DOSA: Differentiable Model-Based One-Loop Search for DNN Accelerators

Charles Hong (UC Berkeley),

Qijing Huang (NVIDIA), Grace Dinh (UC Berkeley), Mahesh Subedar (Intel Labs), Yakun Sophia Shao (UC Berkeley)

Hardware Acceleration is Everywhere

Hong et al. - Source DOSA: Differentiable Model-Based One-Loop Search for DNN Accelerators

Accelerator Design Space Exploration is Challenging

Hong et al. - Source DOSA: Differentiable Model-Based One-Loop Search for DNN Accelerators

Conventional DSE

Two nested loops: 1. Hardware loop 2. Mapping loop

1 design point = up to hours/days of hardware simulation

~10²² design points = quadrillions of years!

Hong et al. - 🍪 DOSA: Differentiable Model-Based One-Loop Search for DNN Accelerators

How does DOSA tackle this ~10²² search space?

1. Do mapping-first search.

2. Use differentiable, interpretable performance models.

3. Apply deep learning to bridge the gap between models and RTL.

Inefficiencies of Hardware-First Search

Hong et al. - Source DOSA: Differentiable Model-Based One-Loop Search for DNN Accelerators

Scratchpad too big:

Unnecessary energy and area consumption.

Fit the Hardware to the Mapping

Hong et al. - Source Dosa: Differentiable Model-Based One-Loop Search for DNN Accelerators

Observation:

You can infer optimal scratchpad size from mapping.

How does DOSA tackle this ~10²² search space?

1. Do mapping-first search.

2. Use differentiable, interpretable performance models.

3. Apply deep learning to bridge the gap between models and RTL.

Mapping-First Search

Mapping Nested Loop:

// Scratchpad (Weights:4096, Inputs: 896) spatial_for k2 in [0:64):
// Accumulator (Outputs:896)
spatial_for c1 in [0:64):
// Registers (Weights: 4096)
for q0 in [0:14):
...

Hong et al. - Source Dosa: Differentiable Model-Based One-Loop Search for DNN Accelerators

Mapping-First Search

Mapping-first search:

- Search mappings, unconstrained
- Infer optimal hardware

Hong et al. - 🍪 DOSA: Differentiable Model-Based One-Loop Search for DNN Accelerators

10

Explore the design space with one loop.

Hong et al. - Source DOSA: Differentiable Model-Based One-Loop Search for DNN Accelerators

11

Hong et al. - Source Dost Differentiable Model-Based One-Loop Search for DNN Accelerators

What happens when we get to the next layer?

Hong et al. - Source Dost Differentiable Model-Based One-Loop Search for DNN Accelerators

Scratchpad has to fit tile sizes of all layers.

A High-Dimensional Optimization Problem

Hong et al. - Source Dosa: Differentiable Model-Based One-Loop Search for DNN Accelerators

Resizing the scratchpad affects the energy of all layers.

 \implies Search mappings for all layers together.

14

A Very High-Dimensional Optimization Problem

Hong et al. - Source DOSA: Differentiable Model-Based One-Loop Search for DNN Accelerators

- Unique layers per DNN model: 5-25
- Mapping variables per layer: 40
- Up to 1000 input variables to optimize!

$10^{14} \times 10^{14} \times ... \times 10^{14} = (10^{14})^{N}$ search space!

15

Choice of Optimizer

Hong et al. - Source DOSA: Differentiable Model-Based One-Loop Search for DNN Accelerators

Gradient-based methods scale to millions of parameters.

Choice of Cost Model

Hong et al. - Source DOSA: Differentiable Model-Based One-Loop Search for DNN Accelerators

- Must be accurate
- Must be *differentiable*

Analytical models provide a fast indicator for accelerator performance.

Can we construct a differentiable analytical model?

Differentiable Functions

Differentiable function: "a function whose derivative exists at each point in its domain."

Hong et al. - Source DOSA: Differentiable Model-Based One-Loop Search for DNN Accelerators

- Must be fast
- Must be accurate
- Must be *differentiable*

*Illustration from plotly.com

Differentiable Functions

Hong et al. - 🍪 DOSA: Differentiable Model-Based One-Loop Search for DNN Accelerators

Mapping-first search is well-suited to gradient-based optimization!

Mapping-First Search

How does DOSA tackle this ~10²² search space?

1. Do mapping-first search.

2. Use differentiable, interpretable performance models.

3. Apply deep learning to bridge the gap between models and RTL.

Hong et al. - 🍪 DOSA: Differentiable Model-Based One-Loop Search for DNN Accelerators

Hong et al. - 🍪 DOSA: Differentiable Model-Based One-Loop Search for DNN Accelerators

Step 1: Compute minimal HW needed to support all mappings.

Hong et al. - Source DOSA: Differentiable Model-Based One-Loop Search for DNN Accelerators

Hong et al. - Source DOSA: Differentiable Model-Based One-Loop Search for DNN Accelerators

Hong et al. - 🍪 DOSA: Differentiable Model-Based One-Loop Search for DNN Accelerators

Hong et al. - Source Alter A

DOSA: Differentiable Model-Based One-Loop Search for DNN Accelerators

Hong et al. - Source DOSA: Differentiable Model-Based One-Loop Search for DNN Accelerators

DOSA Differentiable Model: Correlation to Timeloop*

Hong et al. - Source DOSA: Differentiable Model-Based One-Loop Search for DNN Accelerators

EDP Error (%)

*Parashar, et al. "Timeloop: A systematic approach to DNN accelerator evaluation," International Symposium on Performance Analysis of Systems and Software (ISPASS), 2019.

DOSA Differentiable Model: Correlation to Timeloop*

Over 10,000 mappings from 73 unique layers, model is:

- On average, within 0.18% of Timeloop
- Within 1% of Timeloop, for **98.3% of mappings**

Hong et al. - Source DOSA: Differentiable Model-Based One-Loop Search for DNN Accelerators

EDP Error (%)

*Parashar, et al. "Timeloop: A systematic approach to DNN accelerator evaluation," International Symposium on Performance Analysis of Systems and Software (ISPASS), 2019.

Going Beyond Architectural Modeling

Right: Prediction accuracy of analytical model vs Gemmini RTL implementation.

- Analytical models don't fully capture real-world performance.
- How can we improve the accuracy of our model?

Hong et al. - Source DOSA: Differentiable Model-Based One-Loop Search for DNN Accelerators

DOSA Analytical Model Prediction

Deep Learning-Based Latency Predictor: Accuracy

Hong et al. - 🍪 DOSA: Differentiable Model-Based One-Loop Search for DNN Accelerators

Deep Learning-Based Latency Predictor: Generalization

Hong et al. - 🍪 DOSA: Differentiable Model-Based One-Loop Search for DNN Accelerators

How does DOSA tackle this ~10²² search space?

1. Do mapping-first search.

2. Use differentiable, interpretable performance models.

3. Apply deep learning to bridge the gap between models and RTL.

Combining Analytical and DNN Predictors

DNN model predicts the difference between analytical model and Gemmini RTL-simulated latency.

Trained on ~1500 mappings from:

• AlexNet, ResNeXt50-32x4d, VGG-16, DeepBench

Hong et al. - Source DOSA: Differentiable Model-Based One-Loop Search for DNN Accelerators

DOSA Analytical Model Prediction

DOSA: Differentiable Model-Based One-Loop Search for DNN Accelerators

Hong et al. - Source Alter A

Combining Analytical and DNN Predictors: Accuracy

Training layers, test mappings

Hong et al. - Source DOSA: Differentiable Model-Based One-Loop Search for DNN Accelerators

36

Combining Analytical and DNN Predictors: Generalization

Hong et al. - Source DOSA: Differentiable Model-Based One-Loop Search for DNN Accelerators

Test layers, test mappings

Evaluation

Evaluating Co-Search Performance

After 10,000 samples, DOSA finds hardware-mapping co-design points with better EDP:

- 2.80x vs random search
- 12.59x vs Bayesian optimization

Latency evaluated w/ Timeloop

Hong et al. - 🍪 DOSA: Differentiable Model-Based One-Loop Search for DNN Accelerators

Comparison to Baseline Accelerators

DOSA-searched design points are several times more efficient than hand-tuned baselines.

Results shown are averaged over 4 target workloads:

• U-Net, ResNet-50, BERT, RetinaNet

Latency evaluated w/ Timeloop

Hong et al. - 🍪 DOSA: Differentiable Model-Based One-Loop Search for DNN Accelerators

DOSA

Default

Optimizing Real Hardware (Gemmini)

With the combined analytical+DNN model, we optimize Gemmini EDP by **1.82x**.

Latency evaluated w/ RTL simulation

Hong et al. - 🍪 DOSA: Differentiable Model-Based One-Loop Search for DNN Accelerators

Normalized EDP (lower is better)

Conclusion

- Mapping-first one-loop search enables more efficient accelerator DSE.
- Accelerator performance models can be differentiable and interpretable.
- We can augment analytical models with real performance data using DNNs.

- We look forward to extending DOSA to other parameters and platforms! Questions or feedback? <u>charleshong@berkeley.edu</u>

Hong et al. - Source DOSA: Differentiable Model-Based One-Loop Search for DNN Accelerators

Open-source at github.com/ucb-bar/dosa

