
Stellar: An Automated Design 
Framework for Dense and Sparse 
Spatial Accelerators
Hasan Genc, Hansung Kim, Prashanth Ganesh, Sophia Shao
University of California, Berkeley (now at NVIDIA)
hgenc@nvidia.com

mailto:hgenc@nvidia.com


Motivation: Architecture Diversity

Gemmini

Eyeriss v2

SCNN

AWB-GCN

A100 TPU 2



Motivation: Potential Enumeration?

3

???

???



Motivation: Potential Taxonomy?

???

??? ???

???

4



● We need separation of concerns!

Motivation: Separation of Concerns

5



● We need separation of concerns!

● Functional behavior
○ E.g. matmul, convolution, sorting, etc.

Motivation: Separation of Concerns

6

Matmul

MTTKRP



● We need separation of concerns!

● Functional behavior
○ E.g. matmul, convolution, sorting, etc.

● Dataflow
○ E.g. output-stationary, weight-stationary, etc.

Motivation: Separation of Concerns

7



● We need separation of concerns!

● Functional behavior
○ E.g. matmul, convolution, sorting, etc.

● Dataflow
○ E.g. output-stationary, weight-stationary, etc.

● Data formats
○ E.g. CSR, ELL, DBB, diagonal

Motivation: Separation of Concerns

8

8 2

1

0 2 2 2

0 1 2

CSR

ELL

8 2

1

8 2

0 0

1 0

0 1

0 0

3 0



● We need separation of concerns!

● Functional behavior
○ E.g. matmul, convolution, sorting, etc.

● Dataflow
○ E.g. output-stationary, weight-stationary, etc.

● Data formats
○ E.g. CSR, ELL, DBB, diagonal

● Load-balancing
○ Affects cost of NoC

Motivation: Separation of Concerns

9

×+ ×+



Motivation: Separation of Concerns

● We need separation of concerns!

● Functional behavior
○ E.g. matmul, convolution, sorting, etc.

● Dataflow
○ E.g. output-stationary, weight-stationary, etc.

● Data formats
○ E.g. CSR, ELL, DBB, diagonal

● Load-balancing
○ Affects cost of NoC

Dense and sparse

Sparse

10



Prior Work

● Dense accelerator design 
frameworks
○ PolySA
○ AutoSA
○ Interstellar

● Sparse accelerator design 
frameworks
○ TeAAL
○ Sparse Abstract Machine
○ Sparseloop

● Limitations of prior work:
○ No sparse RTL generation

■ Primary focus is simulation
○ Difficult to express certain niche 

edge cases
■ E.g. hexagonal dataflows or 

certain niche load-balancing 
schemes

Stellar enables both rapid specification and RTL 
generation for both dense and sparse accelerators

11



Overview of Stellar

12

Functionality

Dataflow

Sparse data 
formats

Load-
balancing

DSL

Compiler

Verilog

Outputs

Programming 
Stack

Dense & Sparse

Sparse



Expressing Functionality

13

Functionality

Dataflow

Sparse data 
formats

Load-
balancing

DSL

Compiler

Verilog

Outputs

Programming 
Stack

Dense & Sparse

Sparse



Expressing Functionality

“Halide-like” Matmul

a(i, j, k) = a(i, j - 1, k)
b(i, j, k) = b(i - 1, j, k)
c(i, j, k) = c(i, j, k - 1)

+ a(i, j - 1, k) * b(i - 1, j, k)

14

● Similar to prior work on automated systolic 
array generators
○ E.g. Algorithms of Informatics, 2010

● Indirect accesses also supported
○ Helps with merging/sorting algorithms



Overview of Stellar

15

Functionality

Dataflow

Sparse data 
formats

Load-
balancing

DSL

Compiler

Verilog

Outputs

Programming 
Stack

Dense & Sparse

Sparse



● Defines the placement of PEs
● Defines the order of operations
● Defines the connections between PEs in the ideal, dense

case
○ Some of these PE-to-PE connections will be broken and 

replaced with external IO based on the sparse data format

Expressing Dataflows

16

Space-Time Transform



Expressing Dataflows

c11 c12

c21 c22a21

a11

a22

a12

b12
b22

b11
b21

T =
1 0 0
0 1 0
1 1 1

a11 a21

a12 a22b21

b11

b22

b12

c21

c22
c11

c12T =
0 0 1
1 0 0
1 1 1

a21

a11a22
a12

b12

b21

T =
 0 -1 1
-1 1 0
 1 1 1

b11 b22

c22c11
c21

c12

Input-Stationary Output-Stationary Hexagonal

17



Expressing Dataflows

18

Dense

Sparse



Expressing Sparse Data Formats

19

Functionality

Dataflow

Sparse data 
formats

Load-
balancing

DSL

Compiler

Verilog

Outputs

Programming 
Stack

Dense & Sparse

Sparse



● We can express sparsity in terms of 
which iterators are “skipped”
○ And what the conditions for the 

“skip” are

Expressing Sparse Data Formats

20

A * B = C where A and B are CSR
Skip i if A(i,k) == 0
Skip j if B(k,j) == 0

A * B = C where A is diagonal
Skip i if i != k
Skip k if i != k

Simple “row-sparsity” example
Skip k if A(i,->) == 0



Expressing Sparse Data Formats

● Skip statements are sufficient for 
spatial array design, but not for 
memory buffer design

● Memory buffers need to know how 
metadata is stored, while spatial 
arrays only need to know which 
elements to skip
○ Bitmap and CSR tensors can encode 

the same matrix, but with very 
different storage overhead!

● Memory buffers are defined using 
the fibertree notation
○ Every dimension in the tensor gets 

its own sparsity format
● Examples:

○ CSR:
■ Dense rows
■ Compressed columns

○ Bitmap:
■ Dense rows
■ Bitvector columns

○ Block-CSR
■ Dense -> Compressed -> 

Dense -> Dense
21



Expressing Load-Balancing

22

Functionality

Dataflow

Sparse data 
formats

Load-
balancing

DSL

Compiler

Verilog

Outputs

Programming 
Stack

Dense & Sparse

Sparse



Expressing Load-Balancing

● Idle PEs can perform work that 
over-utilized PEs would have 
performed in the future

Spatial Array With No Load-Balancing

23



Expressing Load-Balancing

● Idle PEs can perform work that 
over-utilized PEs would have 
performed in the future

Remap Over-Utilized Operations to Adjacent Rows

Map (i.upperBound->, j, k) to (
i.lowerBound -> i.upperBound,
j,
k + 1

)

24



Expressing Load-Balancing

● Idle PEs can perform work that 
over-utilized PEs would have 
performed in the future

Remap Over-Utilized Operations to Adjacent Rows

for (n <- -1 to 1)
Map (i.upperBound->, j, k) to (

i.lowerBound -> i.upperBound,
j,
k + n

)

25



Expressing Load-Balancing

● Idle PEs can perform work that 
over-utilized PEs would have 
performed in the future

Remap Over-Utilized Operations to Adjacent Rows

for (n <- -3 to 3)
Map (i.upperBound->, j, k) to (

i.lowerBound -> i.upperBound,
j,
k + n

)

26



Outputs

27

Functionality

Dataflow

Sparse data 
formats

Load-
balancing

DSL

Compiler

Verilog

Outputs

Programming 
Stack

Dense & Sparse

Sparse



Hardware Architecture: Dense Matmul 

Left × Right = Result

28

Matmul

Scratchpad: Left

Scratchpad: 
Right

RegFile: Left

RegFile: Right

RegFile:
Result

Scratchpad:
Result

Decoder

DMA

CPU

DRAM

Legend
Data
Coords
Control



Hardware Architecture: Sparse-Dense Matmul

Left (dense) × Right (CSR) = Result (CSR)

29

Matmul RegFile:
Scattered Results

SRAM: Result

Merger

RegFile:
Merged Results

SRAM: Left

SRAM: Right

RegFile: Left

RegFile: Right

CoordLookup: Right

CoordLookup: 
Merged

Legend
Data
Coords
Control



Hardware Generation: Spatial Arrays

1. Generate “tensor iteration space”
○ From functional description

30

Functional Description

// Inputs
a(i, j.lowerBound, k) = A(i, k)
b(i.lowerBound, j, k) = B(i, k)

// Intermediate calculations
a(i, j, k) = a(i, j - 1, k)
b(i, j, k) = b(i - 1, j, k)
c(i, j, k) = c(i, j, k - 1) + a(i, j - 1, k) * b(i - 1, j, k)

// Outputs
C(i, j) = c(i, j, k.lowerBound) j

i

k

a

a

a

ab b

b
b

c c

cc

0,0,0

0,0,1

1,0,0

1,0,1 1,1,1

1,1,0

0,1,0

0,1,1



Hardware Generation: Spatial Arrays

1. Generate “tensor iteration space”
○ From functional description

2. Prune PE-to-PE connections
○ Based on sparsity formats and load-balancing

31
j

i

k

a

a

a

ab b

b
b

c c

cc

0,0,0

0,0,1

1,0,0

1,0,1 1,1,1

1,1,0

0,1,0

0,1,1

A is CSC and B is CSR
Skip i if A(i,k) == 0
Skip j if B(k,j) == 0

j

i

k

a

a

a

ab b

b
b

0,0,0

0,0,1

1,0,0

1,0,1 1,1,1

1,1,0

0,1,0

0,1,1



Hardware Generation: Spatial Arrays

1. Generate “tensor iteration space”
○ From functional description

2. Map to dense physical array
○ From space-time transform

3. Map to dense physical array
○ From space-time transform

32

a11 a21

a12 a22b21

b11

b22

b12

c21

c22
c11

c12T =
0 0 1
1 0 0
1 1 1

j

i

k

a

a

a

ab b

b
b

0,0,0

0,0,1

1,0,0

1,0,1 1,1,1

1,1,0

0,1,0

0,1,1



Hardware Generation: Memory Buffers

● Handwritten templates for different 
types of sparsity format

● Template creates different pipeline 
stages for each dimension of a 
sparse/dense tensor

33

Dim-1
Addr-Gen

Data 
Mem

Dim-0
Addr-Gen

Addresses
Strides

Lengths
etc.

Data
Coordinates

Memory Buffer for Dense Matrices



Hardware Generation: Memory Buffers

● Handwritten templates for different 
types of sparsity format

● Template creates different pipeline 
stages for each dimension of a 
sparse/dense tensor

34

Dim-1
Addr-Gen

Data 
Mem

Dim-0
Addr-Gen

Addresses
Strides

Lengths
etc.

Data
Coordinates

Memory Buffer for CSR Matrices

Coord 
Mem

Row-ID 
Mem



Hardware Generation: Memory Buffers

● Handwritten templates for different 
types of sparsity format

● Template creates different pipeline 
stages for each dimension of a 
sparse/dense tensor

35

Dim-1
Addr-Gen

Data 
Mem

Dim-0
Addr-Gen

Memory Buffer for Block-CSR Tensors

Coord 
Mem

Row-ID 
Mem

Dim-2
Addr-Gen

Data
Coords

Addrs
Strides

Lengths
etc.



Hardware Generation: Memory Buffers

● Memory buffer RTL templates are 
designed to be pretty generalizable
○ Scatter-gather support, synchronization, 

interleaving, banking, etc.

● Hardcoding runtime parameters at 
elaboration time helps a lot

36

● Handwritten templates for different 
types of sparsity format

● Template creates different pipeline 
stages for each dimension of a 
sparse/dense tensor

Example: Hardcoding striding patterns 
at elaboration-time



Hardware Generation: Register Files

● Initial hardware output is flexible but 
expensive

● Optimization passes will reduce area/power 
of hardware based on elaboration-time 
constraints

● Regfiles are optimized by “hardening” their 
“edges” based on dataflow and scratchpad 
access patterns
○ Optimizing edges also allows some data 

transformation optimizations

37
Flexible baseline IO only at edges

Each IO port connects 
only to a single RF 

entry at edge

Transpose



Limitations

● “Affine” reductions vs “tree-
reductions”

● Stellar can easily represent “affine” 
dataflow transformations

● Stellar isn’t great at representing 
recursive, or “tree-based” 
transformations

38

+ + + +

+

Chain-reduction

Temporal reduction

+ + + +
+

Tree-reduction



Limitations

● “Affine” reductions vs “tree-
reductions”

● Stellar can easily represent “affine” 
dataflow transformations

● Stellar isn’t great at representing 
recursive, or “tree-based” 
transformations
○ ...but it is possible to represent them 

in Stellar!

39

SpArch, 2020



Limitations

● “Affine” reductions vs “tree-
reductions”

● Stellar can easily represent “affine” 
dataflow transformations

● Stellar isn’t great at representing 
recursive, or “tree-based” 
transformations
○ ...but it is possible to represent them 

in Stellar!

40

● Caches vs scratchpads
● Stellar generates explicitly-managed 

scratchpads
○ L2 caches backing up the 

scratchpads and CPU are supported
● But some sparse accelerator works 

propose new caches with novel 
eviction/prefetching policies
○ Novel caches not yet supported in 

Stellar



Results: Performance, Area, Power

● Stellar-generated accelerators achieve 
comparable performance and area 
consumption to hand-designed 
accelerators

● For example, compared to the dense DNN 
accelerator Gemmini:
○ 13% more area
○ 90% of performance

41



Results: Performance, Area, Power

● Stellar also generates performance sparse 
accelerators

● For example, SCNN:
○ 4D PE topology

■ 2D spatial array of 2D spatial arrays
○ Both sparse and dense data

■ Inputs, weights, and outputs are 
sparse

■ Partial sum accumulations are 
dense

● Achieves 83-94% of handwritten SCNN’s 
performance on various DNN layers

42



Conclusion and Future Work

● Stellar enables faster accelerator 
design, evaluation, and RTL 
generation
○ Attempts to maintain a strong 

separation of concerns
● Open-sourced:

○ github.com/hngenc/stellar

● Future work:
○ Caches

■ What kinds of abstractions would 
cover the full space of sparse 
cache design?

○ Non-affine reductions
■ Including recursion

○ Search strategies over our design-space

46Hasan Genc Prashanth Ganesh Hansung Kim Sophia Shao



Questions?

47


