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Multiple tasks share system resources

@ Edge@ Cloud

Trends in Modern SoCs: More Applications
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To keep up with application that are becoming more demanding…

Trends in Modern SoCs: Multi-Accelerator
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Trends in Modern SoCs

More cores
● End of single-thread 

performance scaling
● Many-core SoCs to 

extract TLP

How to scalably architect 
many-accelerator SoCs?

More accelerators
● More compute-bound 

workloads require 
acceleration

More applications
● Software stacks grow in 

complexity
● Graphics/multimedia/AI 

are pervasive
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§ Goal: Enable scalable many-accelerator for multi-tenant execution

§ Requirements:
§ Scalable deployment

§ Many-accelerator integration
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Requirements for Accelerator Integration

. . . 

. . .

Accel Accel

Accel Accel



§ Goal: Enable scalable many-accelerator for multi-tenant execution

§ Requirements:
§ Scalable deployment

§ Many-accelerator integration
§ Virtual accelerator integration

§ Abstraction for user’s view of accelerator instances
§ ???
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Requirements for Accelerator Integration

Physical 
accelerator 
instances

User

Virtualized 
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§ Program physical accelerator resources
§ Request accelerator using physical ID (PID)

§ Issues under multi-tenancy
§ Resource conflict

§ Hard to repartition resource frequently
§ Cause stall: Low utilization

§ Programming burden

Physical Accelerator Integration

PID
1

PID
2

PID
3

PID
4

Task 
thread 1

Request # 3
(PID 1, 2, 3)

Task 
thread 2

Request # 2
(PID 3, 4)

Conflict!
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§ Provides an abstraction between …
§ User’s view of accelerator 
§ Physical accelerator instances

§ Enable scalable many-accelerator for multi-tenancy
§ Requirements …

§ Low latency
§ Programmable
§ Minimize SW overhead

Virtual Accelerator Integration

Task 
thread 1

Request
(target)

Task 
thread 2

Virtualized 
Accelerator

PID
1

PID
2

PID
3

PID
4

Task 1
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Requirements for Accelerator Integration

§ Goal: Enable scalable many-accelerator for multi-tenant execution

§ Requirements:
§ Scalable deployment
§ Virtual accelerator integration

§ Low latency
§ Programmable
§ Minimal programming overhead

§ Interface: How accelerator interacts with host CPU

CPU Accelerator?



Existing Physical Accelerator Integration Methodologies

Tightly CPU-coupled:
Limited opcode space

Physically attached to CPU

opcode 0

opcode 1
X

Limited accelerator per core
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Existing Physical Accelerator Integration Methodologies

Physical design challenge

IFU EX

AccelY
AccelZ

MEM

AccelX

Congested!

Tightly CPU-coupled:
Limited opcode space

Physically attached to CPU

Limited accelerator per core
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Scalability issue



Existing Physical Accelerator Integration Methodologies

Software complexity
Memory-mapped over interconnect:

Setup accelerator IOMMU for 
address translation

Access accelerator over system 
bus, memory hierarchy

IOMMU

Setup PTW
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Existing Physical Accelerator Integration Methodologies

Latency overhead
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Latency

Virtual integration difficulties

Software complexity
Memory-mapped over interconnect:

Setup accelerator IOMMU for 
address translation

Access accelerator over system 
bus, memory hierarchy



A full-stack system enabling scalable deployment and
virtualized integration of accelerators

AuRORA: Virtual Accelerator Integration and Orchestration

Enable physical disaggregation
Provide illusion of tight-coupling

Virtualized accelerator management

Enable acquiring many-accelerators
Enable programmable virtual interface

Low latency
Enable virtual to physical mapping
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♣ : Scalability
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✔

✔

✔



AuRORA Full Stack Implementation

Runtime System

ISA Extensions

Hardware Messaging 
Protocol

Microarchitecture

Software

Hardware
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♣: Scalability
✔: Virtualization
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♣: Scalability
✔: Virtualization

Enable physical disaggregation
Provide illusion of tight-coupling

♣
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AuRORA Client:
Attaches to CPUs via RoCC
Forwards accelerator instructions 
to acquired manager

AuRORA Microarchitectural Components

AuRORA Manager:
Attaches to existing RoCC accelerators
Shadow thread architectural state
Eliminate need of user-/supervisor-
managed IOMMU
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AuRORA Full Stack Implementation

Runtime System

ISA Extensions

Hardware Messaging 
Protocol

Microarchitecture

Software

Hardware
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Low latency
Enable virtual to physical mapping

✔

✔

♣: Scalability
✔: Virtualization



▪ Manages communication 
between CPUs and Accelerators

▪ Protocol supports:
▪ Client-manager synchronization
▪ Maintenance of shadowed 

architectural state on managers
▪ Client-to-manager instruction 

forwarding

▪ Physical transport layer: network-
on-chip interconnect

AuRORA Hardware Messaging Protocol
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Acquire
Request

Granted

Acquire
Request Rejected

Manager 0



▪ Manages communication 
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▪ Protocol supports:
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AuRORA Hardware Messaging Protocol
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AuRORA Full Stack Implementation

Runtime System

ISA Extensions

Hardware Messaging 
Protocol

Microarchitecture

Software

Hardware
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Enable acquiring many-accelerators
Enable programmable virtual interface

♣

✔
♣: Scalability
✔: Virtualization



▪ Allows user thread to interact with HW in programmable fashion

▪ Low-overhead: bounded by interconnect latency

AuRORA ISA Extensions

AuRORA PseudoInst.

rerocc_acquire 

rerocc_assign   

rerocc_release 

rerocc_fence   

rerocc_memrate  
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AuRORA ISA Extensions

▪ rerocc_acquire
▪ Maps physical accelerator to virtual accelerator index 
▪ Return success status 

▪ rerocc_assign
▪ Maps virtual accelerator to available opcode on its 

architectural thread
▪ Allows an architectural thread to acquire more 

accelerators than the available opcode space

24

Client 0

Manager 0

Acquire
Request

Granted



AuRORA Full Stack Implementation

Runtime System

ISA Extensions

Hardware Messaging 
Protocol

Microarchitecture

Software

Hardware
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Virtualized accelerator management✔



▪ Backwards compatibility with accelerator SW
▪ Invoked only before entry of DNN layer execution

▪ Low overhead
▪ Implements in user-space
▪ No need to preempt during layer execution

▪ Dynamically allocate resources for multi-tenant workload
▪ Latency target-aware resource allocation

AuRORA Runtime
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Flow Without AuRORA

Time
Deadline

Resource 
request

: Accelerator migrate

: Accelerator request

Physical

: Accelerator

: Scheduling granularity 
(layer)
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Flow Without AuRORA

Time
Deadline

Violation!

: Accelerator migrate

: Accelerator request: Accelerator

: Scheduling granularity 
(layer)

Physical
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AuRORA Runtime

Time
Deadline

: Accelerator

: Scheduling granularity 
(layer)

: Accelerator release

Virtual
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AuRORA Runtime

Time

: Accelerator

: Scheduling granularity 
(layer)

Acquire

Acquire

Deadline
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▪ Implementation details
▪ Hardware Manager/Client: Chisel RTL

▪ Integrated into Chipyard
▪ Software runtime: C++, Linux pthread

▪ Runs on top of full Linux stack

AuRORA Evaluation Methodology
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▪ Full-system evaluation details
▪ DNN accelerator generator: Gemmini
▪ NoC generator: Constellation
▪ FPGA evaluation: FireSim



▪ Implementation details
▪ Hardware Manager/Client: Chisel RTL

▪ Integrated into Chipyard
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▪ Full-system evaluation details
▪ DNN accelerator generator: Gemmini
▪ NoC generator: Constellation
▪ FPGA evaluation: FireSim
▪ 2 integration configuration:

▪ Crossbar
▪ NoC

Chipyard SoC configuration

NoC Configuration for Evaluation



▪ Multi-tenant DNN accelerator baselines using physical accelerator
▪ Veltair: form layer-block to avoid frequent scheduling conflict
▪ MoCA: groups of layers, dynamic repartition of memory resource

▪ 2 different configurations of AuRORA
▪ AuRORA-Compute: dynamic compute resource repartition, without NUMA
▪ AuRORA-All: enable all optimization (memory partitioning, NUMA-aware 

accelerator allocation)

AuRORA Evaluation Methodology
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▪ Benchmark DNNs: 10 different DNN inference models
▪ Grouped by model size
▪ Construct multi-tenant scenario: randomly generated 200-300 inference tasks

▪ QoS targets
▪ 3 different latency targets

▪ QoS-H: 1.2x
▪ QoS-M: 1x
▪ QoS-L: 0.8x

AuRORA Evaluation Methodology

Workload Model Size DNN Models

Workload set-A Light SqueezeNet, Yolo-LITE, KWS,
ResNet18, BERT-small

Workload set-B Heavy GoogLeNet, AlexNet, 
ResNet50, YoloV2, BERT-base

Workload set-C Mixed All
Workload set-XR Mixed XRBench Gaming Scenarios
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▪ Evaluation Metrics:
▪ SLA Satisfaction Rate

▪ Latency (QoS) target satisfaction ratio
▪ System Throughput (STP)

▪ Sum of each program’s normalized progress
▪ Fairness

▪ Evaluates degree to which all programs make equal progress
▪ XRBench metrics

▪ For Workload set-XR evaluation

AuRORA Evaluation Methodology
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SLA Satisfaction Rate Improvement

▪ SLA (Service Level Agreement) satisfaction 
▪ Whether the request meets QoS target
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SLA Satisfaction Rate Improvement

▪ SLA satisfaction rate
▪ Range 0% (all fail) ~ 100% (all met QoS) 
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SLA Satisfaction Rate Improvement

▪ 2-level x-axis
▪ Each Workload set subdivided into QoS target level
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▪ SLA satisfaction rate: Crossbar
▪ AuRORA-Compute: 1.9x over Veltair (2.76x max), 1.6x over MoCA (2.33x max)

▪ Effectiveness of virtual accelerator management: fast reallocation of compute resources
▪ AuRORA-All: improves 1.07x over AuRORA-Compute (1.12x on Workload-B)

▪ Effectiveness of dynamic memory resource management

SLA Satisfaction Rate Improvement
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▪ SLA satisfaction rate: Crossbar
▪ AuRORA-Compute: QoS-H shows highest improvement over baselines

▪ 2.68x over Veltair, 2.14x over MoCA
▪ Physical resource partitioning overhead pronounced 
▪ Baseline’s coarser-grained strategy is challenging when fast reconfiguration is needed

SLA Satisfaction Rate Improvement

41

100%

80%

60%

40%

20%

0%



▪ Synthesize using Intel 16nm
▪ Synthesis: Cadence Genus

Physical Design & Area Analysis

AuRORA only takes 
2.7% of total area
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AuRORA: A full-stack hardware/software integration approach to support 
virtualized accelerator orchestration 

AuRORA enables scalable many-accelerator system for multi-tenant execution

Full-system evaluation using real SoC, real RISC-V cores and accelerators

Performance/area evaluation using physically realizable RTL
§ Multi-tenant scenario evaluation shows 2.02x target satisfaction rate improvement 

over baseline
§ Synthesis result shows < 2.7% area overhead

Open-sourced, integrated to Chipyard SoC design framework

Summary

Open-sourced: https://github.com/ucb-bar/AuRORA


