
Memory-Efficient Hardware 
Performance Counters with 

Approximate-Counting Algorithms
Jingyi Xu, Sehoon Kim, Borivoje Nikolic, Yakun Sophia Shao



Motivation
● Hardware performance counters provide 

valuable info for many applications:
○ Workload characterization
○ Performance optimization
○ Task scheduling
○ Power modelling

● Challenge: 200+ performance events, only 
10-20 performance counters

● Rerunning workloads multiple times:
○ Costly 
○ Inaccurate(e.g. on cloud computing 

platforms)
● Idea: trade accuracy for efficiency

Previous works

● Multiplexing performance counters
○ Dedicate one counter to different events 

during separate time slices and extrapolate 
the full behavior

● Multiplexing with rate-of-change 
scheduler

○ Schedule events using cost functions 
based on recent hardware activities

● Multiplexing with data-cleaning-based 
post-processing(CounterMiner)

○ Clean data by removing outliers and filling 
missing values

Issue: error rate 5%~30%, no guarantee on the 
error bound 



Sketching Algorithms

● A family of algorithm that compress large datasets into sketches
● Sketches: 

○ Data structures 
○ Much smaller than actual data
○ Surrogates of the original datasets for queries and approximate computations
○ Problem-specific, each answers one unique question and has unique structures

● Data compression is typically done using probabilistic techniques
● Statistically provable accuracy-memory tradeoffs
● Streaming: no revisits to data



Morris’ Algorithm
● Counts the number of events in a data 

stream
● One of the first approximate-counting 

algorithms that increment counts 
probabilistically instead of deterministically 
to save memory bits

● parameter 
● Adjust accuracy by picking update base 

exponent and by averaging
● Bound on failure probability:

Pseudocode: 

init():

X ← 0

inc():

Increment X with probability 

and do nothing with probability 

query():

 Return 



Rocket Core Integration

RISC-V in-order pipelined 
CPU core with 29 general 
64-bit hardware 
performance counters and 
29 event selector registers

L1 
ICache

Registers ALU

Branch 
comparator

L1 
DCache

Hardware Performance Counters

ICahce 
miss/
blocked?

Decode

arith/branch/jal
/load/store? Branch 

misprediction?

DCache 
miss
blocked?

add/mul/
mul-add/
div?

Event Selector Reg.
Icache miss

Morris Group 
Counter

    ..

Morris counter 1

Morris counter 5

inc()

Morris Group 
Counter

.

.

    

Morris counter 1

Morris counter 5

Event Selector Reg.
Branch mispred

inc()
Random Prob. 

Generator
                  

                   .                   .                   .

Seed 1

Seed 5

Morris Group 
Counter

.

.

    

Morris counter 1

Morris counter 5

Event Selector Reg.
div

inc()



Hardware Morris Counter Design

32 bits32 bits

frequently incremented

rarely changed

6 6 6 6 6 6 66 6 6

64 bits store 1 event, 
up to       counts

60 bits store 2 events, 
up to               counts

6-bit Morris 
counter (𝛂 = 2)

Deterministic Counter

Probabilistic counting

Morris Group 
Counter

event that occurs with 
probability of 0.1% requires 32 
bits per second



Hardware Probability Generation
Random Prob. 

GeneratorX(6-bit) 1(1 bit) w.p. 

64-bit LFSR

64-bit mask

M-bit random 
number

bitwise 
and

1

0

reduction 
or

0

1

invert

X

Lower X bits are 1s, 
rest are 0s

● Multiple LFSRs with different initial values can give more random 
results than a single LFSR

● Need to generate at least 5 independent probabilities for Morris 
Group Counters

● Reduce overhead by shuffling LFSR’s bits



Evaluation results
● Baseline: Rocket core’s deterministic 

hardware performance counter
● Testbenches: spmv and vvadd, each 

simulated 50 times on Rocket Core with 
Morris performance counters

● Minimum errors stay consistently within 
5%

● More variability in maximum errors, can 
get over 100%, but unlikely to happen

○ Probability of < 75% relative error is 89% 
in the worst case



Conclusion & Future work

● Preliminary results show that relatively simple morris counters can achieve 
accuracy comparable to the state-of-the-art multiplexed counter while using 
only half the memory of deterministic counters

● Next steps:
○ Experiment with different hardware pseudo-random number generators and test morris 

counter’s sensitivity to random sequences’ quality
○ Explore design space of Morris Group Counters
○ Reduce overhead of probability generation


