
Research Statement Wen Zhang zhangwen@cs.berkeley.edu

Research Statement
Wen Zhang

Application development technology is constantly evolving, pushed by new computing environments and capabilities
(e.g., serverless computing, persistent memory) and pulled by more stringent societal requirements (e.g., around data
privacy). But today’s applications are struggling to catch up: having been built using the technology of yesterday,
they are unable to meet the demands of tomorrow. Even though researchers have been developing new technologies
to tackle emerging demands, these solutions typically require re-implementing existing applications and thus cannot
support today’s installed base.1

My PhD research has taken an alternative approach: developing systems that can adapt existing applications or ab-
stractions to meet emerging demands and leverage new technologies. For example, Blockaid [40] and Ote [42] enable
fine-grained database access-control on existing web applications, thereby enabling the desired level of data privacy;
Persimmon [39] adds persistence to existing in-memory storage systems using persistent memory; and Kappa [38]
enables developers to program serverless functions using existing concurrency abstractions.

To be clear, this research direction of “enhancing existing solutions for new demands” is not one that I declared
when I started graduate school, and nor am I wedded to it going forward. But it is what I observe to be a recurring theme
of my work, and I believe that by adapting currently deployed systems to meet current needs, hopefully in a principled
and provably correct manner, I will have a better shot at developing solutions that are adoptable by practitioners.

Database access-control for today’s web applications
Many web applications serve sensitive user data, whose access is governed by access-control policies. To enforce
these policies, today’s back-end web developers must craft appropriate filter predicates for their database queries, and
wrap queries within appropriate access checks in their code. But this practice is error-prone, and access-check bugs
have led to sensitive data leakages in many production systems [14, 23, 44]. So why has it been so difficult to prevent
unintended data disclosure in today’s applications?

To begin with, most existing applications don’t even have an explicit, precise policy written down. Instead, a web
application’s access-control policy is commonly reflected: (1) in the enforcement logic in application code, implicitly-
embedded and scattered, (2) in natural-language documentation (imprecise, and rarely comprehensive), and (3) in the
developer’s head. As a result, nobody other than the developer is likely to comprehend the entire policy—a problem
that worsens as the development team evolves. The solution cannot simply be to “write the program’s policy down”.
I have manually written policies for three existing applications—a painstakingly tedious process that, as I would later
discover, still resulted in policies containing quite a few errors. Clearly, we need a better way!

But even if we had an explicit policy, enforcing it on an existing application is still nontrivial. Many enforcement
solutions in the literature turn out to be incompatible with existing applications: Some apply only to applications
written in a specialized language [4, 17]; others resort to silently altering query results, which may lead to unexpected
or misleading outcomes [16, 22, 24, 36]. Perhaps as a result of this, a common practice today is still to grant privileges
on entire tables to an entire application—much too coarse-grained to prevent data leaks within an application.

To address these pain points, I developed two systems: Ote and Blockaid.

Ote: Policy extraction
Ote [42] is a policy-extraction tool that bootstraps policy creation for existing web applications. It extracts an applica-
tion’s implicitly-embedded policy by enumerating and summarizing its possible data accesses. The extracted policy is
expressed as view definitions—i.e., SQL SELECT statements specifying the information accessible to a given user.

A human can then audit the extracted policy to ensure they are within the bounds of intended data revelations; if
this is not the case, the application likely has an access-check bug. Once audited and adjusted, the extracted policy can
be adopted as the application’s final policy, and can optionally be enforced to (1) cover any application queries missed
by Ote,2 and (2) ensure the application’s continued compliance as its code changes.

Ote works in two steps. First, it explores execution paths through the application via concolic execution, producing
transcripts that record the SQL queries issued and conditions for their issuance. Second, it merges and simplifies the

1Case in point, here is a November, 2024, article on why a development team gave up on migrating from “legacy” Ruby on Rails to newer
technology despite great determination: https://dirkjonker.bearblog.dev/rewrite-it-in-rails/ (accessed Nov 1, 2024).

2Like many program-analysis tools, Ote cannot guarantee that the extracted policy covers all queries that the application can possibly issue. In
contrast, access-control enforcers (like Blockaid below) typically guarantee that every data access is checked against the policy.

Page 1 of 6

mailto:zhangwen@cs.berkeley.edu
https://dirkjonker.bearblog.dev/rewrite-it-in-rails/


Research Statement Wen Zhang zhangwen@cs.berkeley.edu

transcripts to produce a policy allowing each query to be issued under its recorded conditions. We tailor Ote’s concolic
execution to track only operations that commonly govern query issuance, allowing it to scale to real-world code bases.

We used Ote to extract policies for three open-source Ruby-on-Rails applications, two of which I had manually
written policies for years earlier. Ote not only slashed the burden of manual policy-writing, but also produced more
accurate policies. To wit, by reviewing the extracted policies I uncovered several errors in my handwritten counterparts,
including some overly-permissive views that could reveal sensitive data to unauthorized users.

Without a policy, access-control is a nonstarter for complex existing applications. By streamlining policy creation,
Ote can be the catalyst to get access-control adoption off the ground.

Blockaid: Policy enforcement
Given a policy—whether it be handwritten, derived from an Ote-extracted policy, or from elsewhere—Blockaid [40]
enforces it on an application’s database queries by acting as a SQL proxy. Blockaid has two distinguishing features:
(1) it works with existing applications, and (2) it maintains semantic transparency—by fully answering queries that
comply with the policy and outright blocking queries that do not.

Blockaid checks each query in the context of past queries. For example, it may allow a query for Calendar Event 42
to be answered, but only if a prior query has established that the current user is invited to that event. We formalize this
query-compliance criterion as a generalization of query determinacy [28], and Blockaid checks it via SMT solving.

Because query checking lies on the application’s request-handling path, it must be made very fast; Blockaid does
so via generalization-based caching. Once a query has been deemed compliant in some context by an SMT solver,
Blockaid generalizes this determination into a decision template by finding a small unsat core. This way, any future
query (along with its context) that matches the template can be declared compliant without SMT solving. With this op-
timization, Blockaid achieved an overhead of 2% to 12% when applied to three existing Ruby-on-Rails applications.

Other work
Persimmon Persistent memory (PM) offers fast persistence, but systems that exploit it are usually implemented
from scratch. To make PM more accessible, we developed Persimmon [39], a system that converts an existing in-
memory distributed storage system into a fast, persistent version while requiring minimal code changes. Persimmon
targets state-machine applications that process a sequence of deterministic client commands. It keeps two copies of the
state, one in DRAM and one in PM. A command is executed on the DRAM state and also logged persistently; in the
background, it is applied to the PM state in a crash-consistent manner. We applied Persimmon to Redis and TAPIR [37]
using less than 150 lines of code each; the resulting systems are persistent and fast on Intel’s PM hardware.

Kappa Serverless computing has been applied in diverse domains like video processing [7] and data analytics [12],
but general-purpose serverless programming remained challenging for developers, who had to partition computation
into small chunks and had no concurrency primitives at their disposal. The Kappa framework [38] provides a familiar
programming model for general-purpose serverless programming. Developers write standard Python code using the
familiar concurrency abstractions of tasks and futures; the Kappa coordinator manages execution on an unmodified
serverless platform; and the runtime provides fault tolerance via language-level checkpointing. Kappa demonstrated
competitive performance in serverless data analytics and enabled complex serverless applications like a web crawler.

Control replication While certainly not planned, my undergraduate research also aligns with the theme of adapting
existing abstractions to new environments. I helped develop control replication [34], a compiler technique for trans-
forming implicitly-parallel code into scalable SPMD [6] code. Implemented for the Regent language [33], it delivered
speed on par with handwritten SPMD code, while preserving the productivity of implicitly-parallel programming.

Ongoing work I am currently collaborating on the Pringles project (led by Micah Murray) for implementing a
scalable datacenter-wide distributed shared log [3] using programmable switches, and on the Fava project (led by Sam
Son and Zhihong Luo) for efficiently executing existing Java applications on tiered memory—e.g., with CXL. In both
projects, we’re aiming to adapt applications written using existing abstractions to exploit new hardware capabilities.

Future directions
Access control
In our quest to make access-control work for existing applications, there remain many open problems that are both
intellectually intriguing and practically important. Here, I will highlight a few that I plan to work on; a more detailed
discussion on some of these issues can be found in our HotOS paper [41].

Page 2 of 6

mailto:zhangwen@cs.berkeley.edu


Research Statement Wen Zhang zhangwen@cs.berkeley.edu

Policy comprehension While (a subset of) SQL as a policy language is precise and familiar, it can be verbose for
complex policies. I am interested in designing a more concise policy domain-specific language (DSL) that desugars
into SQL. To ensure that the DSL is comprehensible and easy to learn, I am excited to collaborate with colleagues in
human-computer interaction, as well as borrow ideas from user studies on query languages [1, 31] and from the design
of object-relational mappings [35]. Once a DSL is in place, a policy-extraction tool must convert extracted SQL views
into this DSL; I plan to implement this conversion using techniques like verified lifting [13, 15].

Policy testing Even a meticulously written policy can contain errors: A small typo might vastly expand the informa-
tion revealed by a view, and views that individually look reasonable, when put together, might lead to partial disclosure
of sensitive information [25]. I am interested in developing automated tools that test a policy for such errors. To catch
obvious common-sense errors,3 I plan to enlist the help of large-language models (LLMs), which are known to pos-
sess SQL knowledge [27] and at least a modicum of common sense [19]. I will experiment with prompting an LLM
with an application description, a database schema, and policy view definitions, and asking if anything stands out. For
finer-grained detection of partial disclosure, I plan to identify disclosure criteria that are easy to understand (a good
candidate is prior-agnostic privacy criteria [41, § 4.3]), and to develop algorithms to check these criteria.

Violation diagnosis When an application query gets blocked due to a policy violation, how might a tool provide
useful feedback to help diagnose this violation? This is a tricky issue: “Explaining” a violation is difficult because,
with an allow-list policy, no subset of the policy can be singled out for causing the violation. It might be more useful
to directly propose fixes: policy- or application-patches that would allow the offending query to go through. I plan
to explore the usefulness of different strategies for generating patches—e.g., replacing the offending query with a
contained rewriting using the policy views [18].

Decidable compliance checking SMT solvers have proven effective for checking query compliance in real-world
scenarios, but it remains theoretically unclear if compliance checking is decidable in these cases. Even for single-
query checking, where Blockaid’s criterion degenerates into query determinacy, our understanding still remains “at
the extremes”. On one side, I proved that query determinacy is decidable for project-select views and a project-select-
join query with no self joins, provided the selection formulas are reasonable [43]; but this result is too restricted for
practical use. On the other side, query determinacy is undecidable for conjunctive queries [9, 10], yet practical views
and queries look far simpler than those constructed in the undecidability proofs. So I wonder: Is there a natural class of
views and queries—reflecting those in practice—for which compliance checking is decidable? An affirmative answer
could lead to explicit compliance-checking algorithms with more stable performance than SMT solving [30].

Other topics
SMT caching Many systems today rely on SMT solvers to solve computationally hard problems. Given the effec-
tiveness of Blockaid’s caching, I am hopeful that generalization-based caching can speed up other solver-based systems
that repeatedly dispatch structurally-similar SMT queries. I’m interested in developing a generic SMT caching layer
applicable to diverse problem domains. This would require designing a suitable API—ideally higher-level than SMT
formulas but still versatile. Furthermore, we must address privacy concerns that arise if SMT queries come from differ-
ent tenants (like for Amazon’s Zelkova [2]): When a cache entry is produced via generalization, can it leak too much
information about the SMT query from which it originated?

The power of synchronized clocks Recent work has shown that it is possible to synchronize clocks precisely in
the datacenter using commodity hardware [8, 20, 26]. This led me to wonder: For distributed computing, what power
is fundamentally gained by assuming synchronized clocks? Concretely, consider the asynchronous message-passing
model where nodes can be equipped with perfectly- or loosely-synchronized clocks. Can we characterize the classes
of problems (1) whose solution is not helped by having clocks at all?4 (2) that can be solved more efficiently using
clocks [21]? (3) that are solvable only with clocks? Answers to these questions may help both designers of clock
synchronization and designers of distributed protocols better understand the inherent power and limitations of clocks.

Trace minimization for troubleshooting distributed systems When a bug is triggered in a distributed system after
a lengthy execution, generating a minimal event trace that reproduces the bug can significantly aid in debugging.
However, trace minimization is challenging due to the astronomical number of possible traces; one state-of-the-art
solution, DEMi, relies on developer-provided heuristics to guide the search but may still take hours to complete [32]. I
am interested in making trace minimization faster and more automated by leveraging two recent developments: (1) the

3I once made a typo in a policy view that made it read, “if the user is an instructor for this course, the user can access grades in all courses”.
4Neiger and Toueg [29] studied this question from the solvability perspective, but did not consider performance.

Page 3 of 6

mailto:zhangwen@cs.berkeley.edu


Research Statement Wen Zhang zhangwen@cs.berkeley.edu

existence of formal specifications for distributed systems that closely align with their implementations [5, 11], and
(2) large language models, which are increasingly used to comprehend code.

Application platform for tiered memory With the rise of CXL, datacenters with tiered memory are quickly be-
coming a reality: each node is equipped with memory expansion modules, and nodes within a rack also share remote
memory blades. I am interested in developing an integrated application platform tailored for tiered-memory datacen-
ters; this platform would include a programming model, a language runtime, and an orchestrator. Breaking from my
usual focus on supporting existing applications, I plan to design the platform from the ground up by addressing three
key questions: (1) What is a good programming abstraction for heterogeneous memory (fast/slow, private/shared)?
(2) How to efficiently implement runtime functionality like synchronization and garbage collection? (3) How to place
or migrate jobs to maximize resource utilization, considering the memory available in each tier?

References
[1] A. Ahadi, J. C. Prior, V. Behbood, and R. Lister. A quantitative study of the relative difficulty for novices

of writing seven different types of SQL queries. In Proceedings of the 2015 ACM Conference on Innovation
and Technology in Computer Science Education, ITiCS 2015. ACM, 2015. URL https://doi.org/10.1145/
2729094.2742620.

[2] J. Backes, P. Bolignano, B. Cook, C. Dodge, A. Gacek, K. S. Luckow, N. Rungta, O. Tkachuk, and C. Varming.
Semantic-based automated reasoning for AWS access policies using SMT. In 2018 Formal Methods in Computer
Aided Design, FMCAD 2018. IEEE, 2018. URL https://doi.org/10.23919/FMCAD.2018.8602994.

[3] M. Balakrishnan, D. Malkhi, J. D. Davis, V. Prabhakaran, M. Wei, and T. Wobber. CORFU: A distributed shared
log. ACM Trans. Comput. Syst., 31(4), 2013. URL https://doi.org/10.1145/2535930.

[4] A. Chlipala. Static checking of dynamically-varying security policies in database-backed applications. In 9th
USENIX Symposium on Operating Systems Design and Implementation, OSDI 2010. USENIX Association,
2010. URL http://www.usenix.org/events/osdi10/tech/full papers/Chlipala.pdf.

[5] H. Cirstea, M. A. Kuppe, B. Loillier, and S. Merz. Validating traces of distributed programs against TLA+
specifications. CoRR, abs/2404.16075, 2024. URL https://doi.org/10.48550/arXiv.2404.16075.

[6] F. Darema. The SPMD model : Past, present and future. In Recent Advances in Parallel Virtual Machine and
Message Passing Interface, 8th European PVM/MPI Users’ Group Meeting, volume 2131 of Lecture Notes in
Computer Science. Springer, 2001. URL https://doi.org/10.1007/3-540-45417-9 1.

[7] S. Fouladi, R. S. Wahby, B. Shacklett, K. Balasubramaniam, W. Zeng, R. Bhalerao, A. Sivaraman, G. Porter,
and K. Winstein. Encoding, fast and slow: Low-latency video processing using thousands of tiny threads.
In 14th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2017. USENIX Asso-
ciation, 2017. URL https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/
fouladi.

[8] Y. Geng, S. Liu, Z. Yin, A. Naik, B. Prabhakar, M. Rosenblum, and A. Vahdat. Exploiting a natural network effect
for scalable, fine-grained clock synchronization. In 15th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2018. USENIX Association, 2018. URL https://www.usenix.org/conference/
nsdi18/presentation/geng.

[9] T. Gogacz and J. Marcinkowski. The hunt for a red spider: Conjunctive query determinacy is undecidable. In
30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015. IEEE Computer Society, 2015.
URL https://doi.org/10.1109/LICS.2015.35.

[10] T. Gogacz and J. Marcinkowski. Red spider meets a rainworm: Conjunctive query finite determinacy is undecid-
able. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS 2016. ACM, 2016. URL https://doi.org/10.1145/2902251.2902288.

[11] H. Howard, M. A. Kuppe, E. Ashton, A. Chamayou, and N. Crooks. Smart casual verification of ccf’s distributed
consensus and consistency protocols. CoRR, abs/2406.17455, 2024. URL https://doi.org/10.48550/arXiv.
2406.17455.

[12] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht. Occupy the cloud: distributed computing for the
99%. In Proceedings of the 2017 Symposium on Cloud Computing, SoCC 2017. ACM, 2017. URL https:
//doi.org/10.1145/3127479.3128601.

[13] S. Kamil, A. Cheung, S. Itzhaky, and A. Solar-Lezama. Verified lifting of stencil computations. In Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2016.
ACM, 2016. URL https://doi.org/10.1145/2908080.2908117.

Page 4 of 6

mailto:zhangwen@cs.berkeley.edu
https://doi.org/10.1145/2729094.2742620
https://doi.org/10.1145/2729094.2742620
https://doi.org/10.23919/FMCAD.2018.8602994
https://doi.org/10.1145/2535930
http://www.usenix.org/events/osdi10/tech/full_papers/Chlipala.pdf
https://doi.org/10.48550/arXiv.2404.16075
https://doi.org/10.1007/3-540-45417-9_1
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://www.usenix.org/conference/nsdi18/presentation/geng
https://www.usenix.org/conference/nsdi18/presentation/geng
https://doi.org/10.1109/LICS.2015.35
https://doi.org/10.1145/2902251.2902288
https://doi.org/10.48550/arXiv.2406.17455
https://doi.org/10.48550/arXiv.2406.17455
https://doi.org/10.1145/3127479.3128601
https://doi.org/10.1145/3127479.3128601
https://doi.org/10.1145/2908080.2908117


Research Statement Wen Zhang zhangwen@cs.berkeley.edu

[14] B. Krebs. USPS site exposed data on 60 million users, 2018. URL https://krebsonsecurity.com/2018/11/
usps-site-exposed-data-on-60-million-users/. [Online; accessed November 18, 2024].

[15] S. Laddad, C. Power, M. Milano, A. Cheung, and J. M. Hellerstein. Katara: synthesizing crdts with verified
lifting. Proc. ACM Program. Lang., 6(OOPSLA2), 2022. URL https://doi.org/10.1145/3563336.

[16] K. LeFevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan, Y. Xu, and D. J. DeWitt. Limiting disclosure in
hippocratic databases. In (e)Proceedings of the Thirtieth International Conference on Very Large Data Bases,
VLDB 2004. Morgan Kaufmann, 2004. URL http://www.vldb.org/conf/2004/RS3P3.PDF.

[17] N. Lehmann, R. Kunkel, J. Brown, J. Yang, N. Vazou, N. Polikarpova, D. Stefan, and R. Jhala. STORM: re-
finement types for secure web applications. In 15th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2021, July 14-16, 2021. USENIX Association, 2021. URL https://www.usenix.org/
conference/osdi21/presentation/lehmann.

[18] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava. Answering queries using views. In Proceedings of the
Fourteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM Press, 1995.
URL https://doi.org/10.1145/212433.220198.

[19] X. L. Li, A. Kuncoro, J. Hoffmann, C. de Masson d’Autume, P. Blunsom, and A. Nematzadeh. A systematic
investigation of commonsense knowledge in large language models. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2022. Association for Computational Linguistics,
2022. URL https://doi.org/10.18653/v1/2022.emnlp-main.812.

[20] Y. Li, G. Kumar, H. Hariharan, H. M. G. Wassel, P. Hochschild, D. Platt, S. L. Sabato, M. Yu, N. Dukkipati,
P. Chandra, and A. Vahdat. Sundial: Fault-tolerant clock synchronization for datacenters. In 14th USENIX
Symposium on Operating Systems Design and Implementation, OSDI 2020. USENIX Association, 2020. URL
https://www.usenix.org/conference/osdi20/presentation/li-yuliang.

[21] B. Liskov. Practical uses of synchronized clocks in distributed systems. In Proceedings of the Tenth Annual ACM
Symposium on Principles of Distributed Computing. ACM, 1991. URL https://doi.org/10.1145/112600.
112601.

[22] A. Marzoev, L. T. Araújo, M. Schwarzkopf, S. Yagati, E. Kohler, R. T. Morris, M. F. Kaashoek, and S. Madden.
Towards multiverse databases. In Proceedings of the Workshop on Hot Topics in Operating Systems, HotOS
2019. ACM, 2019. URL https://doi.org/10.1145/3317550.3321425.

[23] M. Maunder. Vulnerability in WordPress Core: Bypass any password protected post. CVSS score: 7.5 (High),
June 2016. URL https://www.wordfence.com/blog/2016/06/wordpress-core-vulnerability-bypass-
password-protected-posts/. [Online; accessed November 18, 2024].

[24] A. Mehta, E. Elnikety, K. Harvey, D. Garg, and P. Druschel. Qapla: Policy compliance for database-backed
systems. In 26th USENIX Security Symposium, USENIX Security 2017. USENIX Association, 2017. URL
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/mehta.

[25] G. Miklau and D. Suciu. A formal analysis of information disclosure in data exchange. In Proceedings of the
ACM SIGMOD International Conference on Management of Data. ACM, 2004. URL https://doi.org/10.
1145/1007568.1007633.

[26] A. Najafi and M. Wei. Graham: Synchronizing clocks by leveraging local clock properties. In 19th USENIX
Symposium on Networked Systems Design and Implementation, NSDI 2022. USENIX Association, 2022. URL
https://www.usenix.org/conference/nsdi22/presentation/najafi.

[27] L. Nan, Y. Zhao, W. Zou, N. Ri, J. Tae, E. Zhang, A. Cohan, and D. Radev. Enhancing text-to-sql capabilities of
large language models: A study on prompt design strategies. In Findings of the Association for Computational
Linguistics: EMNLP 2023, Singapore, December 6-10, 2023. Association for Computational Linguistics, 2023.
URL https://doi.org/10.18653/v1/2023.findings-emnlp.996.

[28] A. Nash, L. Segoufin, and V. Vianu. Views and queries: Determinacy and rewriting. ACM Trans. Database Syst.,
35(3), 2010. URL https://doi.org/10.1145/1806907.1806913.

[29] G. Neiger and S. Toueg. Simulating synchronized clocks and common knowledge in distributed systems. J.
ACM, 40(2), 1993. URL https://doi.org/10.1145/151261.151267.

[30] O. Padon. Deductive Verification of Distributed Protocols in First-Order Logic. PhD thesis, Tel Aviv
University, Israel, 2018. URL https://tau.primo.exlibrisgroup.com/permalink/972TAU INST/bai57q/
alma9932991300004146.

[31] P. Reisner. Human factors studies of database query languages: A survey and assessment. ACM Comput. Surv.,
13(1), 1981. URL https://doi.org/10.1145/356835.356837.

[32] C. Scott, A. Panda, V. Brajkovic, G. C. Necula, A. Krishnamurthy, and S. Shenker. Minimizing faulty execu-

Page 5 of 6

mailto:zhangwen@cs.berkeley.edu
https://krebsonsecurity.com/2018/11/usps-site-exposed-data-on-60-million-users/
https://krebsonsecurity.com/2018/11/usps-site-exposed-data-on-60-million-users/
https://doi.org/10.1145/3563336
http://www.vldb.org/conf/2004/RS3P3.PDF
https://www.usenix.org/conference/osdi21/presentation/lehmann
https://www.usenix.org/conference/osdi21/presentation/lehmann
https://doi.org/10.1145/212433.220198
https://doi.org/10.18653/v1/2022.emnlp-main.812
https://www.usenix.org/conference/osdi20/presentation/li-yuliang
https://doi.org/10.1145/112600.112601
https://doi.org/10.1145/112600.112601
https://doi.org/10.1145/3317550.3321425
https://www.wordfence.com/blog/2016/06/wordpress-core-vulnerability-bypass-password-protected-posts/
https://www.wordfence.com/blog/2016/06/wordpress-core-vulnerability-bypass-password-protected-posts/
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/mehta
https://doi.org/10.1145/1007568.1007633
https://doi.org/10.1145/1007568.1007633
https://www.usenix.org/conference/nsdi22/presentation/najafi
https://doi.org/10.18653/v1/2023.findings-emnlp.996
https://doi.org/10.1145/1806907.1806913
https://doi.org/10.1145/151261.151267
https://tau.primo.exlibrisgroup.com/permalink/972TAU_INST/bai57q/alma9932991300004146
https://tau.primo.exlibrisgroup.com/permalink/972TAU_INST/bai57q/alma9932991300004146
https://doi.org/10.1145/356835.356837


Research Statement Wen Zhang zhangwen@cs.berkeley.edu

tions of distributed systems. In 13th USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2016. USENIX Association, 2016. URL https://www.usenix.org/conference/nsdi16/technical-
sessions/presentation/scott.

[33] E. Slaughter, W. Lee, S. Treichler, M. Bauer, and A. Aiken. Regent: a high-productivity programming language
for HPC with logical regions. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2015. ACM, 2015. URL https://doi.org/10.1145/2807591.2807629.

[34] E. Slaughter, W. Lee, S. Treichler, W. Zhang, M. Bauer, G. M. Shipman, P. S. McCormick, and A. Aiken.
Control replication: compiling implicit parallelism to efficient SPMD with logical regions. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2017. ACM,
2017. URL https://doi.org/10.1145/3126908.3126949.

[35] A. Torres, R. Galante, M. S. Pimenta, and A. J. B. Martins. Twenty years of object-relational mapping: A
survey on patterns, solutions, and their implications on application design. Inf. Softw. Technol., 82, 2017. URL
https://doi.org/10.1016/j.infsof.2016.09.009.

[36] J. Yang, T. Hance, T. H. Austin, A. Solar-Lezama, C. Flanagan, and S. Chong. Precise, dynamic information
flow for database-backed applications. In Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2016. ACM, 2016. URL https://doi.org/10.1145/2908080.
2908098.

[37] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy, and D. R. K. Ports. Building consistent transactions
with inconsistent replication. In Proceedings of the 25th Symposium on Operating Systems Principles, SOSP
2015. ACM, 2015. URL https://doi.org/10.1145/2815400.2815404.

[38] W. Zhang, V. Fang, A. Panda, and S. Shenker. Kappa: a programming framework for serverless computing. In
SoCC ’20: ACM Symposium on Cloud Computing. ACM, 2020. URL https://doi.org/10.1145/3419111.
3421277.

[39] W. Zhang, S. Shenker, and I. Zhang. Persistent state machines for recoverable in-memory storage systems with
NVRam. In 14th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2020. USENIX
Association, 2020. URL https://www.usenix.org/conference/osdi20/presentation/zhang-wen.

[40] W. Zhang, E. Sheng, M. A. Chang, A. Panda, M. Sagiv, and S. Shenker. Blockaid: Data access policy enforce-
ment for web applications. In 16th USENIX Symposium on Operating Systems Design and Implementation, OSDI
2022. USENIX Association, 2022. URL https://www.usenix.org/conference/osdi22/presentation/
zhang.

[41] W. Zhang, A. Panda, and S. Shenker. Access control for database applications: Beyond policy enforcement.
In Proceedings of the 19th Workshop on Hot Topics in Operating Systems, HOTOS 2023. ACM, 2023. URL
https://doi.org/10.1145/3593856.3595905.

[42] W. Zhang, D. Bali, J. Kerney, A. Panda, and S. Shenker. Extracting database access-control policies from web
applications. CoRR, abs/2411.11380, 2024. URL https://arxiv.org/abs/2411.11380.

[43] W. Zhang, A. Panda, M. Sagiv, and S. Shenker. A decidable case of query determinacy: Project-select views.
CoRR, abs/2411.08874, 2024. URL https://arxiv.org/abs/2411.08874.

[44] Z. Zorz. OpenEMR vulnerabilities put patients’ info, medical records at risk, 2018. URL https://www.
helpnetsecurity.com/2018/08/08/openemr-vulnerabilities/. [Online; accessed November 18, 2024].

Page 6 of 6

mailto:zhangwen@cs.berkeley.edu
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/scott
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/scott
https://doi.org/10.1145/2807591.2807629
https://doi.org/10.1145/3126908.3126949
https://doi.org/10.1016/j.infsof.2016.09.009
https://doi.org/10.1145/2908080.2908098
https://doi.org/10.1145/2908080.2908098
https://doi.org/10.1145/2815400.2815404
https://doi.org/10.1145/3419111.3421277
https://doi.org/10.1145/3419111.3421277
https://www.usenix.org/conference/osdi20/presentation/zhang-wen
https://www.usenix.org/conference/osdi22/presentation/zhang
https://www.usenix.org/conference/osdi22/presentation/zhang
https://doi.org/10.1145/3593856.3595905
https://arxiv.org/abs/2411.11380
https://arxiv.org/abs/2411.08874
https://www.helpnetsecurity.com/2018/08/08/openemr-vulnerabilities/
https://www.helpnetsecurity.com/2018/08/08/openemr-vulnerabilities/

