
RORA: Virtualized Accelerator Orchestration
for Multi-Tenant Workloads

1

Seah Kim, Jerry Zhao,
Krste Asanovic, Borivoje Nikolic, Yakun Sophia Shao

Au

MICRO 2023

< seah, jzh >@berkeley.edu

Multiple tasks share system resources

@ Edge@ Cloud

Trends in Modern SoCs: More Applications

2

To keep up with application that are becoming more demanding…

Trends in Modern SoCs: Multi-Accelerator

3

16 Cores
Neural Engine

32 Cores
Neural Engine

Apple A16 bionic

A14 - A16: 16 cores M1/M2 Ultra: 32 Cores

8 Cores
Neural Engine

A12 - A13: 8 cores

Apple A12 bionic Apple M1 Ultra

2x 2x

Trends in Modern SoCs

More cores
● End of single-thread

performance scaling
● Many-core SoCs to

extract TLP

How to scalably architect
many-accelerator SoCs?

More accelerators
● More compute-bound

workloads require
acceleration

More applications
● Software stacks grow in

complexity
● Graphics/multimedia/AI

are pervasive

4

Trends in Modern SoCs

More cores
● End of single-thread

performance scaling
● Many-core SoCs to

extract TLP

How to scalably architect
many-accelerator SoCs?

More accelerators
● More compute-bound

workloads require
acceleration

More applications
● Software stacks grow in

complexity
● Graphics/multimedia/AI

are pervasive

How to architect many-
accelerator SoCs?

5

§ Goal: Enable scalable many-accelerator for multi-tenant execution

§ Requirements:
§ Scalable deployment

§ Many-accelerator integration

6

Requirements for Accelerator Integration

. . .

. . .

Accel Accel

Accel Accel

§ Goal: Enable scalable many-accelerator for multi-tenant execution

§ Requirements:
§ Scalable deployment

§ Many-accelerator integration
§ Virtual accelerator integration

§ Abstraction for user’s view of accelerator instances
§ ???

7

Requirements for Accelerator Integration

Physical
accelerator
instances

User

Virtualized
Accelerator

PID
1

PID
2

PID
3

PID
4

§ Program physical accelerator resources
§ Request accelerator using physical ID (PID)

§ Issues under multi-tenancy
§ Resource conflict

§ Hard to repartition resource frequently
§ Cause stall: Low utilization

§ Programming burden

Physical Accelerator Integration

PID
1

PID
2

PID
3

PID
4

Task
thread 1

Request # 3
(PID 1, 2, 3)

Task
thread 2

Request # 2
(PID 3, 4)

Conflict!
8

§ Provides an abstraction between …
§ User’s view of accelerator
§ Physical accelerator instances

§ Enable scalable many-accelerator for multi-tenancy
§ Requirements …

§ Low latency
§ Programmable
§ Minimize SW overhead

Virtual Accelerator Integration

Task
thread 1

Request
(target)

Task
thread 2

Virtualized
Accelerator

PID
1

PID
2

PID
3

PID
4

Task 1

Task 2

9

Request
(target)

10

Requirements for Accelerator Integration

§ Goal: Enable scalable many-accelerator for multi-tenant execution

§ Requirements:
§ Scalable deployment
§ Virtual accelerator integration

§ Low latency
§ Programmable
§ Minimal programming overhead

§ Interface: How accelerator interacts with host CPU

CPU Accelerator?

Existing Physical Accelerator Integration Methodologies

Tightly CPU-coupled:
Limited opcode space

Physically attached to CPU

opcode 0

opcode 1
X

Limited accelerator per core

11

Existing Physical Accelerator Integration Methodologies

Physical design challenge

IFU EX

AccelY
AccelZ

MEM

AccelX

Congested!

Tightly CPU-coupled:
Limited opcode space

Physically attached to CPU

Limited accelerator per core

12

Scalability issue

Existing Physical Accelerator Integration Methodologies

Software complexity
Memory-mapped over interconnect:

Setup accelerator IOMMU for
address translation

Access accelerator over system
bus, memory hierarchy

IOMMU

Setup PTW

13

Existing Physical Accelerator Integration Methodologies

Latency overhead

14

Latency

Virtual integration difficulties

Software complexity
Memory-mapped over interconnect:

Setup accelerator IOMMU for
address translation

Access accelerator over system
bus, memory hierarchy

A full-stack system enabling scalable deployment and
virtualized integration of accelerators

AuRORA: Virtual Accelerator Integration and Orchestration

Enable physical disaggregation
Provide illusion of tight-coupling

Virtualized accelerator management

Enable acquiring many-accelerators
Enable programmable virtual interface

Low latency
Enable virtual to physical mapping

15

♣

✔

♣

✔

♣ : Scalability
✔ : Virtualization

✔

✔

✔

AuRORA Full Stack Implementation

Runtime System

ISA Extensions

Hardware Messaging
Protocol

Microarchitecture

Software

Hardware

16

♣: Scalability
✔: Virtualization

AuRORA Full Stack Implementation

Runtime System

ISA Extensions

Hardware Messaging
Protocol

Microarchitecture

Software

Hardware

17

♣: Scalability
✔: Virtualization

Enable physical disaggregation
Provide illusion of tight-coupling

♣

✔

AuRORA Client:
Attaches to CPUs via RoCC
Forwards accelerator instructions
to acquired manager

AuRORA Microarchitectural Components

AuRORA Manager:
Attaches to existing RoCC accelerators
Shadow thread architectural state
Eliminate need of user-/supervisor-
managed IOMMU

18

AuRORA Full Stack Implementation

Runtime System

ISA Extensions

Hardware Messaging
Protocol

Microarchitecture

Software

Hardware

19

Low latency
Enable virtual to physical mapping

✔

✔

♣: Scalability
✔: Virtualization

▪ Manages communication
between CPUs and Accelerators

▪ Protocol supports:
▪ Client-manager synchronization
▪ Maintenance of shadowed

architectural state on managers
▪ Client-to-manager instruction

forwarding

▪ Physical transport layer: network-
on-chip interconnect

AuRORA Hardware Messaging Protocol

20
Manager states

Client 0 Client 1

Acquire
Request

Granted

Acquire
Request Rejected

Manager 0

▪ Manages communication
between CPUs and Accelerators

▪ Protocol supports:
▪ Client-manager synchronization
▪ Maintenance of shadowed

architectural state on managers
▪ Client-to-manager instruction

forwarding

▪ Physical transport layer: network-
on-chip interconnect

AuRORA Hardware Messaging Protocol

21

Client 0 Client 1

Manager 0

Release
Request

Manager states

AuRORA Full Stack Implementation

Runtime System

ISA Extensions

Hardware Messaging
Protocol

Microarchitecture

Software

Hardware

22

Enable acquiring many-accelerators
Enable programmable virtual interface

♣

✔
♣: Scalability
✔: Virtualization

▪ Allows user thread to interact with HW in programmable fashion

▪ Low-overhead: bounded by interconnect latency

AuRORA ISA Extensions

AuRORA PseudoInst.

rerocc_acquire

rerocc_assign

rerocc_release

rerocc_fence

rerocc_memrate

23

AuRORA ISA Extensions

▪ rerocc_acquire
▪ Maps physical accelerator to virtual accelerator index
▪ Return success status

▪ rerocc_assign
▪ Maps virtual accelerator to available opcode on its

architectural thread
▪ Allows an architectural thread to acquire more

accelerators than the available opcode space

24

Client 0

Manager 0

Acquire
Request

Granted

AuRORA Full Stack Implementation

Runtime System

ISA Extensions

Hardware Messaging
Protocol

Microarchitecture

Software

Hardware

25

Virtualized accelerator management✔

▪ Backwards compatibility with accelerator SW
▪ Invoked only before entry of DNN layer execution

▪ Low overhead
▪ Implements in user-space
▪ No need to preempt during layer execution

▪ Dynamically allocate resources for multi-tenant workload
▪ Latency target-aware resource allocation

AuRORA Runtime

26

27

Flow Without AuRORA

Time
Deadline

Resource
request

: Accelerator migrate

: Accelerator request

Physical

: Accelerator

: Scheduling granularity
(layer)

28

Flow Without AuRORA

Time
Deadline

Physical

: Accelerator migrate

: Accelerator request: Accelerator

: Scheduling granularity
(layer)

29

Flow Without AuRORA

Time
Deadline

Violation!

: Accelerator migrate

: Accelerator request: Accelerator

: Scheduling granularity
(layer)

Physical

30

AuRORA Runtime

Time
Deadline

: Accelerator

: Scheduling granularity
(layer)

: Accelerator release

Virtual

31

AuRORA Runtime

Time

: Accelerator

: Scheduling granularity
(layer)

Acquire

Acquire

Deadline

: Accelerator release

Virtual

▪ Implementation details
▪ Hardware Manager/Client: Chisel RTL

▪ Integrated into Chipyard
▪ Software runtime: C++, Linux pthread

▪ Runs on top of full Linux stack

AuRORA Evaluation Methodology

32

▪ Full-system evaluation details
▪ DNN accelerator generator: Gemmini
▪ NoC generator: Constellation
▪ FPGA evaluation: FireSim

▪ Implementation details
▪ Hardware Manager/Client: Chisel RTL

▪ Integrated into Chipyard
▪ Software runtime: C++, Linux pthread

▪ Runs on top of full Linux stack

AuRORA Evaluation Methodology

33

▪ Full-system evaluation details
▪ DNN accelerator generator: Gemmini
▪ NoC generator: Constellation
▪ FPGA evaluation: FireSim
▪ 2 integration configuration:

▪ Crossbar
▪ NoC

Chipyard SoC configuration

NoC Configuration for Evaluation

▪ Multi-tenant DNN accelerator baselines using physical accelerator
▪ Veltair: form layer-block to avoid frequent scheduling conflict
▪ MoCA: groups of layers, dynamic repartition of memory resource

▪ 2 different configurations of AuRORA
▪ AuRORA-Compute: dynamic compute resource repartition, without NUMA
▪ AuRORA-All: enable all optimization (memory partitioning, NUMA-aware

accelerator allocation)

AuRORA Evaluation Methodology

34

▪ Benchmark DNNs: 10 different DNN inference models
▪ Grouped by model size
▪ Construct multi-tenant scenario: randomly generated 200-300 inference tasks

▪ QoS targets
▪ 3 different latency targets

▪ QoS-H: 1.2x
▪ QoS-M: 1x
▪ QoS-L: 0.8x

AuRORA Evaluation Methodology

Workload Model Size DNN Models

Workload set-A Light SqueezeNet, Yolo-LITE, KWS,
ResNet18, BERT-small

Workload set-B Heavy GoogLeNet, AlexNet,
ResNet50, YoloV2, BERT-base

Workload set-C Mixed All
Workload set-XR Mixed XRBench Gaming Scenarios

35

▪ Evaluation Metrics:
▪ SLA Satisfaction Rate

▪ Latency (QoS) target satisfaction ratio
▪ System Throughput (STP)

▪ Sum of each program’s normalized progress
▪ Fairness

▪ Evaluates degree to which all programs make equal progress
▪ XRBench metrics

▪ For Workload set-XR evaluation

AuRORA Evaluation Methodology

36

SLA Satisfaction Rate Improvement

▪ SLA (Service Level Agreement) satisfaction
▪ Whether the request meets QoS target

37

100%

80%

60%

40%

20%

0%

SLA Satisfaction Rate Improvement

▪ SLA satisfaction rate
▪ Range 0% (all fail) ~ 100% (all met QoS)

38

100%

80%

60%

40%

20%

0%

SLA Satisfaction Rate Improvement

▪ 2-level x-axis
▪ Each Workload set subdivided into QoS target level

39

100%

80%

60%

40%

20%

0%

▪ SLA satisfaction rate: Crossbar
▪ AuRORA-Compute: 1.9x over Veltair (2.76x max), 1.6x over MoCA (2.33x max)

▪ Effectiveness of virtual accelerator management: fast reallocation of compute resources
▪ AuRORA-All: improves 1.07x over AuRORA-Compute (1.12x on Workload-B)

▪ Effectiveness of dynamic memory resource management

SLA Satisfaction Rate Improvement

40

100%

80%

60%

40%

20%

0%

▪ SLA satisfaction rate: Crossbar
▪ AuRORA-Compute: QoS-H shows highest improvement over baselines

▪ 2.68x over Veltair, 2.14x over MoCA
▪ Physical resource partitioning overhead pronounced
▪ Baseline’s coarser-grained strategy is challenging when fast reconfiguration is needed

SLA Satisfaction Rate Improvement

41

100%

80%

60%

40%

20%

0%

▪ Synthesize using Intel 16nm
▪ Synthesis: Cadence Genus

Physical Design & Area Analysis

AuRORA only takes
2.7% of total area

42

43

AuRORA: A full-stack hardware/software integration approach to support
virtualized accelerator orchestration

AuRORA enables scalable many-accelerator system for multi-tenant execution

Full-system evaluation using real SoC, real RISC-V cores and accelerators

Performance/area evaluation using physically realizable RTL
§ Multi-tenant scenario evaluation shows 2.02x target satisfaction rate improvement

over baseline
§ Synthesis result shows < 2.7% area overhead

Open-sourced, integrated to Chipyard SoC design framework

Summary

Open-sourced: https://github.com/ucb-bar/AuRORA

