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Abstract—This work presents a 16mm2 heterogeneous RISC-V
system-on-a-chip (SoC) composed of a high-performance out-of-
order core, energy-efficient in-order core, data-parallel vector
accelerator, and systolic array deep neural network (DNN) ac-
celerator in low-power Intel 22FFL for general-purpose compute,
DNN, and vector workloads. The heterogeneous RISC-V SoC is
composed of fully open-source components, including a second-
generation Berkeley Out-of-Order Machine (BOOM) with a non-
speculative mode attached to a Hwacha vector accelerator, a
Rocket in-order core attached to a Gemmini systolic array
DNN accelerator, as well as a 1MiB L2 cache and off-chip
I/Os. Combined, the variety of heterogeneous compute allows for
wide programmability while providing up to a 286x MOPS/W
improvement or 282x MOPS improvement over the RISC-V in-
order core.

Index Terms—RISC-V, Heterogeneous, Multi-Core, Out-of-
Order, Vector, Systolic Array, DNN, Open-Source

I. INTRODUCTION

With the sunset of Dennard scaling, specialized and het-
erogeneous SoC architectures are the primary method for
obtaining high-performance yet energy-efficient SoCs for a
diversity of emerging workloads. In particular, compositions
of large high-performance processors, small energy-efficient
processors, data-parallel ISA extensions, and specialized ac-
celerators have become commonplace. However, prior open-
source RISC-V SoCs have not demonstrated such heteroge-
neous architectures, with associated test chips primarily imple-
menting homogeneous architectures [1]–[3]. In this work, we
demonstrate an open-source, heterogeneous RISC-V SoC that
combines an out-of-order core, an in-order core, a vector ac-
celerator, and a systolic array DNN accelerator. By providing
flexibility, the SoC targets diverse general-purpose compute,
data-parallel workloads, and DNN applications with varying
power, performance, and security requirements.

The remainder of this paper is organized as follows. In Sec-
tion II, we detail the overall system architecture. In Section III,
we discuss the design and testing methodology used. Finally,
in Section IV, we evaluate the SoC results and conclude in
Section V.

II. SYSTEM DESCRIPTION

The heterogeneous RISC-V SoC includes three main clock
and voltage domains as shown in Figure 1 and Figure 2:
a high-performance general-application domain with an out-
of-order core connected to a vector accelerator, an energy-
efficient machine learning (ML) domain with an in-order core
connected to a systolic-array-based DNN accelerator, and an
uncore domain with a shared L2 cache and peripherals.

Overall
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Fig. 1: SoC details and annotated GDS plot.

A. General-Application Domain

The general-application domain, targeting general-purpose
and data-parallel vector workloads, includes a BOOM out-of-
order processor connected to a Hwacha vector accelerator as
shown in Figure 3 [4], [5]. The Berkeley Out-of-Order Core
(BOOM) is an open-source superscalar RV64GC RISC-V
Linux-capable core generator. The BOOMv2.2 processor, an
evolved version of the BOOMv2 architecture, adds dynam-
ically configurable performance gating to prohibit specula-
tion [3]. This allows the core to stall every instruction in
issue to ensure that there are no speculation leaks. This is
used within Linux to isolate important tasks from certain side-
channel attacks and also serves as a design for test (DFT) fea-
ture to enable failure isolation. Other new BOOMv2.2 features
include support for the compressed (C) RISC-V extension to
enable Fedora Linux boot, exposing the Rocket Custom Co-
Processor (RoCC) interface to allow connections to custom
accelerators, branch prediction performance improvements,
map table and freelist selection critical path enhancements,
and congestion reduction by reducing signal propagation. The
BOOM instance is configured as a 3-wide, 12-stage pipeline
that can issue 4 µops per cycle (1 memory, 2 integer, and 1
floating-point). It contains a 32KiB data and instruction cache
with a two-level branch predictor consisting of a 8K entry
GShare branch predictor with a 2K entry branch target buffer.

Connected over the newly exposed RoCC interface to
the BOOM core is an instance of Hwacha, an open-source
decoupled vector-fetch accelerator generator. Hwacha is a
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Fig. 2: SoC architecture block diagram. Each grey area indicates a
separate clock domain.

vector accelerator generator that supports runtime-configurable
vector registers, conditional predication, and virtual memory
support. This instance of Hwacha is configured to execute
vector operations on double-, single-, and half-precision IEEE
floating point, and integers from bytes to double words.
It contains 4KiB vector instruction cache with 32 address,
64 scalar, 256 vector, and 16 predication registers. Vector
instructions are handled by a single-lane design that splits
the instruction into a series of vector µops executed by 4
banks. Lastly, this instance of Hwacha has been extended
with new configurable two-dimensional memory and compute
operations. These new two-dimensional operations improve
energy efficiency on matrix operations particularly for small
or non-rectangular matrices.

B. Machine Learning Domain

The ML domain consists of a Rocket in-order processor
connected to a Gemmini systolic array DNN accelerator as
shown in Figure 4 [6], [7]. The Rocket instance is configured
as a small Linux-capable 5-stage in-order RV64GC core. This
open-source core includes a 16KiB data and instruction cache
as well as a small 2-level branch predictor with a 512 entry
branch history table and 14 entry branch target buffer.

Tightly coupled to the Rocket core over its RoCC interface
is the open-source Gemmini systolic array DNN accelerator.
This Gemmini instance is configured to contain a 16x16 sys-
tolic array of 8-bit multiply-accumulate processing elements
supporting runtime-programmable weight stationary (WS) and
output stationary (OS) dataflows, as well as DNN functional
units such as ReLU, ReLU6, and accumulation quantization.
Operand matrices are stored in 256KiB of scratchpad memory
and 64KiB of accumulator memory.

C. Uncore Domain

Both the general-application and ML domains are connected
through asynchronous clock domain crossings to the uncore
domain creating 3 separate clock domains. System clocks
are provided by a set of clock dividers and multiplexers
connected to off-chip single-pin and differential clock inputs.
Memory-mapped control registers configure the system clocks
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Fig. 4: Machine learning domain block diagram.

and circuitry at runtime. Backing both compute domains is a
shared 4-bank 1MiB SiFive open-source L2 cache, which is
connected to a low-speed 4-bit-wide digital SerDes port. This
low-speed SerDes port is used to connect to backing memory,
load small programs into memory, start and end tests, and
gain introspection into the test chip. Peripherals of the system
include six GPIO, one I2C, one UART, one SPI, and one
JTAG port. In addition, off-chip I/Os include clock outputs for
each domain and the SerDes clock for visibility. Other off-chip
I/Os include a global asynchronous reset signal, multiple clock
select signals, and a self-boot signal that indicates whether the
chip will execute tests in a tethered mode or not.

III. DESIGN METHODOLOGY AND TESTING

This SoC is the first test chip developed by an early version
of the open-source Chipyard SoC development framework [8].
Chipyard provided all the open-source RTL cores, accelera-
tors, caches, and peripherals, and all project-specific improve-
ments were merged into the upstream repository. Together with
the SoC integration infrastructure, Chipyard enabled rapid
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Fig. 5: Annotated board diagram.

construction of the heterogeneous SoC. Additionally, Chipyard
enabled quick modifications to the SoC module hierarchy by
providing design transformation tools such as FIRRTL [9].
This facilitated hardware design modifications to optimize for
physical design without the need to change generator source
RTL. Chipyard also included various pre-silicon simulation
testing flows ranging from small assembly-level tests in RTL-
level simulation to large-scale Fedora Linux-level testing with
FireSim integrated FPGA-accelerated simulation [10]. In a
collaborative process, the SoC design and verification were
done by UC Berkeley while the main physical design, pack-
aging, and board design were completed by Intel.

Figure 5 shows the test chip board and FPGA bringup
platform that it is connected to. The test chip board provides
access to a SPI µSDCard connector used for self-boot, a
differential SMA clock input, multiple single-pin SMA debug
clock outputs, bypass power connectors, and measurement
circuitry for each power domain. Additionally, the main set
of I/O signals from the test chip including GPIOs, UART,
I2C, low-speed digital SerDes, JTAG, boot/clock select, re-
set, and single pin low-speed clocks signals are routed to
a VITA 57.1 FMC compliant port that connects to a host
Xilinx VCU118 FPGA board. This VCU118 FPGA includes
a modified Chipyard-based BOOMv3 softcore SoC prototype
that interacts with the test chip through the FMC I/Os. By
running a modified version of Linux with a custom tether
widget, the FPGA system, can provide access to DRAM, probe
test chip memory and control registers, and launch tethered
programs over the test chip’s slow SerDes link. Combined with
other Chipyard collateral, the use of this FPGA system allows
for quick bringup modifications and easy signal visibility for
FMC signals while maintaining compatibility for prior test
chips.

IV. MEASURED RESULTS

Figure 6 demonstrates the heterogeneous nature of the SoC
and the ability to run an application across all cores and
accelerators with varying levels of efficiency. Specifically, an
example general matrix multiplication (GEMM) benchmark,
a common kernel of DNN and linear algebra workloads, of
increasing size can be executed across the following compute:
the BOOM out-of-order core with speculation enabled (full
BOOM) and performance gated (non-speculative BOOM), the
Rocket in-order core, the Hwacha vector accelerator, and
the Gemmini DNN accelerator using a weight stationary
(WS) and output stationary (OS) dataflow. When compared
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Fig. 6: Performance/efficiency of GEMM benchmarks on each com-
ponent and mode running at 210MHz.

to the baseline non-speculative BOOM core performance,
the Rocket core obtains a 4.0-4.9x speedup while the full
BOOM core obtains 7.1-16.6x speedup. As expected, the data-
parallel Hwacha and Gemmini accelerators obtain orders of
magnitude greater speedups. Hwacha, coupled to the BOOM
core, achieves up to 677x while Gemmini, coupled to the
Rocket core, leads in performance with an improvement of
1297.2x by explicitly accelerating GEMMs. The performance
gains are echoed in efficiency with the Gemmini WS and
OS modes reaching up to 106.1 GOPS/W. Following are
Hwacha and Rocket which reach up to 9.0 GOPS/W and 410.2
MOPS/W, respectively. Both the non-speculative BOOM and
full BOOM modes are the least efficient at 10.8 MOPS/W and
176.6 MOPS/W, respectively. The low non-speculative BOOM
performance is due to stalling instructions in the issue stage
which under-utilizes subsequent out-of-order structures. Lower
performance of the full BOOM mode is due to systematic fron-
tend and branch prediction deficiencies that bottleneck IPC
and were resolved in a subsequent BOOM version. Finally,
measurements were obtained with all cores and accelerators
running at 210 MHz at 0.85 V to obtain relative results.

Figure 7 shows the peak frequency and efficiency of a
16x16 GEMM benchmark across the operating voltages of
the ML domain. Peak efficiency for Rocket and the Gemmini
WS mode occurs at 0.75 V at 385.9 MOPS/W and 73.3
GOPS/W, respectively. Additionally, peak frequencies roughly
match across the domain with a range of 675-961 MHz. While
the uncore and ML domains were signed off at 500 MHz and
the general-application domain was signed-off at 700MHz,
the general-application domain contained an unconstrained
asynchronous reset path preventing peak frequencies past 210
MHz at any voltage.

Table II demonstrates the performance of both operating
modes of BOOM compared to the Rocket core on the Core-
Mark and Dhrystone benchmarks that fit within the cores’



This Work ISSCC’21 [1] VLSI’19 [11] TVLSI’2019 [2] VLSI’18 [3]

Process 22nm FinFET 16nm FinFET 16nm FinFET 22nm FD-SOI 28nm CMOS
Die Size 16mm2 24.01mm2 25mm2 9mm2 4.86mm2

Base ISA RV64GC RV64G ARMv8-A RV64IMC RV64G
Energy Efficiency 106.1 GOPS/W 209.5 GH-FLOPS/W 58.7 GOPS/W 40 GOPS/W -

Max Frequency 961MHz (ML Domain) 1.44GHz >1GHz 1.7GHz 1GHz210MHz (Gen. App. Domain)
Vector Support Hwacha4p5 Hwacha4 NEON - -

DNN Acceleration Gemmini - CCA - -
Memory System 1MiB L2 4 256KiB L2s, 3MiB L3 4MiB Scratchpad 520KiB Scratchpad 1MiB L2
CoreMark/MHz 2.37 - - - 3.77

DMIPS/MHz 2.13 - - 1.65 -
Open-Source RTL Yes Yes No Yes Partially

Processor Type In-Order/Out-of-Order In-Order In-Order In-Order Out-of-Order

TABLE I: Comparison Table.
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Fig. 7: Frequency/efficiency of the ML Gemmini-based domain.

CoreMark Dhrystone
Core Type Raw CM/MHz Dhry/S DMIPS/MHz

Rocket 1185 2.11 1883.54 1.07

BOOM Non spec. 45.09 0.27 301.29 0.17
Full 395.79 2.37 3750.93 2.13

TABLE II: CoreMark and Dhrystone results of CPUs
(Rocket at 500MHz and BOOM at 167MHz).

L1 caches. For CoreMark/MHz, Rocket is 7.8x faster than
the non-speculative BOOM core, while the full BOOM core
is 8.8x faster reaching a peak of 2.37 CoreMark/MHz. For
Dhrystone MIPS/MHz (DMIPS/MHz), Rocket is 6.3x faster
compared to the non-speculative BOOM core, while the full
BOOM core is 12.5x faster. Results show the flexibility of
running software on the different cores and modes depending
on the power, security, and performance requirements. Finally,
unlike similar published test chips, this work contains a range
of heterogeneous high-performance and energy-efficient cores
and accelerators all while being fully open-sourced throughout
the development process, as demonstrated in Table I.

V. CONCLUSION

This work demonstrates an open-source, heterogeneous
multi-core multi-accelerator RISC-V SoC targeting general-
purpose compute, DNN, and vector workloads. The 16mm2

low-power Intel 22FFL test chip is integrated with fully open-
source components including a BOOMv2.2 out-of-order core
with re-configurable performance gating, a Hwacha vector
accelerator, a Rocket in-order core, a Gemmini systolic array
DNN accelerator, 1MiB of L2 cache, and a variety of off-
chip I/Os. The wide amount of compute and variety of
programmability on a single SoC allows for up to a 286x
improvement in MOPS/W or 282x MOPS improvement over
the RISC-V Rocket in-order core.
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