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Abstract—Deep neural networks have been adopted in a wide range of
application domains, leading to high demand for inference accelerators.
However, the high cost associated with ASIC hardware design makes it
challenging to build custom accelerators for different targets. To lower
design cost, we propose MAGNet, a modular accelerator generator for
neural networks. MAGNet takes a target application consisting of one
or more neural networks along with hardware constraints as input and
produces synthesizable RTL for a neural network accelerator ASIC as
well as valid mappings for running the target networks on the generated
hardware. MAGNet consists of three key components: (i) MAGNet De-
signer, a highly configurable architectural template designed in C++ and
synthesizable by high-level synthesis tools. MAGNet Designer supports
a wide range of design-time parameters such as different data formats,
diverse memory hierarchies, and dataflows. (ii) MAGNet Mapper, an
automated framework for exploring different software mappings for
executing a neural network on the generated hardware. (iii) MAGNet
Tuner, a design space exploration framework encompassing the designer,
the mapper, and a deep learning framework to enable fast design space
exploration and co-optimization of architecture and application. We
demonstrate the utility of MAGNet by designing an inference accelerator
optimized for image classification application using three different neural
networks—AlexNet, ResNet, and DriveNet. MAGNet-generated hardware
is highly efficient and leverages a novel multi-level dataflow to achieve 40
fJ/op and 2.8 TOPS/mm2 in a 16nm technology node for the ResNet-50
benchmark with <1% accuracy loss on the ImageNet dataset.

I. INTRODUCTION

Deep neural networks (DNNs) have emerged as a key approach to
solving complex problems across many application spaces, including
image recognition, natural language processing, robotics, health care,
and autonomous driving. DNN inference applications can differ sig-
nificantly in their demands. For example, typical data center inference
applications such as image recognition may prioritize performance
and scalability at low latency and may be willing to sacrifice classifi-
cation accuracy, while DNN inference for autonomous driving work-
loads may prioritize energy efficiency within real-time constraints
while maintaining the best achievable network accuracy. Since custom
inference accelerators can offer significant performance and power
advantages compared to general-purpose processors and FPGAs, an
ideal approach to DNN inference accelerator design would deploy
custom accelerator hardware instances for each target market and
range of supported workloads. Many different specialized accelerator
architectures [1]–[8] have been proposed in literature. These acceler-
ators typically employ large numbers of multiply-accumulate (MAC)
units, but vary significantly in their interconnection network, memory
hierarchy, and dataflow, demonstrating the large size of the DNN
inference accelerator design space. However, the high engineering
cost and long design cycles of ASICs make the task of choosing
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Fig. 1: MAGNet overview.

among these many design points to meet diverse performance and
power targets a significant challenge.

To address these challenges, we propose MAGNet, a Modular
Accelerator Generator for neural Networks. As shown in Figure 1,
MAGNet takes as input: 1) a target application specification con-
sisting of a variety of neural networks; 2) hardware constraints,
such as an area budget or a latency target; and 3) a design
goal in terms of performance and/or energy. MAGNet produces
as outputs synthesizable RTL for a DNN accelerator ASIC and a
valid mapping for running DNN inference on a particular network.
MAGNet consists of three components: MAGNet Designer, MAGNet
Mapper, and MAGNet Tuner. The MAGNet designer consists of
a highly configurable architecture template with many design-time
parameters, allowing the generation of DNN accelerators specialized
for specific workloads and use cases. The MAGNet mapper handles
the mapping of different neural networks onto the generated hardware
and enables optimization of mapping strategies at run-time. The
MAGNet tuner uses Bayesian optimization, a well-known technique
for searching complex spaces [9], to rapidly explore the design
space and perform hardware-software co-optimization. It integrates
the designer, the mapper, and a deep learning framework like Pytorch
to optimize the design for different use cases. To reduce design cost,
MAGNet leverages High Level Synthesis (HLS) and a generator-
based design methodology [10] to model building blocks in C++
and SystemC. Dozens of different accelerator implementations can
be easily prototyped through HLS, logic synthesis, and power anal-
ysis, enabling optimal design parameter selection for desired DNN
accuracy, performance, and energy targets.

The main contributions of this work are as follows:

1) We propose MAGNet, a DNN inference accelerator generator
structured around a highly configurable Processing Element
(PE) architectural template written in C++ and synthesizable
by HLS tools.

2) We use MAGNet to explore different dataflows and propose two
novel multi-level dataflows within each MAGNet PE to exploit



data reuse and optimize energy efficiency in convolutional
neural network layers.

3) We demonstrate an integrated framework for performing design
space exploration, enabling co-design of PE hardware param-
eters, tiling strategies, and neural networks.

We also present an evaluation of using MAGNet and our design
space exploration framework to optimize the PE in a DNN inference
accelerator targeted for image classification using three different
neural networks—AlexNet, ResNet-50, and DriveNet. By searching
the accelerator design space and optimizing for PE design parameters
and dataflow, we identify an accelerator architecture that achieves 69
fJ/op and 2.1 TOPS/mm2 with 8-bit weight and activation precision
for ResNet-50 using ImageNet dataset in a 16nm FinFET technology,
a 43% reduction in energy and 2.1× improvement in performance
per unit area compared to an NVDLA-like [1] design. Furthermore,
by re-training the network at lower precision, we find a design
that achieves 40 fJ/op and 2.8 TOPS/mm2 using 4-bit weight and
activation precision while maintaining accuracy within 1% of the
full-precision baseline.

II. RELATED WORK

A number of research efforts focused on improving the perfor-
mance and energy efficiency of DNN inference accelerators. At the
architecture level, early research efforts explored several accelerator
designs [1]–[8] with different memory hierarchies, dataflow, and
interconnection networks. These architectures exploit different reuse
patterns to optimize the design for different target applications.
Another class of research efforts explores trade-offs across different
dataflows and flexible mappings to execute a DNN on target hardware
using analytical models [11]–[13].

In contrast to previous efforts that describe individual design
instances, MAGNet addresses the design automation challenges
associated with specialized deep learning accelerators. MAGNet
enables systematic design space exploration and co-optimization of
accelerator design-time and run-time parameters, including different
micro-architectural parameters, dataflows, tiling strategies, and quan-
tization techniques. Our generator-based approach leverages a high-
productivity design methodology to ensure fast and accurate design
space exploration.

Earlier research efforts have also proposed the use of FPGAs
and corresponding automation tools to accelerate DNNs [14]–[16].
These efforts primarily focus on accelerating a single neural network
and focus on optimal FPGA resource management techniques. In
addition, they support a fixed dataflow and do not consider run-time
mapping strategies for executing different neural networks on the
hardware. MAGNet targets ASIC hardware accelerators and supports
configuration of various design-time and run-time parameters includ-
ing hardware parameters, dataflows, and mappings to optimize the
design across a wide range of neural networks.

III. MAGNET OVERVIEW

Figure 1 shows the automated MAGNet design flow. Internally,
MAGNet consists of three components: the MAGNet designer that
generates synthesizable RTL for the target architecture, the MAGNet
mapper that produces valid mappings for a given network running on
the target architecture, and the MAGNet tuner that enables efficient
design space exploration.

The MAGNet designer, discussed in Section IV, is based on a
tiled architecture with an array of interconnected PEs each containing
local weight and activation memories as shown in Figure 2(a). The
PEs perform the bulk of the computation for the convolutional and
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Fig. 2: MAGNet architecture template.

fully-connected layers found in typical DNNs. Highly configurable
design-time parameters enable optimization and specialization.

The MAGNet mapper, discussed in Section V, maps DNN infer-
ence workloads onto the array of PEs at run time. The mapper utilizes
tiling strategies for distributing work amongst an array of PEs in order
to optimize for utilization and energy efficiency.

Finally, the MAGNet tuner, discussed in Section VI, integrates the
MAGNet designer, the mapper, and neural network design tools like
Caffe and PyTorch in a unified framework, enabling co-optimization
across hardware parameters, tiling strategies, and the neural network.

IV. THE MAGNET DESIGNER

The foundation of the MAGNet designer is a highly configurable
DNN accelerator template that leverages objected-oriented HLS to
generate different types of accelerators based on user requirements.
Figure 2 shows an overview of the MAGNet architecture template.
It consists of a three-tiered compute hierarchy: 1) vector MAC, 2)
processing element (PE), and 3) system. Table I illustrates the design-
time parameters at each level. Each level in the hierarchy features
configurable memory arrays for data staging and reuse. MAGNet
also presents a range of micro-architectural parameters (NPEs at
the system level, NLanes at the PE level, and V ectorSize at the
vector MAC level) to scale the compute capabilities at each level.
In addition, MAGNet allows configurability of dataflows, precision,
and the interconnect network to suit the design requirements of
different target applications. The following subsections present a
detailed description of the MAGNet architecture template and novel
dataflows proposed in this work.

A. System Architecture

Figure 2(a) shows the system architecture consisting of an array
of PEs and a global buffer (GB). The PEs are the workhorse of the
accelerator, performing the most compute-intensive tasks. The GB
offers high-bandwidth memory to feed data into the array of PEs. At
the system level, MAGNet supports a configurable number of PEs and
flexible GB memory capacity and bandwidth to enable performance
scalability depending on the application. It also supports a flexible in-
terconnection topology to connect the different components. Smaller



TABLE I: MAGNet design-time parameters.

Hierarchy Parameter Name

System
# of PEs NPEs

Network Topology NetTopology
Global Buffer Size GBSize

PE

Dataflow Df
Weight Buffer Size WSize

Input Activation Buffer Size IASize

Accumulation Buffer Size AccumSize

# of Parallel Lanes NLanes

VectorMAC

Vector Size V ectorSize

Weight Collector Depth WColDepth

Accumulation Collector Depth AccumColDepth

Weight Precision WPrecision

Input Activation Precision IAPrecision

Accumulation Precision AccumPrecision

mobile inference accelerators that consist of a few PEs can use direct
point-to-point and broadcast links to deliver data to the PEs. For large-
scale inference accelerator designs, the PEs can be connected together
using a mesh Network-on-Chip (NoC) configuration. To implement
this NoC, MAGNet employs a programmable, LUT-based wormhole
router with configurable flit widths and virtual channels.

B. Processing Element

Figure 2(b) shows the micro-architecture of the PE. It contains
vector MAC units, a weight buffer, an input activation buffer, an
accumulation buffer, a post-processing unit (PPU), and control.

Each PE contains NLanes Vector MAC units that perform
matrix-vector product operations every cycle. A weight matrix of
dimensions NLanes × V ectorSize is multiplied with an input
activation (IA) vector of size V ectorSize to produce a partial-
sum vector of size NLanes. These operations are supported at
various precisions with WPrecision-bit weights, IAPrecision-
bit input activations, and AccumPrecision-bit partial sum outputs.
Each of the Vector MAC units contains a V ectorSize-wide dot-
product calculation, weight collectors with depth WColDepth and
width WPrecision×V ectorSize, and accumulation collectors with
depth AccumColDepth and width AccumPrecision. Optional
collectors are latch arrays that provide an additional level of memory
hierarchy to reduce traffic between the vector MAC units and local
SRAM buffers. As V ectorSize and NLanes are adjusted for more
parallelism and reuse, MAGNet automatically adjusts the parameters
of local buffers within the PE to keep the vector MAC units fed.
Increasing V ectorSize also increases the logic depth within the
vector MAC unit, resulting in the automatic insertion of additional
pipeline stages by the HLS tool depending on the target clock
frequency.

Weight and IA buffers supply weight and IA data to the
vector MACs. The weight buffer read port is WPrecision ×
NLanes × V ectorSize bits wide so it can supply distinct weight
vectors to different vector MAC units each cycle. The IA buffer is
IAPrecision × V ectorSize bits wide, as an IA vector is shared
across NLanes. Each buffer has an address generator that produces
an address every cycle, as well as a buffer manager [17] that controls
the availability of data. The address generation pattern and the
granularity of data movement can be configured at run time.

Accumulation buffers are used to store partial sums across
NLanes vector MACs and are optimized to perform read-modify-
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Fig. 3: Loop nest representation of a convolution layer.

write operations every cycle. Partial sums from the vector MAC units
are packed into vectors of width AccumPrecision × NLanes to
be stored in the accumulation buffer. From there, they can be sent
either directly to another PE for cross-PE reduction or to the post-
processing unit (PPU) to produce final output activations. The PPU
supports not only scaling and quantization but also ReLU and pooling
operations to allow layer fusion.

C. Dataflow

Figure 3 shows an example of a convolutional layer. We use H,
W to represent the input activation size, R,S for the weight kernel
size, and C and K to represent the number of input and output
channels, respectively. The computations in a convolutional layer can
be represented by a loop nest as shown on the right of Figure 3.

Dataflow controls the temporal reuse of data across cycles. Prior
work has demonstrated that the choice of dataflow has a significant
impact on the energy efficiency and performance of an acceler-
ator [18]. Therefore, MAGNet allows design-time configurability
to choose different dataflows. In addition to previously published
dataflows, i.e, weight stationary (WS), output stationary (OS), and
input stationary (IS) [18], MAGNet features new multi-level weight-
output stationary dataflows: Weight Stationary - Local Output Station-
ary (WS-LOS) and Output Stationary - Local Weight Stationary (OS-
LWS). Unlike prior work that optimizes a single operand, MAGNet’s
multi-level dataflows provide the flexibility to capture reuse in both
weights and outputs with minimal area overhead. This advantage is
quantified in Section VII.

Figure 4 illustrates different dataflows in loop nest form. The
loop bounds for each dataflow are determined by the MAGNet
mapper. Figure 4(a) shows a weight-stationary (WS) dataflow, in
which the outer loops use the weight dimensions (R,S,K1, C1)
to reuse weights across vector MAC operations with different input
vectors. The loop nest is given for a single PE, so the dimensions
K1, C1 are used instead of K,C to signify that each PE handles a
portion of the entire range. To generate a DNN accelerator with a WS
dataflow using MAGNet, we choose a single-entry weight collector
and omit the accumulation collector in the vector MAC unit. The
ordering of vector MAC operations is achieved by configuring the
address generator logic to produce the correct sequence of addresses
to the local buffers. Similarly, an OS (IS) dataflow can be realized
by using a single-entry output (input) collector.

Figure 5 shows the energy breakdown across different components
of the PE for WS and OS dataflows for all AlexNet layers summed
together with V ectorSize = 8, NLanes = 8, 8-bit precision for
weights and input activations, and 24-bit precision for partial sums,
evaluated using the setup described in Table IV. In WS dataflow,
which is optimized for the temporal reuse of weights, the weight
buffer contributes only a small fraction to energy consumption while
the accumulation buffer contributes significantly. An OS dataflow, on
the other hand, optimizes the accumulation buffer energy at the cost of
increased weight buffer energy. In each case, the relative contribution



1 for k1=[0:K1):
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(a) WS dataflow
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(b) OS dataflow
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(c) IS dataflow
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6 for p1=[0:P1):
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10 Vector MACs

(d) WS-LOS dataflow

1 for k1=[0:K1):
2 for p1=[0:P1):
3 for q1=[0:Q1):
4 // OS
5 for r=[0:R):
6 for s=[0:S):
7 for c1=[0:C1):
8 // LWS
9 for q0=[0:Q0):

10 Vector MACs

(e) OS-LWS dataflow

Fig. 4: Loop nests for different dataflows supported by MAGNet.
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TABLE II: Temporal data reuse across different dataflows.

Dataflow Weight Reuse Input Reuse Output Reuse
WS P1×Q1 0 0
OS 0 0 R×S×C1
IS 0 R×S×K1 0

WS-LOS P1×Q1 0 C0

OS-LWS Q0 0 R×S×C1

from the input buffer is small due to the narrow read/write bitwidth
and spatial reuse across different lanes of the PE, so the energy
savings from input stationary dataflow (not shown) are small. To
address the challenge of optimizing the weight and accumulation
buffer energy simultaneously, we propose multi-level dataflows.

Multi-level Dataflows: Multi-level dataflows are designed to op-
timize for reuse in both weights and outputs by using dedicated
weight and accumulation collectors. Figures 4(d) and 4(e) show the
loop nests for the multi-level WS-OS dataflows proposed in this
work. The multi-level dataflows include an additional level in the
loop nest compared to conventional dataflows. The WS-LOS dataflow
reuses outputs in the innermost loop in a single-entry accumulation
collector, while reusing weights in outer loops via a multi-entry
weight collector. As illustrated in Figure 4(d), outputs are reused in
the C0 loop while weights are reused outside the P1 loop. The OS-
LWS dataflow prioritizes weight reuse in the innermost loop while
capturing the output reuse in outer loops as shown in Figure 4(e). A
MAGNet-generated accelerator with an OS-LWS dataflow provisions
a single-entry weight collector and a multiple-entry accumulation
collector. In this dataflow, a weight stored in the weight collector
is reused Q0 times to compute Q0 different partial sums, which are
stored in the accumulation collector. Next, each of these Q0 partial
sums values are reused R×S×C1 times before they are written to
the accumulation buffer.

TABLE III: MAGNet run-time parameters.

Parameter Name
PE Tile size P1, Q1, R, S, K1, C1, C0, Q0

Spatial mapping PE-id
Temporal ordering Address Gen dimensions

Layer fusion IsRelu, IsPool

Table II presents a qualitative comparison of the data reuse for
different dataflows at the PE level. Multi-level dataflows exploit
additional reuse dimensions to achieve reuse in both weights and
outputs. The amount of reuse is determined by the bounds of the
loop-nest and can be controlled at run time by the MAGNet mapper.

V. THE MAGNET MAPPER

The MAGNet mapper determines how a neural network will
be executed on the target hardware architecture. We use the term
mapping to describe how a neural network layer is executed in
hardware. A mapping describes several key aspects of the execution
and controls the runtime-configurable parameters listed in Table III.

• Tile size: A mapping sets the PE tile size by specifying a valid
setting for the bounds of the loop nest shown in Figure 4. This
parameter determines the amount of reuse across different data
types at the PE level.

• Spatial mapping: This parameter specifies how the computation
is spatially distributed across the array of PEs. It determines
the number of PEs used as well as the amount of computation
performed in each PE. It also specifies if the output of a PE is
sent to another PE for cross-PE reduction or the global buffer
after post-processing.

• Temporal ordering: A mapping defines the temporal execution
order for MAC operations in each PE. In MAGNet-generated
hardware, temporal ordering is specified by configuring the
address generators to produce the required sequence of addresses
to the local buffers.

• Layer fusion: MAGNet also allows flexibility to fuse convolu-
tion layers with ReLU and pooling layers by controlling the
configuration registers in the PPU.

Figure 6 shows the effects on performance and energy of different
mapping choices for two different ResNet-50 layers executed on a
single MAGNet design instance. Given a neural network layer and
an architecture specification, a large number of valid mappings for
executing a layer on the hardware exists, and different mappings can
result in a 10× difference in performance and energy efficiency.

To explore different mapping strategies, MAGNet has an automated
framework similar to TimeLoop [19] to help designers navigate the
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mapping space and optimize the mapping for different application and
use cases. The tool takes the dimensions of neural network layers
and the hardware specifications as inputs and generates a list of
valid mappings describing how those layers execute on the target
architecture. The remainder of this section describes the MAGNet
mapping space and how the MAGNet mapper prunes the mapping
space with user-specified constraints.

A. Mapping Space

A mapping space is the set of valid mappings of a neural network
layer onto an architecture. A valid mapping must satisfy three
requirements. First, it must be compatible with the hardware dataflow.
For example, a mapping for a weight-stationary dataflow would not
run correctly on output-stationary hardware. Second, the mapping
needs to match available compute resources. For example, a mapping
requiring eight PEs would not run if only four PEs are in the system.
Finally, it should satisfy the memory constraints at different levels in
the hierarchy. The size of the buffers chosen at design-time places
an upper bound on the tile size that can executed on the hardware.

Given an architecture specification and network layer dimensions,
the MAGNet mapper generates valid mappings by enumerating all
possible factorizations of the layer dimensions and compatible loop
orders that satisfy the above constraints. The size of the mapping
space can be extremely large, so exhaustively sweeping all possible
mappings is often impractical. To address this challenge, we explore
the mapping space pruning heuristics described below.

B. Mapping Space Pruning

The MAGNet mapper prunes the space by applying two user-
defined constraints to prioritize either energy efficiency or perfor-
mance. The first constraint is the reuse factor, which determines the
minimum amount of temporal reuse for different data types. The
reuse factor offers a knob to prune small tile sizes, which have poor
energy efficiency due to low memory reuse. The second constraint
is utilization, which determines the number of PEs utilized in the
system. A higher reuse factor implies larger PE tile size and typically
leads to better energy efficiency within a PE, but overall performance
may be reduced if few PEs are utilized. A higher utilization tends
to improve the system performance but may not be energy-optimal.
Figure 7 shows the reduction in size of the mapping space with
different pruning heuristics for ResNet-50 mapped to a MAGNet-
generated hardware with a WS dataflow. As shown in the figure,
applying a small reuse factor and utilization constraints leads to
nearly 90% reduction in size of the mapping space. The pruning
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Algorithm 1: Design Space Exploration in MAGNet Tuner
Input : DesignGoal, DLNetworks, DesignSpace, HardwareConstraints,

MappingConstraints, Target accuracy
Output: Optimal MAGNet design parameters and mapping

1 Initialize Bayesian Model
2 while DesignGoal not met do
3 DesignParam ← Get DesignParam from Bayesian Model
4 design ← Designer(DesignParam)
5 foreach network ∈ DLNetworks do
6 (accuracy, weights) ← DLFramework(DesignParam, network)
7 if accuracy > Target accuracy then
8 foreach layer ∈ network do
9 MapSpace ← Mapper(design, layer,

MappingConstraints)
10 foreach mapping ∈ MapSpace do
11 Evaluate design goal
12 Update Mapping[design][network][layer]
13 end
14 end
15 end
16 end
17 Update Optimal Design Parameters and Optimal Mapping
18 Update BayesianModel(design, Mapping)
19 end

constraints are used only to prune easily-identified less-optimal points
in the design space.

VI. THE MAGNET TUNER

The combination of different configuration parameters in the
MAGNet Designer results in a many-dimensional design space that
is difficult to search manually. To enable effective and efficient co-
design from architectures to networks, we propose the MAGNet
tuner framework, which automatically explores the design space
engendered by MAGNet and quickly identifies the most desirable
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design points within the large search space. The MAGNet tuner
is built based on a Bayesian optimization strategy, a well-known
technique for optimizing black-box functions within complex search
spaces [9].

Algorithm 1 details the design space exploration process within
the MAGNet tuner. The tuner takes as inputs the target accuracy
and hardware design goal (performance or energy efficiency), along
with a user-defined design space for the MAGNet designer, hardware
constraints such as target clock frequency, and mapping constraints
for the MAGNet mapper to prune the mapping space. Given these
inputs, the tuner leverages Bayesian optimization to iteratively search
through the design space until the design goal is met. With Bayesian
optimization, we leverage a probabilistic model to approximate
the objective (performance or energy efficiency) as a function of
the various design parameters based on previously synthesized and
evaluated parameter configurations. In each iteration, a new parameter
configuration is selected using the probabilistic model to maximize
the expected improvement of the objective over the best achieved thus
far. In addition to model-based selection, our algorithm also selects a
fraction of new configurations at random to encourage exploration
of a larger design space instead of exploiting only the subspace
emphasized by the probabilistic model. This prevents the optimization
process from losing sight of the global objective function and falling
into a local optimum.

The optimization is constructed based on an existing Bayesian
optimization framework [20]. The implementation consists of a
configuration manager to constrain the legal space of parameters,
a worker to invoke the evaluation of each design point, as well
as an optimizer to model design quality over the parameter space
and select the next optimal candidate configuration to evaluate.
Figure 8 demonstrates the performance of the MAGNet tuner in end-
to-end optimization for two different design goals, performance and
energy efficiency. Each curve shows the respective design quality
achieved after a specific number of runs. The MAGNet tuner achieves
significant improvement in design quality and can find a desirable
energy/performance point with a small number of runs.

Figure 9 shows how MAGNet, along with deep learning tools like
Caffe and hardware design flows, enables exploration of the large
DNN accelerator design space. From a given target application spec-
ification, we use deep learning tools to explore different weight and
activation precisions and the MAGNet designer to generate different

TABLE IV: Experimental Setup

Benchmarks
Networks AlexNet, ResNet-50, DriveNet
Dataset ImageNet

Design Tools
HLS Compiler Mentor Graphics Catapult HLS

Verilog simulator Synopsys VCS
Logic synthesis Synopsys Design Compiler Graphical
Place and Route Synopsys ICC2
Power Analysis Synopsys PT-PX

Design Space
Dataflows WS, OS, WS-LOS, OS-LWS

VectorSize/NLanes 4, 8, 16
Weight/Activation precision 4 bits, 8 bits

Accumulation precision 16 bits, 20 bits, 24 bits
Weight Collector Size 8B - 2KB

Accumulation Collector Size 8B - 384B
Input Buffer Size 2KB, 8KB, 16KB

Weight Buffer Size 4KB - 128KB
Accumulation Buffer Size 1KB - 6KB

Global Buffer Size 64KB
Target Frequencies 500 MHz, 1 GHz

Supply Voltage 0.6V

architectures with varying sizes, dataflows, and memory hierarchies.
The MAGNet mapper then takes the accelerator architecture and
neural network model as input and explores different mapping
strategies. To reduce design effort, ease configurability, and enable
fast and accurate design space exploration, we use an object-oriented
high-level synthesis based methodology [10] for hardware generation.
Architectural models are coded using synthesizable SystemC and
C++ to autogenerate RTL using HLS tools. A standard logic synthesis
flow generates gate-level netlists and area estimates, and standard
power analysis tools use gate-level simulation results to estimate
power dissipation. The MAGNet tuner takes these results to predict
the next set of parameters for design space exploration.

VII. EVALUATION

To evaluate MAGNet, we consider the case study of optimizing a
DNN inference accelerator for image classification using three differ-
ent neural networks—AlexNet [21], ResNet-50 [22], and DriveNet
[23] using the ImageNet dataset. We study the energy and perfor-
mance tradeoffs for each of its convolutional layers and evaluate
a number of MAGNet-generated inference accelerator designs in a
16nm FinFET technology node for these neural networks. Table IV
shows the design tools and parameters used in the evaluation.

A. Experimental Results

Figure 10 presents the results of design space exploration. Results
are shown as a tradeoff between energy efficiency (y-axis) and
performance per unit area (x-axis); the lower right part of the
graph is optimal. Four categories of MAGNet designs are shown,
each corresponding to a particular pairing of weight and activation
precisions. Each point on the graph reports metrics for a synthesized
design instance selected from the set of parameter options in Table IV.
For each category, we optimize the design across three different
neural networks and prune the mapping space aggresively to identify
an efficient mapping. Performance and energy results are averaged
over convolutional layers of the networks, weighted by the number
of operations in each layer. As a baseline for comparison, we
also show results for a MAGNet instance configured to be similar
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Fig. 10: Energy and performance of MAGNet-generated accelerators for different neural networks.

(a) Without Retraining (b) With Retraining

Fig. 11: Effect of precision scaling on the accuracy of ResNet-50
benchmark with ImageNet dataset.

to NVDLA [1], an open-source DNN accelerator that is used in
commercial SoCs. NVDLA uses WS dataflow with 8-bit weight and
activation precisions. Two different frequency targets are included in
this work’s parameter sweeps.

Figure 10 also highlights the best energy-efficiency and perfor-
mance achieved for different networks. Using 8-bit precision for
weights and activations, MAGNet’s most energy-efficient design
instance achieves 69 fJ/op (where a MAC is two ops) with 2.1
TOPS/mm2 for the ResNet-50 benchmark, thereby achieving 43% re-
duction in energy and 2.1× improvement in performance per unit area
compared to the NVDLA-like baseline. For AlexNet and DriveNet,
the same design achieves a 24% and 30% reduction in energy.
MAGNet’s performance-efficient design achieves 2.3 TOPS/mm2 for
ResNet-50 at 8-bit precision, which is 2.3× higher than that of the
NVDLA-like design.

Lower weight and input activation precision produces more effi-
cient designs at the expense of reduced accuracy. By co-optimizing
the application along with hardware, a MAGNet-generated instance
achieves 40 fJ/Op and 2.8 TOPS/mm2 using 4-bit weights and
activations for ResNet-50. Without network re-training, this design
would suffer an 18% loss in accuracy as shown in Figure 11(a).
By re-training [24] the neural network, MAGNet achieves significant
improvements in energy and performance with similar accuracy to
that of an 8-bit implementation (Figure 11(b)). Compared to a full-
precision floating point implementation, which achieves 76.5% top-1
accuracy for ResNet-50 on the ImageNet dataset, MAGNet-generated
hardware has a small (< 1%) loss in accuracy.
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Fig. 13: Energy breakdown of the MAGNet PE.

B. Analysis

Figure 12 plots the effect of varying dataflow, vector size, and
precision on the energy efficiency for ResNet-50.
Optimal Dataflow: We highlight three insights related to choice of
dataflow from the results shown in Figure 12. The first insight is
that the OS-LWS dataflow achieves best energy efficiency in nearly
every case. The advantage is most apparent with 8-bit precision and
large V ectorSize. In these configurations, the weight buffer and
the accumulation buffer contribute a significant fraction to the total
energy consumption, as shown in Figure 13. Reducing accesses to
these memories allows OS-LWS to achieve lower energy than the OS
and WS dataflows.

A second insight is the surprising increase in energy consumption
when comparing the WS-LOS dataflow to the WS dataflow. This
effect can be understood by considering the mapping chosen by the
MAGNet mapper. The mapper used the C and K dimensions of the
convolutional layer loop-nest to map to V ectorSize and NLanes
of the PE. WS-LOS also uses the C dimension for temporal reuse
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Fig. 15: Energy vs. Utilization for ResNet-50.

in the collectors. As a result, for Resnet-50 layers with smaller
C dimensions, WS-LOS achieves little reuse but incurs an energy
penalty from additional collectors. In contrast, OS-LWS exploits
temporal reuse along the Q dimension in the collectors, thereby
achieving better reuse and energy reduction. Additionally, one of the
inputs of the Vector MAC units remains constant in the OS-LWS
dataflow, leading to lower activity and better energy efficiency.

A third insight is that for designs with 4-bit precision and smaller
vector size, the OS dataflow achieves slightly better energy efficiency
than OS-LWS, because a larger fraction of the energy is used by the
accumulation buffers.
Vector size: For all the dataflows except the OS dataflow, increasing
the vector size leads to a reduction in energy consumption due
to improved spatial reuse of partial sums. For the OS dataflow,
the contribution of accumulation buffer energy is small and the
incremental benefits of improved spatial reuse from a larger vector
size is minimal, while other overheads from a larger vector size such
as wider input memories and registers increase the total energy.
Accumulation collector depth: Figure 14 shows the effect of
increasing the accumulation collector depth for different configu-
rations in the OS-LWS dataflow. In the figure, V x Ay Wz rep-
resents a design with V ectorSize = x, IAPrecision = y,
and WPrecision = z. The accumulator collector size controls
the amount of weight reuse that can be exploited in the design.
A larger accumulation collector enables more weight reuse and
therefore minimizes the energy consumption of the weight buffer.
However, it also increases the energy consumed in the accumulation
collector registers. For configurations with smaller weight precision
and lower spatial reuse of partial sums, because the weight buffer
contributes a small fraction to total energy, increasing accumulation
collector size leads to an increase in energy consumption. At higher
weight precisions and larger vector sizes, increasing the accumulation
collector size leads to a decrease in energy consumption due to better
temporal reuse.
MAC Utilization: Figure 15 shows energy vs. MAC utilization
for different MAGNet-generated designs. As shown in the figure,
MAGNet designs can achieve nearly 90% MAC utilization, resulting
in highly-performant designs for ResNet-50. Further, for a given
utilization, a wide range of designs exists that offer different levels

of energy efficiency, demonstrating the need for systematic design
space exploration. Designs with very low utilization (<50%) are sub-
optimal for both performance and energy, so utilization offers a useful
heuristic for pruning the design space.

VIII. CONCLUSION

This paper presents MAGNet, a DNN inference accelerator gen-
erator. We describe a highly configurable architectural template with
configurable dataflows and a mapper for mapping neural networks
onto a hardware architecture. We propose novel dataflows that exploit
reuse across both weights and partial sums. We demonstrate the
utility of MAGNet for optimizing energy efficiency and performance
by generating actual hardware implementations, analyzing results on
post-synthesis results, and measuring power on real workloads. By
co-optimizing architecture, dataflow, and neural network, we show
that a MAGNet-generated accelerator can achieve 40 fJ/op and 2.8
TOPS/mm2 in a 16nm FinFET technology, outperforming state-of-
the-art DNN inference accelerators.
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