SAT-based Sequential Depth Computation

Maher Mneimneh, Karem Sakallah
University of Michigan
{maherm,kareem}@umich.edu

Abstract — Determining the depth of sequential circuits is a crucial step towards the completeness of bounded model checking proofs in hardware verification. In this paper, we formulate sequential depth computation as a logical inference problem for Quantified Boolean Formulas. We introduce a novel technique to simplify the complexity of the constructed formulas by applying simple transformations to the circuit netlist. We also study the structure of the resulting simplified QBFs to check their satisfiability. We report promising experimental results on some of the ISCAS 89 benchmarks.

I. Introduction

The crucial demands to design bug-free products caused today’s typical verification teams to be the size of entire design teams ten years ago. Still, faulty chips are fabricated, forcing first customers to find out about undetected glitches, and causing severe company losses for replacement. The infamous Pentium floating-point bug is one example.

By far, the most common verification paradigm in use today is simulation. Such a verification strategy is becoming increasingly untenable, however, because of time-to-market pressures and high costs of design errors discovered following product release. In addition, simulation-based verification cannot guarantee that a design is bug-free; at best, simulation can reduce the probability of releasing a buggy design to acceptable levels but can never completely certify design correctness.

Formal hardware verification is a promising alternative to traditional simulation. Formal hardware verification can be broadly classified into two major categories: property checking and equivalence checking. Property checking verifies the correctness of a property pertaining to a hardware model, whereas equivalence checking verifies the equivalence between two models. Most of the techniques utilized for property checking apply as well to equivalence checking.

There is a rich literature on the different approaches to property checking of hardware systems. These approaches can be broadly divided into two groups: theorem proving and model checking.

Model checking [5] is a predominant technique in formal hardware verification. In model checking, the system to be verified is modeled as a Kripke structure, and the specification is modeled as a formula in some temporal logic. Binary Decision Diagrams (BDDs) [3] are used to symbolically represent sets of states and transition relations in Kripke structures.

Despite the enormous success of symbolic model checking techniques [4], most practical designs were still outside the scope of existing tools. BDD-based model checking techniques heavily rely on the availability of efficient representation and manipulation using BDDs. However, BDDs can grow exponentially in size. Exponential BDD sizes are caused by either “state explosion” or humongous transition relations. If such a situation occur, BDD-based approaches are doomed to fail.

To surmount this, several solutions were suggested of which Bounded Model Checking (BMC) [1, 2] is one. BMC checks safety and liveness properties of a system using a satisfiability (SAT) solver. In BMC, a Propositional formula is generated that is satisfiable if there exists a path ending in a state that satisfies the property checked. If such a state can not be found at depth , the search is repeated at depth . One advantage of BMC over BDD-based model checking is the absence of a state keeping-device. In BDD-based model checking, at each iteration a BDD keeps track of states. This might cause BDD explosion. On the other hand, BMC requires a reasoning engine with the capability of handling a larger number of variables. In fact, each unfolding of the transition relation corresponds to adding a new set of variables. In general, this is not a major obstacle for SAT-solvers. One major drawback of BMC, however, is its lack of completeness. In other words, we do not know when to stop incrementing the value of .

In this paper, we tackle the issue of completeness for BMC. We take a fresh look at the problem of determining the sequential depth of a circuit using search-based techniques. Search-based techniques eliminate the need for a BDD-based state-keeping device and consequently avoid the possibility of exponential space requirements. Once the sequential depth of a circuit is determined, it can guide BMC or any similar approach when checking safety properties (e.g., invariants.) As a result, BMC can now be used not only to find bugs, but also to prove correctness.

The contributions in this paper are two-fold. First, we formulate sequential depth computation as a logical inference problem for Quantified Boolean Formulas (QBF) and present a powerful reduction technique that simplifies the formulas by introducing safe modifications to the circuit’s state transition graph. The modifications are safe in the sense that the sequential depth is left intact but the complexity of computing it is dramatically reduced. Second, we study the structure of the resulting simplified QBFs and construct a SAT-based approach to solve their satisfiability. For these formulas, the algorithm is far more efficient than state-of-the-art QBF solvers.

The paper is organized as follows. In section II, we review relevant work on sequential depth computation and show how it relates to the particular approach we describe. Section III introduces finite state machines, state transition graphs, and the notion of sequential depth using graph-theoretic concepts. Section IV formulates sequential depth computation as a logical inference problem for QBF. In section V, we describe how to simplify the resulting QBFs by introducing state transition graph modifications that keep the sequential depth intact. Section VI is devoted to describing a SAT-based algorithm that efficiently solves the simplified QBFs. Experimental results on some of the ISCAS 89 benchmarks are discussed in section VII and the paper is concluded in section VIII with some pointers to future work.
II. Previous Work

We review some of the literature related to sequential depth computation using search-based approaches. Although BDD-based approaches that perform breadth-first search of the state transition graph compute sequential depth, we will not describe such techniques here for the sake of brevity. The problem of determining when it is safe to stop going into deeper states when checking safety properties has been addressed by Sheeran et al. in [9]. The authors observe that no more iterations should be performed if no new states exist in future iterations. They check for that by searching for a path of length \(i \) starting at the initial state (a path, as defined in the next section, should have distinct states). If no path exists, then no new states exist at depth \(i \) and the iteration is stopped. On the other hand, if a path exists, then a new state exists and the iteration continues to larger values of \(i \). The authors use a SAT solver to check the existence of a path at a given depth. A major disadvantage of that approach is the over-approximations of the sequential depth that might result. The existence of a path from the initial state to some state does not guarantee that this state has not been encountered on a different and shorter path. The authors provide a complete formulation in terms of shortest paths but no experimental evaluation is presented.

In [10], random simulation is utilized to provide an estimate of the sequential depth. A queue is used to keep track of states. The algorithm starts by storing the initial state in the queue and setting its depth to 0. At each iteration, a state is dequeued, and a random input is used to compute its next state. This step is repeated for a number of times determined by a threshold. If the resulting next state has not been encountered before, the state is queued and its depth is set to that of the present state plus one. When the threshold is reached, a new state is dequeued and the above procedure is repeated. When the queue is empty, the algorithm terminates. The sequential depth is the depth of the last state dequeued. The above algorithm samples the state space and consequently might result in under as well as over-approximations of the sequential depth. An improvement of the algorithm that profiles the toggle activity of state variables is also provided.

In [8], Plaisted et al. present an algorithm for solving the satisfiability problem for QBFs and discuss its use in determining fixpoints of repetitive systems. However, no experimental analysis showing the effectiveness of their QBF solver on such systems is presented.

III. Preliminaries

A finite-state machine (FSM) \(M \) is defined as a 6-tuple \(M = (Q, \Sigma, \Delta, \delta, \lambda, Q^o) \) where \(Q \) is a finite set of states, \(\Sigma \) is the input alphabet, \(\Delta \) is the output alphabet, \(\delta: Q \times \Sigma \rightarrow Q \) is the state-transition function, \(\lambda: Q \times \Sigma \rightarrow \Delta \) is the output function, and \(Q^o \) is the set of initial states.

Synchronous Sequential circuits are modeled using FSMS. A synchronous sequential circuit has a finite number \(m \) of inputs \((x_1, x_2, \ldots, x_m)\), a finite number \(l \) of outputs \((z_1, z_2, \ldots, z_l)\), and a finite number \(n \) of state or memory elements \((y_1, y_2, \ldots, y_n)\). The combinational part of the circuit is made up of \(k \) internal signals \((w_1, w_2, \ldots, w_k)\) representing the outputs of combinational gates. A clock signal \(clk \) synchronizes the operation of the memory elements. Each of these signals takes one of two possible values \(0 \) or \(1 \). We will refer to \(x_1, x_2, \ldots, x_m \) as the input variables, \(z_1, z_2, \ldots, z_l \) as the output variables, \(y_1, y_2, \ldots, y_n \) as the state variables, and \(w_1, w_2, \ldots, w_k \) as the internal variables.

The state-transition function \(\delta: Q \times \Sigma \rightarrow Q \) determines the next state of the machine based on its current state and inputs. The output function \(\lambda: Q \times \Sigma \rightarrow \Delta \) determines the machine’s output based on its current state and inputs. We can write:
\[
y' = \delta(y, x) \quad z = \lambda(y, x)
\]
where \(x = (x_1, \ldots, x_m) \), \(y = (y_1, \ldots, y_n) \), \(y' = (y'_1, \ldots, y'_l) \), \(z = (z_1, \ldots, z_l) \), \(\delta = (\delta_1, \ldots, \delta_l) \), and \(\lambda = (\lambda_1, \ldots, \lambda_l) \).

We define the transition relation of the circuit as:
\[
T(y', y, x) = \bigwedge_{i=1}^l (y'_i \oplus \delta_i(y, x))
\]
where \(\oplus \) is the XNOR function. Intuitively, \(T(y', y, x) = 1 \) if there is a transition from state \(y \) to state \(y' \) on input \(x \). Otherwise, \(T(y', y, x) = 0 \). If the internal variables \(w_1, w_2, \ldots, w_k \) are part of the transition relation, we write:
\[
T(y', y, x, w) = \bigwedge_{i=1}^l (y'_i \oplus \delta_i(y, x, w))
\]

The state transition graph of an FSM \(M \), \(STG(M) \), is a labeled directed graph \(\langle V, E \rangle \) where each vertex \(v \in V \) corresponds to a state \(s_i \) of \(M \) (and is labeled with \(s_i \)), and each edge \(e \in E \) between two vertices \(s_i \) and \(s_j \) corresponds to a transition from state \(s_i \) to state \(s_j \) in \(M \). The edge is labeled \(i/o \) where \(i \) is the input that causes the transition from \(s_i \) to \(s_j \), and \(o \) is the output during that transition.

Given a directed graph \(G(V, E) \). A walk of length \(k \) is a succession of \(k \) directed edges \(v_0v_1, v_1v_2, \ldots, v_{k-1}v_k \). If the directed edges of a walk are different, the walk is called a trail. A trail whose vertices are all different is called a path.

Given a directed graph \(G(V, E) \). The distance between two vertices \(v, u \in V \), denoted \(d(v, u) \) is the shortest path between \(v \) and \(u \). The eccentricity of \(v \), \(ecc(v) \) is the longest of all the shortest paths between \(v \) and every other vertex in \(V \). We can write \(ecc(v) = \max_{u \in V} d(v, u) \) for all \(u \in V \). The radius of \(G \) is the minimum eccentricity among all its vertices, \(radius(G) = \min_{v \in V} ecc(v) \) for all \(v \in V \). The diameter of \(G \) is the maximum eccentricity among all its vertices, \(diameter(G) = \max_{v \in V} ecc(v) \).

Given a directed graph \(G(V, E) \). Consider two vertices \(v_0 \) and \(v_1 \). \(v_1 \) is reachable from \(v_0 \) if a path exists from \(v_0 \) to \(v_1 \). In addition, each vertex is reachable from itself.

Consider an FSM \(M \) with a single initial state \(s_0 \). We define the sequential depth \(M \) as the eccentricity of its initial state \(s_0 \) in the corresponding state transition graph \(STG(M) \), and denote it by \(SeqDepth(M) \). Consider two states \(s_i \) and \(s_j \). If there is a path from
s_0 to s, we call s_0 the start-state and s the end-state for that path. For all paths we consider, the start-state is the initial state unless a different start-state is specified. Similarly, if there is a walk between s_0 and s, s_0 is the start-state and s is the end-state for that walk.

IV. Sequential Depth Computation By Logical Inference

Since the definition of depth depends on paths in the state-transition graph, we will define paths in terms of the transition relation of the circuit. Let T(y^*, y, x, w) be the transition relation where x = (x_1, x_2, ..., x_n) are the input variables, y = (y_1, y_2, ..., y_n) current-state variables, y' = (y'_1, y'_2, ..., y'_n) are next-state variables, and w = (w_1, w_2, ..., w_i) are internal variables. We define walk(y^*, y) as follows:

walk(y^*, y) = \exists x w T(y^*, y, x, w)

and for i > 1,

walk_i(y^*, y) = \exists y^i y^i - y^i -1

walk_i(y^*, y) \cdot walk_i(y^*, y^i) \cdot ... \cdot walk_i(y^*, y^i - 1, y)

Similarly, we define path(y^*, y) as follows:

path(y^*, y) = \exists x w T(y^*, y, x, w) \cdot (y \neq y^*)

path(y^*, y) = \exists y y^i y^i - y^i -1

path_i(y^*, y^i) \cdot path_i(y^*, y^i) \cdot ... \cdot path_i(y^*, y^i - 1, y)

(y^i \neq y^*)

where for x = (x_1, x_2, ..., x_n) and y = (y_1, y_2, ..., y_n),

x \neq y \iff (x_1 \oplus y_1) + (x_2 \oplus y_2) + ... + (x_n \oplus y_n)

Intuitively, path(y^*, y) = 1 if y is reachable from y^* in a path of length i and is 0 otherwise.

We have previously defined sequential depth as the eccentricity of the initial state, or in other words, as the longest of all shortest paths between the initial state and every other reachable state. Thus, one way to compute sequential depth is to find a reachable state that has the largest distance from the initial state (recall that distance between two vertices is the shortest path between them.) Such a procedure can be performed iteratively. We start at depth 1 and proceed as follows. At depth i, we look for a state whose distance from the initial state is i. Such a state will have the property that no path of length less than i has that state as an end-state; otherwise, the path of length i is not the shortest for that state. A logical formulation of that property is

3 y I(y^*) \cdot path(y^*, y) \cdot \neg path_1(y^*, y) \cdot ... \cdot \neg path_i(y^*, y) (1)

where I(y^*) is the predicate of the initial state.

If the above formula is true, the algorithm proceeds to deeper iterations since new states might be found whose shortest distance from the initial state is greater than i. The algorithm terminates when no state satisfying the above property can be found. In other words, the algorithm terminates when the above logical formula is false. A flowchart for computing sequential depth based on this algorithm is illustrated in Figure 1.

As an example, consider the sequential circuit and its corresponding STG in Figure 2(a) and (b). Figure 2(c) shows the computation tree that results from unrolling the STG. We start by setting cycle = 0. The above formula searches for a path of length 1 whose end-state is different from the initial state. 00 -> 01 is such a path. As a result, cycle is incremented to 1. Next, the formula searches for a path length 2 whose end-state is not also an end-state for any path of length 1, 00 -> 01 -> 11 is such a path and cycle is incremented to 2. In the third iteration, the formula searches for a path of length 3 with an end-state that is not an end-state for any path of length 2 or 1. The formula is false in that case; no such state can be found as is apparent from the computation tree of Figure 2(c). The algorithm terminates returning a sequential depth of 2.

Searching for a state s that satisfies the above formula is complicated by the fact that at a given depth i, the search should consider paths of length j for all values of j less than i to ensure that the path to s is the shortest. This can be very expensive rendering the algorithm inapplicable but for simple circuits. In the next section we introduce a major simplification that significantly reduces the complexity of the formula to be checked.

V. Simplified Sequential Depth Computation

Checking the satisfiability of (1) suffers from two major complications. First, the quantifiers and negation in path(y^*, y) transform the above formula into a QBF that can not be simply checked using a SAT solver. Second, when searching for a new state at depth i, we have to check all depths less than i to ensure that the state is on a shorter path. This check can result in very expensive computations.
Let s be a state such that there is a path from s to s' of length l, $STG(M)$ be such that there is a transition from every state in M to the initial state. Theorem 2 states that the sequential depth of the machine is not altered.

$$\exists y \cdot I(y^*) \cdot path_y(y^*, y) \cdot \neg walk_{s_l}(y^*, y) \tag{2}$$

because by Theorem 2:

$$(path_{s_l}(y^*, y) + \ldots + path_h(y^*, y)) \Rightarrow walk_{s_l}(y^*, y)$$

In addition, from basic graph theory we have:

$$walk_{s_l}(y^*, y) \Rightarrow (path_{s_l}(y^*, y) + \ldots + path_h(y^*, y))$$

Thus,

$$(path_{s_l}(y^*, y) + \ldots + path_h(y^*, y)) \Rightarrow walk_{s_l}(y^*, y)$$

and consequently,

$$(\neg path_{s_l}(y^*, y) \cdot \ldots \cdot \neg path_h(y^*, y)) \Rightarrow \neg walk_{s_l}(y^*, y)$$

To obtain the STG with transitions from every state to the initial state, we have to modify the given circuit. The new circuit corresponding to that of Figure 2(a) is shown in Figure 3(a). The bold parts corresponds to the additional logic. An auxiliary input is added. Each next-state variable of the original circuit is ANDed with the negated auxiliary input and the output is fed to the latches. Whenever the auxiliary input is 0, the next state will be the initial state (in that case 00). Whenever the auxiliary input is 0, the machine’s operation is identical to the original circuit. Note that if the initial state is different from 00...0, the logic should be modified accordingly.

Note also that these additional transitions might be present in the original circuit if the initialization is modeled at the logic level. In that case, the above modifications do not need to be added.

VI. SAT-based Solution to Depth Computation

In this section, we present an efficient satisfiability checking procedure for formulas of structure similar to (2).
Recall that the above formula is in QBF form and consequently can not be checked immediately using a SAT solver. One possibility is to use a QBF solver. However, even formulas resulting from small circuits are out of the scope of state-of-the-art QBF solvers.

Let’s take a closer look at the above formula. $\text{path}(y^s, y)$ represents n iterations of the transition relation $T(y^s, y, x, w)$ with additional constraints that the states along the paths are distinct. $\text{walk}_{\text{seq}}(y^s, y)$ represents $n - 1$ iterations of the transition relation. $\text{path}(y^s, y)$ and $\text{walk}_{\text{seq}}(y^s, y)$ do not share any intermediate variables. The only variables shared between the two formulas are those corresponding to the initial state y^s and the final state y. This suggests an efficient sequential depth computation algorithm that is presented in the flowchart of Figure 4.

The algorithm starts by reading the sequential circuit and setting the variable $\text{cycle} = 0$. Let’s consider iteration i of the algorithm. At iteration i, $\text{cycle} = i$, and the algorithm has to check the satisfiability of (2). Our algorithm decomposes checking the satisfiability of (2) into two simpler checks. The algorithm starts by constructing a CNF formula representing a path of length $i + 1$ starting at the initial state. A SAT solver is used to find a satisfying assignment for the constructed formula which corresponds to:

$$I(y^i) \cdot \text{path}(y^s, y)$$

If (3) is unsatisfiable, we automatically know that (2) is unsatisfiable. Thus, the algorithm terminates and $\text{SeqDepth} = i$.

If on the other hand, (3) is satisfiable, we construct a CNF formula representing a walk of length i and set its end-state to y^i, the end-state on the path of length $i + 1$ that was returned as a satisfying solution for (3). The formula corresponds to:

$$I(y^i) \cdot \text{walk}_{\text{seq}}(y^s, y^i)$$

A SAT solver is used to check (4). If (4) is unsatisfiable, then there is no walk of length i starting at the initial state and ending in y^i. Consequently, y^i is a new state at depth $i + 1$ that satisfies (2). Thus, cycle is incremented and the whole procedure is repeated again.

If (4) is satisfiable, then y^i do not satisfy (2) and we have to search for another solution. We repeat the procedure again by try to find a satisfiable assignment to (3) other than y^i. Consequently, we add a constraint to (3) enforcing the SAT solver to find a state different from y^i. Whenever no state can satisfy (3), we terminate setting the sequential depth to i. Note that all the added constraints to (3) at depth i are used at all the following iterations. This ensures that no time is wasted looking for states that are not on shortest paths.

Let’s consider the execution of the algorithm on the circuit of Figure 3(a), whose computation tree is shown in Figure 3(c).

The algorithm starts by setting $\text{cycle} = 0$. A CNF formula corresponding to $\text{path}(00, y)$ is constructed. No learned clauses are present at this time to be added. We find a satisfying assignment for $\text{path}(00, y)$. One such solution is $00 \rightarrow 01$. $y = 01$ is a new state so we set $\text{cycle} = 1$.

Next, we construct a formula corresponding to $\text{path}(00, y)$. A satisfying solution to $\text{path}(00, y)$ is $00 \rightarrow 01 \rightarrow 11$ where $y = 11$. To check whether 11 is a new state, we construct a formula corresponding to $\text{walk}(00, 11)$. Such a formula is unsatisfiable (no walk of length 1 exists that terminate in 11). Thus 11 is a new state; we set $\text{cycle} = 2$.

Again, we construct a formula corresponding to $\text{path}(00, y)$. A satisfying solution is $00 \rightarrow 10 \rightarrow 01 \rightarrow 11$ where $y = 11$. We check whether $\text{walk}(00, 11)$ is satisfiable. Since there is a walk $00 \rightarrow 01 \rightarrow 11$, $\text{walk}(00, 11)$ is satisfiable and 11 is not a new state. We add a constraint to $\text{path}(00, y)$ forcing y to be different. The resulting formula is $\text{path}(00, y) \cdot (y \neq 11)$. Satisfiability check is repeated on the new formula. A new satisfying solution is $00 \rightarrow 10 \rightarrow 11 \rightarrow 01$ where $y = 01$. We check whether there is a walk of length 2 ending in 01. The check returns $00 \rightarrow 00 \rightarrow 01$. Thus 01 is not a new state. Again, we add the constraint $y \neq 01$ to $\text{path}(00, y) \cdot (y \neq 11)$. Checking the new formula $\text{path}(00, y) \cdot (y \neq 11) \cdot (y \neq 01)$ yields no satisfying assignment. Thus no new states exist at depth 3. The algorithm terminates; the sequential depth is 2.

VII. Experimental Results

To experimentally evaluate the effectiveness of our algorithm, we implemented it in C++ and used Chaff [7] as the underlying SAT solver. We report our results on the ISCAS 89 benchmarks. All experiments were conducted on a 2 GHz Pentium 4 machine having 1 GB of RAM and running the Linux operating system. To our knowledge, there is no published data on the sequential depth of ISCAS benchmarks computed using SAT-based search only and to which we can compare our results. For that reason, we compare our results to those obtained in [6] where a combination of SAT, BDDs, and partitioning techniques are used to perform reachability analysis. For this comparison, we note the following. First, the techniques in [6] compute the whole set of reachable states using breadth-first search (BFS). In that case, sequential depth is the number of BFS iterations. Our algorithm does not compute the set of reachable states. Second, in [6], the authors set the
Experimental results for a sample of the ISCAS 89 benchmarks are reported in Table I. The name of the circuit appears in column 1. Columns 2 and 3 show the sequential depth and the running time for our algorithm. In case the time limit was reached, we report the maximum depth attained. Column 4 reports the maximum number of reachability steps in [6]; a (c) next to a number indicates that reachability was carried to completion. Empty cells in column 4 indicate non-reported data in [6].

For the small benchmarks, up to s1196, our algorithm is very effective in determining the sequential depth. The least time reported is 0.18 seconds for s386, and the longest time is 232.84 seconds for s1196. Although s386 is deeper than s1196, s386 has 13 reachable states while s1196 has 2616. Consequently, more searching is needed in the case of s1196 before reaching a fixpoint at the sequential depth. For s1269, s3271, s3330, and s5378, the time limit of 5000 seconds was reached. Although reachability analysis completed successfully for these benchmarks in [6], the maximum depth we attained in 5000 seconds is very close to the sequential depth (except for s5378). This maximum depth can be very effective in guiding BMC. In fact, the BMC tool should keep iterating for at least the value of the maximum depth.

The results for s1423 and s6669 are interesting. Reachability analysis in [6] could not complete: a maximum depth of 15 and 3 were obtained for s1423 and s6669. However, we were able to reach a depth of 26 for s1423 and 5 for s6669. When combined with BMC, we are able to check for properties at depths that BDDs can not handle.

VIII. Conclusion

Determining the depth of sequential circuits enables search-based verification techniques such as bounded model check to prove correctness of designs rather than just find bugs.

To achieve completeness for Bounded Model Checking, we presented a formulation of sequential depth computation as a logical inference problem for Quantified Boolean Formulas. We studied the structure of the resulting formulas and showed that their complexity can be drastically reduced by modifying the netlist of the circuit they are constructed from. We proved that such modifications leave the sequential depth intact and consequently are safe to apply. We also presented an efficient SAT-based algorithm to solve QBFs resulting from our simplifications. Our experimental results showed that SAT-based depth computation can sometimes be a good alternative to BDD-based techniques.

Since our algorithm learns states that violate some property and adds them to the clause database one at a time, its memory requirements are exponential in the worst case (this situation arises when the number of states is exponential.) To surmount this, we are currently investigating the possibility of adding sets of states at a time. In addition, we are exploring two other directions to improve our approach. We are studying the possibility of applying abstractions that preserve the sequential depth of a circuit. These abstractions can help simplify the complexity of the QBFs to be checked. We are also investigating better algorithms to solve the formulas that arise during depth computation. These algorithms try to utilize symmetries in the transition relation and along different paths to simplify the satisfiability check.

References