
Gemmini: Enabling Systematic Deep-Learning Architecture
Evaluation via Full-Stack Integration

Hasan Genc*, Seah Kim*, Alon Amid*, Ameer Haj-Ali*, Vighnesh Iyer*, Pranav Prakash*, Jerry Zhao*, Daniel Grubb*,
Harrison Liew*, Howard Mao*, Albert Ou*, Colin Schmidt*, Samuel Steffl*, John Wright*, Ion Stoica*,

Jonathan Ragan-Kelley†, Krste Asanovic*, Borivoje Nikolic*, Yakun Sophia Shao*
*UC Berkeley, †MIT
hngenc@berkeley.edu

Abstract—DNN accelerators are often developed and evaluated in isola-
tion without considering the cross-stack, system-level effects in real-world
environments. This makes it difficult to appreciate the impact of System-
on-Chip (SoC) resource contention, OS overheads, and programming-
stack inefficiencies on overall performance/energy-efficiency. To address
this challenge, we present Gemmini, an open-source, full-stack DNN
accelerator generator. Gemmini generates a wide design-space of efficient
ASIC accelerators from a flexible architectural template, together with
flexible programming stacks and full SoCs with shared resources that
capture system-level effects. Gemmini-generated accelerators have also
been fabricated, delivering up to three orders-of-magnitude speedups
over high-performance CPUs on various DNN benchmarks. Gemmini is
open-sourced at https://github.com/ucb-bar/gemmini.

I. INTRODUCTION

Deep neural networks (DNNs) have gained major interest in recent
years in application domains ranging from computer vision, to ma-
chine translation, to robotic manipulation. However, running modern,
accurate DNNs with high performance and low energy consumption
is often challenging without dedicated accelerators which are difficult
and expensive to design. The demand for cheaper, high-productivity
hardware design has motivated a number of research efforts to
develop highly-parameterized and modular hardware generators for
DNN accelerators and other hardware building blocks [1]–[7]. While
the hardware generator efforts make it easier to instantiate a DNN
accelerator, they primarily focus on the design of the accelerator
component itself, rather than taking into consideration the system-
level parameters that determine the overall SoC and the full software
stack. Some industry perspectives have advocated for a more holistic
exploration of DNN accelerator development and deployment [8]–
[10]. However, existing DNN generators have little support for a full-
stack programming interface which provides both high and low-level
control of the accelerator, and little support for full SoC integration,
making it challenging to evaluate system-level implications.

In this work, we present Gemmini, an open-source, full-stack DNN
accelerator generator for DNN workloads, enabling end-to-end, full-
stack implementation and evaluation of custom hardware accelerator
systems for rapidly evolving DNN workloads. Gemmini’s hardware
template and parameterization allows users to tune the hardware
design options across a broad spectrum spanning performance, effi-
ciency, and extensibility. Unlike existing DNN accelerator generators
that focus on standalone accelerators, Gemmini also provides a
complete solution spanning both the hardware and software stack,
and a complete SoC integration that is compatible with the RISC-V
ecosystem. In addition, Gemmini implements a multi-level software
stack with an easy-to-use programming interface to support different
programming requirements, as well as tight integration with Linux-
capable SoCs which enable the execution of any arbitrary software.

Gemmini-generated accelerators have been successfully fabricated
in both TSMC 16nm FinFET and Intel 22nm FinFET Low Power
(22FFL) process technologies, demonstrating that they can be phys-

CPU

Core

L1 I+D

L2

DRAM

Gemmini 

Controller

DMA Engine

Local TLB

Scratchpad
Bank 0…

Transposer

Spatial
Array

++++++
Accumulator

SRAM

Bank K

Bitshi

ReLU

Dependency Mgmt

RoCC Cmd

RoCC PTW

Matrix Scalar
Multiplier

Pooling
Engine

im2col

Fig. 1: Gemmini hardware architectural template overview.

ically realized. In addition, our evaluation shows that Gemmini-
generated accelerators deliver comparable performance to a state-
of-the-art, commercial DNN accelerator [11] with a similar set of
hardware configurations and achieve up to 2,670x speedup with
respect to a baseline CPU. Gemmini’s fully-integrated, full-stack flow
enables users to co-design the accelerator, application, and system
all at once, opening up new research opportunities for future DL
SoC integration. Specifically, in our Gemmini-enabled case studies,
we demonstrate how designers can use Gemmini to optimize virtual
address translation mechanisms for DNN accelerator workloads, and
to partition memory resources in a way that balances the different
compute requirements of different layer types within a DNN.

In summary, this work makes the following contributions:

1) We build Gemmini, an open-source, full-stack DNN accelerator
design infrastructure to enable systematic evaluation of deep-
learning architectures. Specifically, Gemmini provides a flexible
hardware template, a multi-layered software stack, and an
integrated SoC environment (Section III).

2) We perform rigorous evaluation of Gemmini-generated accel-
erators using FPGA-based performance measurement and com-
mercial ASIC synthesis flows for performance and efficiency
analysis. Our evaluation demonstrates that Gemmini-generated
accelerators deliver comparable performance compared to state-
of-the-art, commercial DNN accelerators (Section IV).

3) We demonstrate that the Gemmini infrastructure enables
system-accelerator co-design of SoCs running DNN workloads,
including the design of efficient virtual-address translation
schemes for DNN accelerators and the provisioning of memory
resources in a shared cache hierarchy (Section V).

II. BACKGROUND AND MOTIVATION

The demand for fast and efficient DNN execution from edge to
cloud has led to a significant effort in developing novel accelerator
instances that are specialized for different DNN algorithms and/or dif-
ferent deployment scenarios. This section discusses recent advances



Property NVDLA VTA PolySA DNNBuilder MAGNet DNNWeaver MAERI Gemmini

Hardware
Architecture

Template

Datatypes Int/Float Int Int Int Int Int Int Int/Float
Dataflows 7 7 3 3 3 3 3 3

Spatial Array vector vector systolic systolic vector vector vector vector/systolic
Direct Convolution 3 7 7 3 3 3 3 3

Programming
Support

Software Ecosystem Compiler TVM SDAccel Caffe C Caffe Custom ONNX/C
Virtual Memory 7 7 7 7 7 7 7 3

System
Support

Full SoC 7 7 7 7 7 7 7 3
OS Support 3 3 7 7 7 7 7 3

TABLE I: Comparison of DNN accelerator generators.

in DNN accelerators and DNN accelerator generators, motivating the
need for a full-stack approach to evaluate deep learning architectures.

A. DNN Accelerators

Researchers have proposed a large variety of novel DNN accel-
erators with different performance and energy efficiency targets for
different applications across a diverse set of deployment scenarios [1],
[12]–[14]. At the architecture level, different DNN accelerators
exploit different reuse patterns to build specialized memory hierar-
chies [15] and interconnect networks [16] to improve performance
and energy efficiency. Most existing hardware DNN architectures are
largely spatial, where parallel execution units are laid out spatially
either in a systolic fashion, as in the case of the TPU, or in
parallel vector units like Brainwave [17] and NVDLA [11]. Based
on these architecture templates, recent advances have also started
exploring how to leverage application’s sparsity patterns [18]–[20]
and/or emerging in-memory computing technology [21], [22].

B. DNN Accelerator Generators

Recent research has designed hardware generators for DNN ac-
celerators [1]–[3], [11], [16], [23]. Table I compares the different
features supported by existing hardware generators compared to Gem-
mini. In contrast to building specific instances of hardware, generator-
based approaches provide parameterizable architectural templates that
can generate a wide variety of hardware and software instances, im-
proving hardware design productivity. Here, we discuss the hardware,
software, and system level requirements for DNN accelerator gener-
ators to enable full-stack, systematic DNN architecture evaluation.

DNN accelerator generators must provide flexible architectural
templates to cover a wide variety of different DNN accelerators,
each suited for a different execution environment and a different
area/power/performance target. Most DNN accelerator generators
today focus only on fixed-point representations and/or only support a
single dataflow. In addition, today’s generators only target a specific
spatial array type, i.e., systolic-based (as in the TPU) or vector-based
(as in NVDLA), making it challenging to systematically compare
against them. In contrast, Gemmini supports 1) both floating and
fixed point data types to handle data representations in training and
inference, 2) multiple dataflows that can be configured at design time
and run time, 3) both vector and systolic spatial array architectures,
enabling quantitative comparison of their efficiency and scalability
differences, and 4) direct execution of different DNN operators.

Moreover, DNN accelerator generators also need to provide an
easy-to-use programming interface so that end users can quickly
program their applications for the generated accelerators. Different
developers would prefer different software design environments based
upon their targets or research interests. For example, DNN application
practitioners would prefer that the hardware programming environ-
ment be hidden by DNN development frameworks like PyTorch or
TVM so that they don’t need to worry about low-level development
details, as in the case of VTA [1] and DNNWeaver [23]. At the

Fig. 2: Microarchitecture of Gemmini’s two-level spatial array.

same time, framework developers and system programmers may want
to interact with the hardware at a low level, in either C/C++ or
assembly, to accurately control hardware states and squeeze every
bit of efficiency out, as in the case of MAGNet [2] and Maeri [16].
Unlike other DNN generators that tend to focus on one of these
requirements, Gemmini provides a multi-level programming interface
to satisfy users with different requirements. In addition, Gemmini
is the first infrastructure that provides hardware support for virtual
memory without the need for any special driver software, making it
significantly easier for end-users to program accelerators.

Third, system-level integration, including both the SoC and the
system software, is also critical in DNN accelerator generators.
Today’s DNN accelerators are typically designed and evaluated in
isolation. However, when they are eventually deployed, they need
to be integrated as part of a larger system. In fact, recent industry
evaluations have demonstrated that modern ML workloads could
spend as much as 77% of their time running on CPUs, even in the
presence of a hardware accelerator, to execute either new operators or
to move data between the CPU and accelerators [8]–[10], [24]. How-
ever, unfortunately, none of the existing DNN accelerator generators
support full SoC integration with host CPUs and shared resources like
caches and system buses. Motivated by this observation, Gemmini has
built-in system integration support where users can directly instantiate
a complete SoC environment that can boot Linux, directly enabling
architects to evaluate subtle trade-offs at the system level.

III. GEMMINI GENERATOR

Gemmini is an open-source, full-stack generator of DNN acceler-
ators, spanning across different hardware architectures, programming
interfaces, and system integration options. With Gemmini, users
can generate everything from low-power edge accelerators to high-
performance cloud accelerators equipped with out-of-order CPUs.
Users can then investigate how the hardware, SoC, OS, and software
overhead interact to affect overall performance and efficiency.

A. Architectural Template

Figure 1 illustrates Gemmini’s architectural template. The central
unit in Gemmini’s architectural template is a spatial architecture



×

+

×

+
×

+

×

+

Systolic spatial array
(TPU-like)

×

+
× ×

+
×

Parallel vector engines
(NVDLA-like)

Spatial 
Array

Freq.
(GHz)

Area at
500 MHz

Systolic 1.89 120K µm² 

Vector 0.69 67K µm² 

Fig. 3: Examples of two different spatial architectures generated by
Gemmini. Both perform four multiply-accumulates per cycle though
with different connectivities between multiply-and-accumulate units.

with spatially distributed processing elements (PEs), each of which
performs dot products and accumulations. The spatial array reads data
from a local, explicitly managed scratchpad of banked SRAMs, while
it writes results to a local accumulator storage with a higher bitwidth
than the inputs. Gemmini also supports other commonly-used DNN
kernels, e.g., pooling, non-linear activations (ReLU or ReLU6), and
matrix-scalar multiplications, through a set of configurable, peripheral
circuitry. Gemmini-generated accelerators can also be integrated with
a RISC-V host CPU to program and configure accelerators.

We design Gemmini’s spatial array with a two-level hierarchy to
provide a flexible template for different microarchitecture structures,
as demonstrated in Figure 2. The spatial array is first composed of
tiles, where tiles are connected via explicit pipeline registers. Each of
the individual tiles can be further broken down into an array of PEs,
where PEs in the same tile are connected combinationally without
pipeline registers. Each PE performs a single multiply-accumulate
(MAC) operation every cycle, using either the weight- or the output-
stationary dataflow. The tiles are composed of rectangular arrays of
PEs, where PEs in the same tile are connected combinationally with
no pipeline registers in between them. The spatial array, likewise,
is composed of a rectangular array of tiles, but each tile does have
pipeline registers between it and its neighbors. Every PE and every
tile shares inputs and outputs only with its adjacent neighbors.

Figure 3 illustrates how Gemmini’s two-level hierarchy provides
the flexibility to support anything from fully-pipelined TPU-like
architectures to NVDLA-like parallel vector engines where PEs are
combinationally joined together to form multiply-accumulate (MAC)
reduction trees, or any other design points in between these two
extremes. We synthesized both designs with 256 PEs. We found that
the TPU-like design achieves a 2.7x higher maximum frequency, due
to its shorter MAC chains, but consumes 1.8x as much area as the
NVDLA-like design, and 3.0x as much power, due to its pipeline
registers. With Gemmini, designers can explore such footprint vs.
scalability trade-offs across different accelerator designs.

B. Programming Support

The Gemmini generator produces not just a hardware stack, but
also a tuned software stack, boosting developers’ productivity as
they explore different hardware instantiations. Specifically, Gemmini
provides a multi-level software flow to support different program-
ming scenarios. At the high level, Gemmini contains a push-button
software flow which reads DNN descriptions in the ONNX file
format and generates software binaries that will run them, mapping
as many kernels as possible onto the Gemmini-generated accelerator.

Fig. 4: TLB miss rate over a full ResNet50 inference, profiled on a
Gemmini-generated accelerator.

Alternatively, at the low level, the generated accelerator can also be
programmed through C/C++ APIs, with tuned functions for common
DNN kernels. These functions must be tuned differently for different
hardware instantiations in order to achieve high performance, based
on scratchpad sizes and other parameters. Therefore, every time a new
accelerator is produced, Gemmini also generates an accompanying
header file containing various parameters, e.g. the dimensions of the
spatial array, the dataflows supported, and the compute blocks that
are included (such as pooling, im2col, or transposition blocks).

Data Staging and Mapping: At runtime, based on the dimensions
of a layer’s inputs, and the hardware parameters of the accelerator
instantiation, Gemmini uses heuristics to maximize the amount of
data moved into the scratchpad per iteration. Gemmini calculates loop
tile sizes at runtime, and these tile sizes determine when and how
much data is moved between DRAM, L2, and scratchpad during the
execution of our tiled matrix multiplication, convolution, residual-
addition, etc. kernels. If the programmer wishes, the low-level API
also allows them to manually set tile-sizes for each kernel.

Virtual Memory Support: In addition to the programming in-
terface, Gemmini also makes it easier to program accelerators by
providing virtual memory support. This is useful for programmers
who wish to avoid manual address translations as well as for re-
searchers who wish to investigate virtual memory support in modern
accelerators. Gemmini also enables users to co-design and profile
their own virtual address translation system. For example, Figure 4
shows the miss rate of an example accelerator’s local TLB profiled on
Gemmini. As we can see, the miss rate occasionally climbs to 20-30%
of recent requests, due to the tiled nature of DNN workloads, which
is orders-of-magnitude greater than the TLB miss rates recorded in
prior CPU non-DNN benchmarks [25]. Later, in Section V-A, we
use Gemmini to co-design a virtual address translation system which
achieves near-maximum end-to-end performance on accelerated DNN
workloads, with only a few TLB entries in total.

C. System Support

Gemmini allows architects to integrate RISC-V CPUs with
Gemmini-generated accelerators in the Chipyard [26] framework.
These can range from simple, in-order microcontrollers which are not
expected to do much more than IO management, all the way up to out-
of-order, high-performance, server-class CPUs that may be running
multiple compute-intensive applications even as they are sending
commands to the Gemmini-generated accelerator. SoCs can also
be configured to host multiple host CPUs and Gemmini-generated
accelerators, which can each operate on different tasks in parallel with
each other. Figure 5 is one example of a dual-core system, where each
CPU has its own Gemmini-generated accelerator. Additional SoC-
level parameters include bus widths between accelerators and host
CPUs, as well as the size, associativity and hierarchy of the caches in



Fig. 5: Example dual-core SoC with a Gemmini accelerator attached
to each CPU, as well as a shared L2 cache and standard peripherals.

the multicore, multicache memory system. Later, in Section V-B, we
show how these parameters can be tuned, based on the computational
characteristics of DNNs, to improve performance by over 8%.

RISC-V-based full SoC integration also enables deep software-
stack support, such that Gemmini-generated accelerators can easily
be evaluated running the full software stack up to and including the
operating system itself. This enables early exploration of accelerated
workloads in a realistic environment where context switches, page
table evictions, and other unexpected events can happen at any time.
These unexpected events can uncover bugs and inefficiencies that a
“baremetal” environment would not bring to the surface. For example,
our experience of running Linux while offloading DNN kernels
to a Gemmini-generated accelerator uncovered a non-deterministic
deadlock that would only occur if context switches happened at very
particular, inopportune times. Running on a full software stack with
an OS also uncovered certain bugs where Gemmini read from certain
regions of physical memory without the proper permissions. On a
“baremetal” environment, these violations were silently ignored.

IV. GEMMINI EVALUATION

This section discusses our evaluation methodology and evaluation
results of Gemmini-generated accelerators compared to both CPUs
and state-of-the-art, commercial accelerators.

A. Evaluation Methodology

We evaluate the end-to-end performance of Gemmini-generated
accelerators using the FireSim FPGA-accelerated simulation plat-
form [27]. We evaluate five popular DNNs: ResNet50, AlexNet,
SqueezeNet v1.1, MobileNetV2, and BERT. All DNNs are evaluated
with a full Linux environment on a complete cycle-exact simulated
SoC. We synthesize designs using Cadence Genus with the Intel
22nm FFL process technology and place-and-route them using Ca-
dence Innovus. Our layout and area breakdown, described in Figure 6,
show that the SRAMs alone consume 67.1% of the accelerator’s total
area. The spatial array itself only consumes 11.3%, while the host
CPU consumed a higher 16.6% of area.

B. Performance Results

We evaluated the performance of several Gemmini configurations,
with different host CPUs and different “optional” compute blocks,
to determine how the accelerator and host CPU configuration may
interact to impact end-to-end performance. In particular, we evaluated
two host CPUs: a low-power in-order Rocket core, and a high-
performance out-of-order BOOM core. We used two different Gem-
mini configurations: one without an optional im2col block, and the

Component size Area
(µm2)

% of
System
Area

Spatial Array (16x16) 116K 11.3%
Scratchpad (256 KB) 544K 52.9%
Accumulator (64 KB) 146K 14.2%
CPU (Rocket, 1 core) 171K 16.6%
Total 1,029K 100.0%

(a) Area breakdown. (b) Layout.

Fig. 6: Area breakdown and layout of accelerator with host CPU.

other with an im2col block which allowed the accelerator to perform
im2col on-the-fly, relieving the host CPU of that burden.

As illustrated in Figure 7, when the accelerator is built without
an on-the-fly im2col unit, its performance depends heavily on the
host-CPU which becomes responsible for performing im2col during
CNN inference. A larger out-of-order BOOM host CPU increases
performance by 2.0x across all CNNs. The less complex the DNN
accelerator is, the more the computational burden is shifted onto the
CPU, giving the host CPU a larger impact on end-to-end performance.

However, when the accelerator is equipped with an on-the-fly
im2col unit, the choice of host CPU is far less important, because the
CPU’s computational burden is shifted further onto the accelerator.
Adding a small amount of complexity to the accelerator allows us
to reduce the area and complexity of the host CPU to a simple in-
order core while preserving performance. Gemmini enables hardware
designers to easily make these performance-efficiency tradeoffs.

With the on-the-fly im2col unit and a simple in-order Rocket
CPU, Gemmini achieves 22.8 frames per second (FPS) for ResNet50
inference when running at 1 GHz, which is a 2,670x speedup over
the in-order Rocket CPU and an 1,130x speedup over the out-
of-order BOOM CPU. The accelerator also achieves 79.3 FPS on
AlexNet. Some DNN models such as MobileNet are not efficiently
mapped to spatial accelerators due to the low data reuse within the
depthwise convolution layers. Therefore, Gemmini demonstrates only
a 127x speedup compared to the Rocket host CPU on MobileNetV2,
achieving 18.7 FPS at 1GHz. On SqueezeNet, which was designed
to be run efficiently on modern CPUs while conserving memory
bandwidth, Gemmini still demonstrates a 1,760x speedup over the
Rocket host CPU. Our results are comparable to other accelerators,
such as NVDLA, when running with the same number of PEs as the
configuration in Figure 6a. When running language models such as
BERT, Gemmini achieves a 144x improvement over the Rocket CPU.

Fig. 7: Speedup compared to an in-order CPU baseline. For CNNs,
im2col was performed on either the CPU, or on the accelerator.



(a) Without filter registers. (b) With filter registers.

Fig. 8: Normalized performance of ResNet50 inference on Gemmini-
generated accelerator with different private and shared TLB sizes.

V. GEMMINI CASE STUDIES

This section demonstrates how Gemmini enables full system co-
design with two case studies. We use Gemmini to design a novel
virtual address translation scheme, and to find the optimal SoC-level
resource partition scheme of a multi-core, multi-accelerator system.

A. Virtual Address Translation

With an RTL-level implementation that supports virtual memory,
users can co-design their own virtual address translation schemes
based on their accelerator and SoC configuration. Prior works in
virtual address translation for DNN accelerators have proposed very
different translation schemes, from NeuMMU [28], which calls for
a highly parallel address-translation system with 128 page-table
walkers (PTWs), to Cong et al. [29], who recommend a more modest
two-level TLB hierarchy, with the host CPU’s default PTW co-opted
to serve requests by the accelerator. This lack of convergence in
the prior literature motivates a platform that allows co-design and
design-space exploration of the accelerator SoC together with its
virtual address translation system, for both hardware designers and
researchers. Fortunately, with Gemmini, we can iterate over a variety
of address translation schemes as we tune the accelerator and SoC.

To demonstrate, we configure Gemmini to produce a two-level
TLB cache, with one private TLB for the accelerator, and one larger
shared TLB at the L2 cache that the private TLB falls back on when
it misses. Our design only one PTW, shared by both the CPU and
accelerator, which is suitable for low-power devices. We configure
the accelerator to be comparable to low-power edge devices, with
a 16-by-16 systolic mesh and a 256 KB scratchpad. As shown in
Figure 8a, we iterate over a variety of TLB sizes to find the design
that best balances TLB overhead and overall performance, including
over a design point where the shared L2 TLB has zero entries.

Figure 8a demonstrates that the private accelerator TLB has a
far greater impact on end-to-end performance than the much larger
shared L2 TLB. Increasing the private TLB size from just four to
16 improves performance by up to 11%. However, adding even 512
entries to the L2 TLB never improves performance by more than 8%.
This is because our workloads exhibit high page locality; even with
tiled workloads, our private TLB’s hit rate remained above 84%, even
with the smallest TLB sizes we evaluated. In fact, we found that 87%
of consecutive read TLB requests, and 83% of consecutive write TLB
requests, were made to the same page number, demonstrating high
page locality. However, because reads and writes were overlapped,
read and write operations could evict each other’s recent TLB entries.

Although tuning TLB sizes improves hit rates, our private TLB hit
latency in the tests shown in Figure 8a was still several cycles long.
Fortunately, using the Gemmini platform, we were able to implement

a simple optimization: a single register that caches the last TLB hit
for read operations, and another register that caches TLB hits for
write operations. These two registers allow the DMA to “skip” the
TLB request if two consecutive requests are made to the same virtual
page number, and help reduce the possibility of read-write contention
over the TLB. These “filter registers” reduce the TLB hit latency to
0 cycles for consecutive accesses to the same page. As Figure 8b
shows, this low-cost optimization significantly improves our end-to-
end performance, especially for small private TLB sizes. Due to our
high TLB hit rate and low TLB hit penalty, we found that a very small
4-entry private TLB equipped with filter registers, but without an
expensive shared L2 TLB, achieved only 2% less than the maximum
performance recorded. With such a configuration, the private TLB hit
rate (including hits on the filter registers) reached 90% and further
increases to either TLB’s size improved performance by less than
2%, even if hundreds of new TLB entries were added.

Using Gemmini, we have demonstrated that a modest virtual
address translation system, with very small private TLBs, a single
page-table-walker, and two low-cost filter registers for the TLB, can
achieve near maximum performance for low-power edge devices.
Gemmini is designed to enable such co-design of the SoC and its
various components, such as its virtual address translation system.

B. System-Level Resource Partition

Gemmini also enables application-system co-design for real-world
DNN workloads. To demonstrate, we present a case study describing
a system-level design decision: memory partitioning based on appli-
cation characteristics. We investigate memory partitioning strategies
in both single-core and multi-core SoCs.

Real-world DNN applications, such as CNN inference, have di-
verse layer types which have different computational requirements
and which contend for resources on an SoC in different ways. For
example, ResNet50 includes convolutions, matrix multiplications, and
residual additions, which all exhibit quite different computational
patterns. Convolutions have high arithmetic intensity; matrix mul-
tiplications have less; and residual additions have almost no data
re-use at all. Additionally, unlike the other two types of layers,
residual additions benefit most if layer outputs can be stored inside
the cache hierarchy for a long time, rather than being evicted by
intermediate layers, before finally being consumed several layers
later. These different layer characteristics suggest different ideal SoC
configurations. To run with optimal performance over an entire DNN,
a hardware designer must balance all these constraints.

To demonstrate, we run ResNet50 inference on six different SoC
configurations. These are the three different configurations described
in Figure 9a, repeated for both single- and dual-core SoCs (as in
Figure 5), where each CPU core has its own Gemmini-generated
accelerator. The dual-core SoCs run two ResNet50 workloads in
parallel, while the single-core SoCs run just one. The base design
point has a 256 KB scratchpad, and a 256 KB accumulator per core,
as well as a 1 MB shared L2 cache. The scratchpad and accumulator
memories are private to the accelerators, but the L2 cache is shared
by all CPUs and accelerators on the SoC. We presume that we have
1 MB of extra SRAM memory that we can allocate to our memory
system, but we need to decide whether to allocate these SRAMs to
the accelerators’ private memory, or to the L2 caches.

As shown in Figures 9b and 9c, convolutional layers benefit from a
larger, explictly managed scratchpad, due to their very high arithmetic
intensity. Convolutional kernels exhibit a 10% speedup with one core,
and an 8% speedup in the dual-core case, when the scratchpad and
accumulator memory is doubled by the addition of our 1 MB worth



Config
Name

Scratchpad
(per core)

Accumulator
(per core)

L2
Cache

Base 256 KB 256 KB 1 MB
BigSP 512 KB 512 KB 1 MB
BigL2 256 KB 256 KB 2 MB

(a) Resource contention SoC configurations (b) Performance of single-core SoCs. (c) Performance of dual-core SoCs.

Fig. 9: Performance of the various SoC configurations in the case study, normalized to the performance of the Base configuration.

of SRAMs. The matmul layers, on the other hand, achieve only a
1% and 3% speedup when the scratchpad is enlarged in the single-
core and dual-core cases respectively, due to their lower arithmetic
intensity. Residual additions, which have virtually no data re-use and
are memory-bound operations, exhibit no speedup when increasing
the scratchpad memory size. Instead, they exhibit a minor 1%-4%
slowdown, due to increased cache thrashing. In the single-core case,
the increased convolutional and matrix multiplication performance is
enough to make the design point with increased scratchpad memory,
rather than increased L2 memory, the most performant design point.

However, Figure 9c shows that when we run dual-process appli-
cations that compete for the same shared L2 cache, allocating the
extra 1 MB of memory to the shared L2 cache improves overall
performance more than adding that memory to the accelerators’
scratchpad and accumulator memories. Increasing the scratchpad size
still improves convolutional performance more than increasing the L2
size, but this improvement in performance is more than negated by the
22% speedup of residual additions that the dual-core BigL2 design
point enjoys. This is because each core’s residual addition evicts the
input layer that the other one is expecting from the shared L2 cache,
increasing the latency of memory-bound residual addition layers.
The dual-core BigL2 configuration, which increases the shared cache
sizes, alleviates this contention, reducing the L2 miss rate by 7.1%
over the full ResNet50 run, and increasing overall performance by
8.0%. The BigSP configuration, on the other hand, improves overall
performance by only 4.2% in the dual-core case.

With Gemmini, we have demonstrated how the memory partition-
ing strategy, a key component of system-level design, can be decided
based upon application characteristics, such as the composition of
layer types and the number of simultaneous running processes.

VI. CONCLUSION

We present Gemmini, a full-stack, open-source generator of DNN
accelerators that enables systematic evaluations of DNN accelerator
architectures. Gemmini leverages a flexible architectural template to
capture different flavors of DNN accelerator architectures. In addition,
Gemmini provides a push-button, high-level software flow to boost
programmers’ productivity. Finally, Gemmini generates a full SoC
that runs real-world software stacks including operating systems, to
enable system architects to evaluate system-level impacts. Our eval-
uation shows that Gemmini-generated accelerators demonstrate high
performance efficiency, and our case studies show how accelerator
designers and system architects can use Gemmini to co-design and
evaluate system-level behavior in emerging applications.

VII. ACKNOWLEDGEMENTS

This research was, in part, funded by the U.S. Government under
the DARPA RTML program (contract FA8650-20-2-7006). The views
and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies,
either expressed or implied, of the U.S. Government.

REFERENCES

[1] T. Moreau et al., “VTA: An Open Hardware-Software Stack for Deep
Learning,” CoRR, 2018.

[2] R. Venkatesan et al., “MAGNet: A Modular Accelerator Generator for
Neural Networks,” in ICCAD, 2019.

[3] J. Cong et al., “PolySA: polyhedral-based systolic array auto-
compilation,” in ICCAD, 2018.

[4] X. Zhang et al., “DNNBuilder: An Automated Tool for Building High-
performance DNN Hardware Accelerators for FPGAs,” in ICCAD, 2018.

[5] Xuechao Wei et al., “Automated systolic array architecture synthesis for
high throughput cnn inference on fpgas,” in DAC, 2017.

[6] Y. Wang et al., “Deepburning: Automatic generation of fpga-based
learning accelerators for the neural network family,” in DAC, 2016.

[7] H. Ye et al., “HybridDNN: A framework for high-performance hybrid
dnn accelerator design and implementation,” in DAC, 2020.

[8] K. Hazelwood et al., “Applied Machine Learning at Facebook: A
Datacenter Infrastructure Perspective,” in HPCA, 2018.

[9] C.-J. Wu et al., “Machine Learning at Facebook: Understanding Infer-
ence at the Edge,” in HPCA, 2019.

[10] D. Richins et al., “Missing the Forest for the Trees: End-to-End AI
Application Performance in Edge Data Centers,” in HPCA, 2020.

[11] F. Sijstermans, “The NVIDIA Deep Learning Accelerator,” in Hot Chips,
2018.

[12] Y. Chen et al., “Eyeriss v2: A Flexible Accelerator for Emerging Deep
Neural Networks on Mobile Devices,” JETCAS, 2019.

[13] Z. Du et al., “ShiDianNao: Shifting vision processing closer to the
sensor,” in ISCA, 2015.

[14] S. Venkataramani et al., “ScaleDeep: A Scalable Compute Architecture
for Learning and Evaluating Deep Networks,” in ISCA, 2017.

[15] X. Yang et al., “Interstellar: Using Halide’s scheduling language to
analyze DNN accelerators,” in ASPLOS, 2020.

[16] H. Kwon et al., “MAERI: Enabling Flexible Dataflow Mapping over
DNN Accelerators via Programmable Interconnects,” in ASPLOS, 2018.

[17] J. Fowers et al., “A Configurable Cloud-Scale DNN Processor for Real-
Time AI,” in ISCA, 2018.

[18] E. Qin et al., “Sigma: A sparse and irregular gemm accelerator with
flexible interconnects for dnn training,” in HPCA, 2020.

[19] X. He et al., “Sparse-TPU: Adapting systolic arrays for sparse matrices,”
in ICS, 2020.

[20] P. Dai et al., “SparseTrain: Exploiting dataflow sparsity for efficient
convolutional neural networks training,” in DAC, 2020.

[21] L. Song et al., “PipeLayer: A Pipelined ReRAM-Based Accelerator for
Deep Learning,” in HPCA, 2017.

[22] H. Kim et al., “Algorithm/hardware co-design for in-memory neural
network computing with minimal peripheral circuit overhead,” in DAC,
2020.

[23] H. Sharma et al., “From High-level Deep Neural Models to FPGAs,” in
MICRO, 2016.

[24] G. Henry et al., “High-Performance Deep-Learning Coprocessor Inte-
grated into x86 SoC with Server-Class CPUs Industrial Product,” in
ISCA, 2020.

[25] D. Lustig et al., “Tlb improvements for chip multiprocessors: Inter-core
cooperative prefetchers and shared last-level tlbs,” TACO, 2013.

[26] A. Amid et al., “Chipyard: Integrated Design, Simulation, and Imple-
mentation Framework for Custom SoCs,” IEEE Micro, 2020.

[27] S. Karandikar et al., “FireSim: FPGA-Accelerated Cycle-Exact Scale-
Out System Simulation in the Public Cloud,” in ISCA, 2018.

[28] B. Hyun et al., “NeuMMU: Architectural Support for Efficient Address
Translations in Neural Processing Units,” in ASPLOS, 2020.

[29] Y. Hao et al., “Supporting Address Translation for Accelerator-Centric
Architectures,” in HPCA, 2017.


