uint32 *r = state;
291  int i = 1;
292  *s++ = seed & 0xffffffffUL;
293  for( ; i < N; ++i )
294  {
295  *s++ = ( 1812433253UL * ( *r ^ (*r >> 30) ) + i ) & 0xffffffffUL;
296  r++;
297  }
298 }
299 
300 
301 inline void MTRand::reload()
302 {
303  // Generate N new values in state
304  // Made clearer and faster by Matthew Bellew (matthew.bellew@home.com)
305  uint32 *p = state;
306  int i;
307  for( i = N - M; i--; ++p )
308  *p = twist( p[M], p[0], p[1] );
309  for( i = M; --i; ++p )
310  *p = twist( p[M-N], p[0], p[1] );
311  *p = twist( p[M-N], p[0], state[0] );
312 
313  left = N, pNext = state;
314 }
315 
316 
317 inline MTRand::uint32 MTRand::hash( time_t t, clock_t c )
318 {
319  // Get a uint32 from t and c
320  // Better than uint32(x) in case x is floating point in [0,1]
321  // Based on code by Lawrence Kirby (fred@genesis.demon.co.uk)
322 
323  static uint32 differ = 0; // guarantee time-based seeds will change
324 
325  uint32 h1 = 0;
326  unsigned char *p = (unsigned char *) &t;
327  for( size_t i = 0; i < sizeof(t); ++i )
328  {
329  h1 *= UCHAR_MAX + 2U;
330  h1 += p[i];
331  }
332  uint32 h2 = 0;
333  p = (unsigned char *) &c;
334  for( size_t j = 0; j < sizeof(c); ++j )
335  {
336  h2 *= UCHAR_MAX + 2U;
337  h2 += p[j];
338  }
339  return ( h1 + differ++ ) ^ h2;
340 }
341 
342 
343 inline void MTRand::save( uint32* saveArray ) const
344 {
345  uint32 *sa = saveArray;
346  const uint32 *s = state;
347  int i = N;
348  for( ; i--; *sa++ = *s++ ) {}
349  *sa = left;
350 }
351 
352 
353 inline void MTRand::load( uint32 *const loadArray )
354 {
355  uint32 *s = state;
356  uint32 *la = loadArray;
357  int i = N;
358  for( ; i--; *s++ = *la++ ) {}
359  left = *la;
360  pNext = &state[N-left];
361 }
362 
363 
364 inline std::ostream& operator<<( std::ostream& os, const MTRand& mtrand )
365 {
366  const MTRand::uint32 *s = mtrand.state;
367  int i = mtrand.N;
368  for( ; i--; os << *s++ << "\t" ) {}
369  return os << mtrand.left;
370 }
371 
372 
373 inline std::istream& operator>>( std::istream& is, MTRand& mtrand )
374 {
375  MTRand::uint32 *s = mtrand.state;
376  int i = mtrand.N;
377  for( ; i--; is >> *s++ ) {}
378  is >> mtrand.left;
379  mtrand.pNext = &mtrand.state[mtrand.N-mtrand.left];
380  return is;
381 }
382 
383 #endif // MERSENNETWISTER_H
384 
385 // Change log:
386 //
387 // v0.1 - First release on 15 May 2000
388 // - Based on code by Makoto Matsumoto, Takuji Nishimura, and Shawn Cokus
389 // - Translated from C to C++
390 // - Made completely ANSI compliant
391 // - Designed convenient interface for initialization, seeding, and
392 // obtaining numbers in default or user-defined ranges
393 // - Added automatic seeding from /dev/urandom or time() and clock()
394 // - Provided functions for saving and loading generator state
395 //
396 // v0.2 - Fixed bug which reloaded generator one step too late
397 //
398 // v0.3 - Switched to clearer, faster reload() code from Matthew Bellew
399 //
400 // v0.4 - Removed trailing newline in saved generator format to be consistent
401 // with output format of built-in types
402 //
403 // v0.5 - Improved portability by replacing static const int's with enum's and
404 // clarifying return values in seed(); suggested by Eric Heimburg
405 // - Removed MAXINT constant; use 0xffffffffUL instead
406 //
407 // v0.6 - Eliminated seed overflow when uint32 is larger than 32 bits
408 // - Changed integer [0,n] generator to give better uniformity
409 //
410 // v0.7 - Fixed operator precedence ambiguity in reload()
411 // - Added access for real numbers in (0,1) and (0,n)
412 //
413 // v0.8 - Included time.h header to properly support time_t and clock_t
414 //
415 // v1.0 - Revised seeding to match 26 Jan 2002 update of Nishimura and Matsumoto
416 // - Allowed for seeding with arrays of any length
417 // - Added access for real numbers in [0,1) with 53-bit resolution
418 // - Added access for real numbers from normal (Gaussian) distributions
419 // - Increased overall speed by optimizing twist()
420 // - Doubled speed of integer [0,n] generation
421 // - Fixed out-of-range number generation on 64-bit machines
422 // - Improved portability by substituting literal constants for long enum's
423 // - Changed license from GNU LGPL to BSD
double rand()
void load(uint32 *const loadArray)
uint32 hiBit(const uint32 &u) const
uint32 mixBits(const uint32 &u, const uint32 &v) const
friend std::istream & operator>>(std::istream &is, MTRand &mtrand)
void reload()
double operator()()
uint32 loBit(const uint32 &u) const
static uint32 hash(time_t t, clock_t c)
uint32 state[N]
unsigned long uint32
void initialize(const uint32 oneSeed)
uint32 twist(const uint32 &m, const uint32 &s0, const uint32 &s1) const
void save(uint32 *saveArray) const
uint32 randInt()
void seed()
double randNorm(const double &mean=0.0, const double &variance=0.0)
double randExc()
friend std::ostream & operator<<(std::ostream &os, const MTRand &mtrand)
double randDblExc()
uint32 loBits(const uint32 &u) const
double rand53()
uint32 * pNext