Instruction begins |
Tuesday, January 16, 2007 |
Spring recess |
Monday, March 26, 2007 - Friday, March 30, 2007 |
Instruction ends |
Tuesday, May 08, 2007 |
Lecture |
Date |
Lecture |
Date |
Lecture |
Date |
1 |
January 16 |
6 |
February 20 |
11 |
April 3 |
2 |
January 23 |
7 |
February 27 |
12 |
April 10 |
3 |
January 30 |
8 |
March 6 |
13 |
April 17 |
4 |
February 6 |
9 |
March 13 |
14 |
April 24 |
5 |
February 13 |
10 |
March 20 |
15 |
May 1 |
1.
Introduction
· M. N. Mneimneh and K. A. Sakallah. Principles of sequential-equivalence verification. IEEE D&T Comp. Vol. 22(3), pp. 248-257, 2005.
· N. Een and N. Sörensson. An extensible SAT-solver. Proc. SAT’03.
· N. Een and N. Sörensson. SAT solver MINISAT.
· A. Biere. AIGER format for representing And-Inverter Graph in formal verification.
· ABC: A System for Sequential Synthesis and Verification.
2.
Synthesis for Verification
· R. Brummayer and A. Biere. Local two-level And-Inverter Graph minimization without blowup. Proc. 2nd Doctoral Workshop on Mathematical and Engineering Methods in Computer Science (MEMICS'06), Mikulov, Czechia, October 2006.
· P. Bjesse and A. Boralv. DAG-aware circuit compression for formal verification. Proc. ICCAD’04, pp. 42-49.
·
A. Mishchenko,
3.
Resolution proofs
· L. Zhang and S. Malik. Validating SAT solvers using an independent resolution-based checker: Practical implementations and other applications. Proc. DATE’03, pp. 880- 885.
· C. Sinz and A. Biere. Extended resolution proofs for conjoining BDDs. Proc. CSR’06, pp. 600-611.
· S. Chatterjee, A. Mishchenko, R. Brayton, and A. Kuehlmann. On resolution proofs for combinational equivalence checking. ERL Technical Report, EECS Dept., UC Berkeley.
· A. Biere. SAT solver BooleForce allowing for generation of compact resolution proofs.
4.
Interpolation
· K. L. McMillan. Interpolation and SAT-Based model checking. Proc. CAV’03, pp. 1-13.
· K. L. McMillan. Applications of Craig interpolants in model checking. Proc. TACAS’05, pp. 1-12.
· K. L. McMillan. Lazy abstraction with interpolants. Proc. CAV’06, pp. 123-136.
· R. K. Brayton. The real reason why McMillan's construction is an interpolant. ERL Technical Report, EECS Dept., UC Berkeley.
5.
Combinational equivalence checking
· J. R. Burch and V. Singhal. Tight integration of combinational verification methods. Proc. ICCAD’98, pp. 570-576.
·
A. Kuehlmann, V. Paruthi, F.
Krohm, and M. K. Ganai. Robust Boolean reasoning for
equivalence checking and functional property verification. IEEE Trans. CAD, 21(12), Dec 2002, pp. 1377-1394.
·
A. Mishchenko, S. Chatterjee,
R. Brayton, and N. Een. Improvements
to combinational equivalence checking. Proc. ICCAD '06, pp. 836-843.
6.
Retiming and Resynthesis
· S. Malik, E. Sentovich, R. K. Brayton, and A. Sangiovanni-Vincentelli. Retiming and resynthesis: Optimizing sequential networks with combinational techniques. IEEE TCAD, Vol. 10 (1), Jan 1991, pp. 74-84.
· S. Malik, K. J. Singh, R. K. Brayton, and A. Sangiovanni-Vincentelli. Performance optimization of pipelined logic circuits using peripheral retiming and resynthesis. IEEE TCAD, Vol. 12 (5), May 1993, pp. 568-578.
· V. Singhal, C. Pixley, R. L. Rudell, and R. K. Brayton. The validity of retiming sequential circuits. Proc. DAC’95, pp. 316-321.
· H. Zhou, V. Singhal, and A. Aziz. How powerful is retiming? Proc. IWLS’98.
· J.-H. Jiang and R. Brayton. Retiming and resynthesis: A complexity perspective. Accepted to IEEE TCAD.
· R. Brayton and A. Mishchenko. Sequential rewriting. ERL Technical Report, EECS Dept., UC Berkeley.
· R. Brayton and A. Mishchenko. Scalable sequential verification. ERL Technical Report, EECS Dept., UC Berkeley.
7.
Sequential equivalence checking (BDDs -
· J.-H. R. Jiang, and R. K. Brayton. On the verification of sequential equivalence. IEEE Trans. CAD, Vol. 22(6), June 2003, pp. 686-697.
8.
Sequential equivalence checking (Retiming - U
· M. N. Mneimneh and K. A. Sakallah. SAT-based sequential depth computation. Proc. ASPDAC’03, pp. 87-92.
· M. N. Mneimneh and K. A. Sakallah. REVERSE: Efficient sequential verification for retiming. Proc. IWLS’03.
· M. N. Mneimneh, K. A. Sakallah, and J. Moondanos. Preserving synchronizing sequences of sequential circuits after retiming. Proc. ASPDAC’04, pp. 579-584.
9.
Sequential equivalence checking (Induction -
·
C. A. J. van Eijk. Sequential equivalence checking
based on structural similarities, IEEE Trans. CAD, 19(7), July 2000, pp.
814-819.
·
P. Bjesse and K. Claessen. SAT-based verification without state
space traversal. Proc. FMCAD'00.
10.
Sequential equivalence checking (SAT - UCSB)
· F. Lu, M. K. Iyer, G. Parthasarathy, K.-T. Cheng, and K.C. Chen. An efficient sequential SAT solver with improved search strategies. Proc. DATE’05, pp. 1102-1107.
· F. Lu and K.-T. Cheng. Sequential equivalence checking based on K-th invariants and circuit SAT solving. Proc. HLDVT’05.
· F. Lu and T. Cheng. IChecker: An efficient checker for inductive invariants. Proc. HLDVT’06.
11.
Sequential equivalence checking (Hybrid - IBM)
· A. Kuehlmann and J. Baumgartner. Transformation-based verification using generalized retiming. Proc. CAV’01.
· H. Mony, J. Baumgartner, V. Paruthi, and R. Kanzelman. Exploiting suspected redundancy without proving it. Proc. DAC’05.
· J. Baumgartner, H. Mony, V. Paruthi, R. Kanzelman, and G. Janssen. Scalable sequential equivalence checking across arbitrary design transformations. Proc. ICCD’06.
12.
Sequential equivalence checking (Hybrid - Intel)
· Z. Khasidashvili and Z. Hanna. SAT-based methods for sequential hardware equivalence verification without synchronization. Proc. BMC ‘03.
· Z. Khasidashvili, M. Skaba, D. Kaiss, and Z. Hanna. Theoretical framework for compositional sequential hardware equivalence verification in presence of design constraints. Proc. ICCAD’04, pp. 58-65.
13.
Model checking
· A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without BDDs. Proc. TACAS’99.
· K. L. McMillan. Applying SAT methods in unbounded symbolic model checking. Proc. CAV’02, pp. 250-264.
·
T. A. Henzinger, O. Kupferman,
and S. Qadeer. From prehistoric to
postmodern symbolic model checking. Formal Methods in System Design. Vol.
23, pp. 303-327, 2003.
14.
Assume-guarantee
· T. A. Henzinger, S. Qadeer, and S. K. Rajamani. Decomposing refinement proofs using assume-guarantee reasoning. Proc. ICCAD’00, pp. 245-252.