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Abstract

The squared correlation coefficient r2 (sometimes denoted ∆2) is a measure of linkage disequi-

librium that is widely used, but computing its expectation E[r2] in the population has remained

an intriguing open problem. The expectation E[r2] is often approximated by the standard linkage

deviation σ2
d, which is a ratio of two expectations amenable to analytic computation. In this pa-

per, a method of computing the population-wide E[r2] is introduced for a model with recurrent

mutation, genetic drift and recombination. The approach is algebraic and is based on the diffu-

sion process approximation. In the limit as the population-scaled recombination rate ρ approaches

∞, it is shown rigorously that the asymptotic behavior of E[r2] is given by 1/ρ + O(ρ−2), which,

incidentally, is the same as that of σ2
d. A computer software that computes E[r2] numerically is

available upon request.
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1 Introduction

Linkage disequilibrium (LD), which characterizes the statistical nonindependence of alleles at dif-

ferent loci, depends on population history and structure, and on various evolutionary forces such

as recombination, mutation and natural selection—see (Hudson, 2001a) for a general review of LD,

and (Pritchard and Przeworski, 2001; International HapMap Consortium, 2005) for studies of LD

in the human genome. A question that is of great interest is how one can use LD to learn about

the aforementioned factors that influence its extent and patterns. Several different, albeit related,

measures of LD between a pair of loci have been proposed. A commonly used measure is r2 (defined

below), which is equal to the square of the correlation coefficient between the alleles at two loci (Hill

and Robertson, 1968) and is related to the power of association in gene mapping (see Pritchard

and Przeworski 2001 for an explanation of this relationship).

In this paper, we consider a diallelic two-locus model for a single panmictic diploid population

subject to recurrent mutation and genetic drift. This model is the same as that considered by Ohta

and Kimura (1969b). The effective population size, denoted Ne, is assumed to remain constant in

time. We use A and B to denote the two loci, with allele types A0, A1 and B0, B1, respectively. The

marginal allele frequencies of A0 and B0 are respectively denoted by p and q, and the LD measure

r2 is defined as

r2 :=
D2

p(1− p)q(1− q) , (1)

where D = f00 − pq, with f00 being the frequency of the gametic type A0B0. (Sometimes ∆2 is

used to denote the above LD measure.) We consider the following symmetric reversible mutation

model:

A0

u←−
−→
u

A1 and B0

u←−
−→
u

B1,

where u is the mutation rate per generation. The recombination rate between the two loci per

generation is denoted by c, and the population-scaled mutation and recombination rates are denoted
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by θ := 8Neu and ρ := 4Nec, respectively.

In his seminal work, Golding (1984) derived a system of recursion relations satisfied by the

probabilities of sample configurations, to study the sampling distribution of LD under an infinitely-

many-alleles model. This approach was further studied by Ethier and Griffiths (1990), who con-

structed a two-locus urn model for the distribution of sample configurations. A closed-form solution

to the system of recursion relations is not known, but accurate numerical solutions can be obtained

for moderate sample sizes (say, up to about 40. See Hudson 2001a). For larger sample sizes,

numerically solving the recursion relations becomes intractable, but coalescent simulations can be

employed to study the sampling distribution and sample estimated expectations of LD, as done

by Hudson (1985, 2001b). A further study of the sampling properties of LD was carried out by

Hill and Weir (1994), who used a general forward simulation approach that can easily incorporate

biologically important features such as selection. In our work, we do not consider the sampling

distribution or other sampling properties of LD, but focus on the population-wide expectation of

r2 at equilibrium. (Roughly, the case we consider corresponds to having a very large sample size.)

In what follows, p, q, and D denote population quantities.

Computing the population expectation E[r2] of the squared correlation coefficient r2 is a difficult

problem, and no analytic approach has been suggested so far. In contrast, as shown by Hill and

Robertson (1968) and by Ohta and Kimura (1969a,b), the ratio E[D2]/E[p(1 − p)q(1 − q)] of two

expectations — called the standard linkage deviation and often denoted σ2
d — is much easier

to tackle and closed-form formulae can be obtained for various models. Furthermore, under the

neutral model, σ2
d admits a nice genealogical interpretation in terms of covariances in coalescence

times (McVean, 2002). The expectation of ratios and the ratio of expectations are, however, of

course not the same. Indeed, a previous simulation-based study, in the context of an infinitely-

many-alleles model, has shown that σ2
d may overestimate E[r2] by a substantial amount (Maruyama,

1982), although σ2
d is a reasonably good approximation of the sample estimated expectation of r2
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conditioned on minor allele frequencies being above 5% (Hudson, 1985). In this paper, we readdress

this classic issue and develop an algebraic method of computing the expectation E[r2].

As in the work of Ohta and Kimura (1969a,b), our method is formulated in the context of the

diffusion process approximation, which is continuous in both time and space. Diffusion theory can

be used to generate useful linear equations satisfied by certain expectations at stationarity, a state

in which the effects of mutation, genetic drift, and recombination are in balance. The general idea

behind our approach is to express E[r2] in terms of expectations that can be computed by solving

appropriate systems of linear equations arising from diffusion theory.

We have written a C program, called ER2, that solves the required systems of linear equations

numerically. ER2 is available upon request. For given values of θ and ρ, ER2 can produce numerical

estimates of E[r2]. We remark that the accuracy of the estimates depends on the chosen “truncation

level” `max, described later in the text; `max = 700 gives very accurate answers, with the running

time of a few minutes on a laptop. Our study shows that E[r2] and σ2
d for the assumed model are

quite close for large θ (say, θ > 4). For small θ (say, θ ≤ 1), however, σ2
d is larger than E[r2] by a

substantial amount, in some cases by tens of times. If no restriction is imposed on segregation at

the two loci, estimates from coalescent simulations are much closer to our theoretical computation

of E[r2] than they are to σ2
d. When conditioned on segregation at both loci, however, sample

estimated average r2 increases substantially for small θ, thus resembling the behavior of σ2
d.

Obtaining a general closed-form formula for E[r2] still remains an open problem, but relevant

closed-form expressions can be obtained in the limit ρ → ∞. Using our approach, we rigorously

show that the large ρ behavior of E[r2] is given by 1/ρ + O(ρ−2). Incidentally, this asymptotic

behavior of E[r2] is the same as that of σ2
d found by Ohta and Kimura (1969a,b).

The organization of this paper is as follows. In Section 2, we describe our method of com-

puting E[r2] in the context of the diffusion process approximation. In Section 3, we compare our

computation of E[r2] with σ2
d and with results from coalescent simulations. The aforementioned
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exact asymptotic behavior of E[r2] in the large ρ limit is discussed in Section 4. In Section 5, we

consider a discrete version of the assumed model and show how combinatorial techniques may be

employed to compute certain expectations exactly; such computations are useful for studying the

accuracy of the diffusion approximation approach. We conclude in Section 6 with an outlook on

future direction.

2 Diffusion Approximation

As in (Ohta and Kimura, 1969a,b), our approach is based on diffusion approximation. Being

continuous in both time and space, diffusion processes possess many nice properties not shared

by discrete processes. In particular, associated to a diffusion process is a fundamental differential

operator (i.e., the generator) that has a wide range of applications. As Ohta and Kimura (1969b)

have shown, diffusion approximation is a powerful technique that can be used to compute certain

expectations at stationarity with surprisingly little effort. In this section, we extend the work of

Ohta and Kimura (1969b) to compute the expectation of r2.

2.1 Diffusion generator

Let L denote the generator of a diffusion process X t in Rn, with t being the time parameter. Then,

for f a twice continuously differentiable function with compact support, it is well known that

∂

∂t
E[f(Xt)] = E[L f(X t)],

where E denotes the expectation with respect to the probability distribution of the diffusion process.

At stationarity (i.e., ∂
∂t
E[f(Xt)] = 0), we therefore have

E[L f(X t)] = 0, (2)
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and this equation leads to useful algebraic relations involving various expectations. Henceforward,

we refer to (2) as the master equation. The key idea behind our work is to choose appropriate

functions f in the master equation so that expectations of interest can be computed by solving

systems of linear equations.

Following Ohta and Kimura (1969a,b), we consider a diffusion process in a three-dimensional

space parametrized by p, q and D (i.e., in the above notation, X t = (p, q,D)t). The generator

corresponding to the two-locus model that we are considering in this paper is

L =
1

2
p(1− p) ∂

2

∂p2
+

1

2
q(1− q) ∂

2

∂q2
+

1

2
[p(1− p)q(1− q) +D(1− 2p)(1− 2q)−D2]

∂2

∂D2

+D
∂2

∂p∂q
+D(1− 2p)

∂2

∂p∂D
+D(1− 2q)

∂2

∂q∂D

+
θ

4
(1− 2p)

∂

∂p
+
θ

4
(1− 2q)

∂

∂q
−D

(

1 +
ρ

2
+ θ
) ∂

∂D
, (3)

which differs from that of Ohta and Kimura (1969b) by a factor of 2; one unit of time corresponds

to 2Ne (rather than Ne) generations in our convention.

2.2 Reformulation of the problem: Summing over E[D2pmqn]

The main difficulty involved in computing the expectation of r2 comes from the fact p(1−p)q(1−q)

appears in the denominator. The strategy that we adopt in our work is to re-express (1) in terms

of quantities whose expectations are easier to compute. First, note that

1

p(1− p)q(1− q) =

(

1

p
+

1

1− p

)(

1

q
+

1

1− q

)

.
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Then, we can use the convergent series expansion 1/(1− z) =
∑∞

k=0 z
k, where 0 ≤ z < 1, to obtain

the following expressions for 0 < p < 1:

1

1− p =

∞
∑

k=0

pk and
1

p
=

1

1− (1− p) =

∞
∑

k=0

(1− p)k.

Similar results hold for 1/(1−q) and 1/q. Further, since E[r2] is bounded, the Lebesgue convergence

theorem implies

E[r2] = E
[

D2

p(1− p)q(1− q)

]

=

∞
∑

m=0

∞
∑

n=0

{

E[D2pmqn] + E[D2(1− p)m(1− q)n]

+E[D2(1− p)mqn] + E[D2pm(1− q)n]
}

.

Finally, since E[D2pmqn] = E[D2(1 − p)mqn] = E[D2pm(1 − q)n] = E[D2(1 − p)m(1 − q)n] for the

assumed model of mutation,

E[r2] = E
[

D2

p(1− p)q(1− q)

]

= 4

∞
∑

m=0

∞
∑

n=0

E[D2pmqn]. (4)

We have thus translated the problem of computing E[r2] into a problem of computing an infinite

number of expectations of form E[D2pmqn]. As we elaborate shortly, this change in perspective is

useful for two reasons: First, E[D2pmqn] can be computed. Second, 4
∑

m,n E[D2pmqn] converges

fast as the sum m+ n of exponents increases, thus allowing us to truncate the summation over m

and n at some appropriate level.

2.3 Warm-up exercises

Before we proceed to the computation of E[D2pmqn], we here demonstrate how the diffusion gen-

erator technique works by computing some simpler expectations. These expectations are used in

our algorithm for computing E[D2pmqn].
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The subsequent discussion pertains to the generator L given by (3). From using f = pn or

f = qn in the master equation (2), it immediately follows that the expectations E[pn] and E[qn]

satisfy

E[pn] =

(

θ
2 + n− 1

θ + n− 1

)

E[pn−1] and E[qn] =

(

θ
2 + n− 1

θ + n− 1

)

E[qn−1]. (5)

Since E[1] = 1, we can solve these recursions to obtain

E[pn] = E[qn] =

(

θ
2

)[n]

(θ)[n]
, (6)

where (z)[k] denotes the rising factorial, defined as

(z)[k] := z(z + 1) · · · (z + k − 1). (7)

Using f = D in the master equation (2) implies E[D] = 0, while using f = Dpn, for n ≥ 1,

yields the relation 2[2 + ρ+ 2θ + n(3 + n+ θ)]E[Dpn] = n(2 + 2n+ θ)E[Dpn−1]. A similar relation

holds for E[Dqn] and E[Dqn−1]. Hence, it follows from induction that

E[Dpn] = E[Dqn] = 0 for all n ≥ 0. (8)

If f = pq is used, we obtain θE[pq] = E[D] + θ
4 (E[q] + E[p]). Since E[D] = 0 and E[p] = E[q] =

1/2, we conclude that

E[pq] =
1

4
. (9)

Lastly, using f = p2q yields 2(2 + 3θ)E[p2q] = 8E[Dp] + θE[p2] + 2(2 + θ)E[pq], whereas using

f = pq2 yields 2(2 + 3θ)E[pq2] = 8E[Dq] + θE[q2] + 2(2 + θ)E[pq]. Since E[Dp] = 0, E[p2] =
θ

2
( θ

2
+1)

θ(θ+1) ,

and E[pq] = 1
4 , we conclude

E[p2q] = E[pq2] =
1

4

(

θ
2 + 1

θ + 1

)

. (10)
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m

1 2 3 4 5 6` =

n

0

Figure 1: Pairs (m,n) corresponding to m ≥ n, where m and n are exponents of p and q, respec-
tively, in E[D2pmqn]. A constant level ` = m+ n is indicated by a dashed line. Within each fixed
level, open arrows indicate the order in which our algorithm is carried out.

2.4 Computing E[D2pmqn] via solving systems of coupled linear equations

All expectations considered in the previous section were quite straightforward to compute; by using

a single appropriate function f in the master equation (2), we obtained a linear equation containing

the expectation that we wished to compute and other expectations that had already been computed.

Computing E[D2pmqn] is more complicated, however, because the recursion relations now involve

higher powers of D. We here present an algorithm for computing E[D2pmqn] systematically. It

involves solving systems of coupled linear equations in a particular order.

First, note that by symmetry of the problem, p and q are exchangeable, i.e., E[Dkpiqj] =

E[Dkpjqi], for all i, j, k ≥ 0. Without loss of generality, we may therefore assume that m ≥ n in

E[D2pmqn]. By a level we mean the sum ` = m+n of the exponents of p and q in E[D2pmqn]. This

definition is depicted in Figure 1, where the pairs (m,n) corresponding to m ≥ n are indicated by

closed circles. Our algorithm starts from level 0 and progresses upwards in level. As illustrated

in Figure 1, within each fixed level `, we start from n = 0 and end at n = `/2 if ` is even or at

n = (`− 1)/2 if ` is odd. For each pair (m,n), where m ≥ n, we generate a system of n+ 3 coupled

linear equations by using f = Dkpm+2−kqn+2−k in the master equation (2) for k = 0, . . . , n+ 2. If

computations are carried out in the particular order described above, the only unknown quantities
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in the system of coupled linear equations thus generated will be the following n+ 3 expectations:

E[pm+2qn+2], E[Dpm+1qn+1], E[D2pmqn], . . . , E[D2+n−1pm−n+1q], E[D2+npm−n]. (11)

More precisely, if f = Dkpiqj is used in the master equation (2), then in general we obtain

[k2 + i(i− 1 + θ) + j(j − 1 + θ) + k(1 + 4i+ 4j + ρ+ 2θ)]E[Dkpiqj ] = 2ij E[Dk+1pi−1qj−1]

+
1

2
(2j2 + jθ + 4kj − 2j)E[Dkpiqj−1] +

1

2
(2i2 + iθ + 4ki− 2i)E[Dkpi−1qj]

+k(k − 1)
(

4E[Dk−1pi+1qj+1] + E[Dk−1piqj]− 2E[Dk−1piqj+1]− 2E[Dk−1pi+1qj]
)

+k(k − 1)
(

E[Dk−2pi+2qj+2] + E[Dk−2pi+1qj+1]− E[Dk−2pi+2qj+1]− E[Dk−2pi+1qj+2]
)

,

where E[Dkpiqj ],E[Dk+1pi−1qj−1],E[Dk−1pi+1qj+1],E[Dk−2pi+2qj+2] are unknown quantities. We

remark that the expectations shown in (6), (9), and (10) also appear in some equations and that

they are treated as known quantities. Once we solve for the n+ 3 expectations shown in (11), we

move on to the next pair (m′, n′) in order. A summary of the above algorithm is shown in Figure 2.

2.5 Level truncation and convergence

In (4), m and n both range from 0 to ∞. If we knew a closed-form formula for E[D2pmqn], then

it might be possible to obtain a closed-form formula for E[r2] by summing over m and n explicitly.

However, it seems quite difficult to obtain a closed-form formula for E[D2pmqn], and therefore we

have adopted a numerical approach.

We have made two independent implementations of the algorithm described in Section 2.4: one

in C and the other in Mathematica. Both programs are available upon request. The Mathematica

program can compute E[D2pmqn] symbolically for given m and n, and can generate formulae in

terms of θ and ρ. The C program is called ER2, and for given numerical values of θ, ρ, and `max,
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for ` = 0, . . . , `max do

if (` is even) then

set nmax = `/2
else

set nmax = `/2− 1
end if

for n = 0, . . . , nmax do

for m = n, . . . , `− n do

set up a system of n+ 3 coupled linear equations using f = Dkpm+2−kqn+2−k

in the master equation (2) for 0 ≤ k ≤ n+ 2, and then solve for the
n+ 3 expectations E[Dkpm+2−kqn+2−k], 0 ≤ k ≤ n+ 2
if (n 6= m) then

for 0 ≤ k ≤ n+ 2 do

set E[Dkpn+2−kqm+2−k] = E[Dkpm+2−kqn+2−k]
end for

end if

end for

end for

end for

Figure 2: Algorithm for computing E[D2pmqn] up to some given truncation level `max.

it computes the following level-truncated estimate of E[r2]:

E[r2]`max
:=

`max
∑

`=0

a`, where a` :=
∑

m,n ≥ 0,

m+ n = `

4E[D2pmqn]. (12)

Since E[r2] is bounded and the sequence {E[r2]`max
}∞`max=0 of partial sums is a monotonically in-

creasing sequence, {E[r2]`max
}∞`max=0 is a convergent sequence. Although an analytic expression

for the rate of convergence is difficult to obtain, we have empirically observed that the sequence

converges quite fast. Shown in Figure 3a and Figure 3b are plots of E[r2]`max
as a function of `max

for ρ = 1 and ρ = 10, respectively. For given θ and ρ, ER2 took a few minutes on a laptop to

compute E[r2]`max
up to `max = 700. The rate of convergence of E[r2]`max

seems to depend on θ

and ρ; E[r2]`max
converges faster for smaller ρ and larger θ.
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(b)
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E
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2
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m
a
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0.035
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Figure 3: Plots of level truncated estimate E[r2]`max
, defined in (12), for various values of θ and ρ.

(a) Plots for ρ = 1. (b) Plots for ρ = 10. For a given pair of θ and ρ, our software ER2 took a
few minutes on a laptop to compute E[r2]`max

up to `max = 700. As these plots show, the sequence
{E[r2]`max

}∞`max=0 of partial sums converges fast in general. The precise rate of convergence of
depends on θ and ρ.
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2.6 Simplification: even from odd or odd from even

The amount of computation involved in our algorithm can be reduced considerably using

E[D`pmqn] = (−1)` E[D`pm(1− q)n] = (−1)` E[D`(1− p)mqn],

which is valid under the assumed model of mutation. This simple observation implies the following

set of relations:

[1− (−1)n] E[D2kpmqn] =
n−1
∑

j=0

(

n

j

)

(−1)j E[D2kpmqj ], (13)

[1− (−1)m] E[D2kpmqn] =
m−1
∑

j=0

(

m

j

)

(−1)j E[D2kpjqn], (14)

[1 + (−1)n] E[D2k+1pmqn] = −
n−1
∑

j=0

(

n

j

)

(−1)j E[D2k+1pmqj ], (15)

[1 + (−1)m] E[D2k+1pmqn] = −
m−1
∑

j=0

(

m

j

)

(−1)j E[D2k+1pjqn]. (16)

Relations (13) and (14) allow us to express E[D2kpmqn] for odd m or odd n purely in terms of

E[D2kpiqj], where i ≤ m and j ≤ n are both even. In a similar vein, relations (15) and (16) allow

us to express E[D2k+1pmqn] for even m or even n purely in terms of E[D2k+1piqj ], where i ≤ m

and j ≤ n are both odd. Relations (13)–(16), together with the aforementioned observation that

E[D`pmqn] = E[D`pnqm], significantly reduce the number of expectations that need to be computed
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explicitly. For example, it is straightforward to show that

E[D2kp4q3] = E[D2kp3q4] =
1

4

(

6E[D2kp4q2]− E[D2kp4]
)

,

E[D2kp3q3] =
1

16

(

E[D2k]− 12E[D2kp2] + 36E[D2kp2q2]
)

,

E[D2k+1p4q4] = 4E[D2k+1p3q3]− 4E[D2k+1p3q1] + E[D2k+1pq],

E[D2k+1pr] = E[D2k+1qr] = 0, for all r ≥ 0.

Furthermore, E[r2]`max
in (12) can be written purely in terms of E[D2pmqn] in which both m and

n are even, thus leading to a more efficient method of computing E[r2]`max
.

3 Comparison of E[r2] with σ2
d and coalescent simulations

In this section, we compare our computation of the expectation E[r2] with averages of r2 from

coalescent simulations and also with the quantity

σ2
d =

E[D2]

E[p(1− p)q(1− q)] =
10 + ρ+ 4 θ

22 + 13 ρ+ ρ2 + 6 θρ+ 32 θ + 8 θ2
, (17)

obtained by Ohta and Kimura (1969b) under the same model as in the present paper. Previous

simulation-based study, in the context of an infinitely-many-alleles model, has shown that σ2
d can be

substantially larger than E[r2] (Maruyama, 1982). Hudson (1985) has shown, however, that σ2
d is

a reasonably good approximation of the sample estimated expectation of r2 that is conditioned on

minor allele frequencies being above 5%. The discussion below pertains to our assumed recurrent

mutation model, taking all frequencies into account.

Shown in Figure 4 is a plot of E[r2] computed using our method, with `max = 700 as truncation

level. A plot of σ2
d is shown in Figure 5a. As Figure 5b shows, E[r2] and σ2

d can be considerably

different for certain parameter values. The figure shows that E[r2] and σ2
d agree well for θ > 4.

15



0

0.02

0.04

0.06

0.08

0.10

0.12

θ

10
8

6
4

2
0

ρ

20
15

10
5

0

E[r2]

Figure 4: A plot of E[r2] computed using our method, truncated at level `max = 700. Parameters
θ and ρ denote the population-scaled mutation and recombination rates, respectively.

However, for small θ (say θ ≤ 1, which corresponds to a typical biologically interesting range), σ2
d can

be larger than E[r2] by a substantial amount (sometimes by tens of times), as in the aforementioned

case of an infinitely-many-alleles model (Maruyama, 1982; Hudson, 1985). Numerical values of E[r 2]

and σ2
d are shown in Table 1a and Table 1b, respectively. For θ ≤ 1, E[r2] decreases as θ decreases,

attaining negligibly small values for very small θ. In contrast, σ2
d can be very large even for very

small θ. Note that σ2
d is a monotonically decreasing function of both θ and ρ. However, our

computation indicates that, although E[r2] is a monotonically decreasing function of ρ, it is not

a monotonically decreasing function of θ. For example, E[r2] peaks at θ ≈ 1.5 for ρ = 0 and at

θ ≈ 2.8 for ρ = 20.

We also carried out coalescent simulations to estimate average r2. We used Treevolve (available

from http://evolve.zoo.ox.ac.uk/software.html?id=treevolve, Grassly et al. 1999) with a constant

population size of 104, and performed at least 10, 000 simulations for each pair of ρ and θ considered.

In every simulation, we generated 200 sequences each with exactly 2 sites. Mutation parameters

were chosen to simulate a symmetric recurrent mutation model with two possible alleles per site.

Table 1c shows a summary of average r2 when no restriction is imposed on segregation. For θ ≤ 2,

they are much closer to our theoretical computation of E[r2] (see Table 1a) than they are to σ2
d
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Figure 5: Comparison of σ2
d and our computation of E[r2]. (a) A plot of σ2

d. (b) Superimposed
plots of σ2

d and E[r2], the latter (in dotted lines) being the same as that shown in Figure 4. Note
that E[r2] and σ2

d exhibit very different behavior for certain parameter ranges. In particular, for
θ < 1, σ2

d is larger than E[r2] by a substantial amount.

(see Table 1b). As shown in Table 1d, however, when conditioned on segregation at both sites,

sample estimated average r2 increases substantially for small θ, resembling the behavior of σ2
d. As

Hudson (1985) noted, conditioning on minor allele frequencies being above 5% will make the sample

estimated average of r2 become even closer to σ2
d. For large θ (say, θ ≥ 4), note that average r2

estimated from simulations tends to be slightly smaller than E[r2] for ρ < 5, while being slightly

larger than E[r2] for large ρ (say, ρ > 10).

4 Asymptotic behavior: Large ρ limit

Although a general closed-form formula for E[r2] is difficult to obtain, it is possible to use our

method to find relevant closed-form expressions in the limit ρ → ∞. It is easy to see from (17)

that the asymptotic behavior of σ2
d is given by

σ2
d =

1

ρ
+O(ρ−2)
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Table 1: Numerical comparison of E[r2], σ2
d, and average r2 from coalescent simulations. (a) Our

computation of E[r2] using `max = 700. (b) σ2
d. (c) Average r2 from coalescent simulations, with no

restriction on segregation. (d) Average r2 from coalescent simulations, conditioned on segregation
at both sites. In coalescent simulations, we used Ne = 104 and generated 200 sequences each
with exactly 2 sites. For each pair of ρ and θ, at least 10, 000 simulated data sets were used to
compute the average r2. For θ ≥ 4, almost all simulated data sets had segregation at both sites,
thus explaining why (c) and (d) are the same for θ ≥ 4.

(a)
θ

ρ 0.1 0.2 0.4 0.6 0.8 1.0 2.0 4.0 6.0 8.0 10.0

0.0 0.008 0.024 0.056 0.079 0.094 0.103 0.106 0.081 0.063 0.051 0.042
1.0 0.006 0.018 0.043 0.062 0.076 0.085 0.093 0.075 0.059 0.048 0.041
2.0 0.005 0.014 0.035 0.052 0.064 0.072 0.083 0.069 0.056 0.046 0.039
5.0 0.003 0.009 0.024 0.036 0.045 0.052 0.063 0.056 0.047 0.040 0.035

10.0 0.002 0.006 0.016 0.025 0.031 0.036 0.045 0.043 0.038 0.033 0.030
20.0 0.001 0.004 0.011 0.016 0.020 0.023 0.030 0.030 0.027 0.025 0.023

(b)
θ

ρ 0.1 0.2 0.4 0.6 0.8 1.0 2.0 4.0 6.0 8.0 10.0

0.0 0.411 0.376 0.322 0.281 0.250 0.226 0.153 0.094 0.068 0.053 0.044
1.0 0.286 0.269 0.240 0.217 0.199 0.183 0.132 0.085 0.063 0.050 0.042
2.0 0.220 0.209 0.192 0.177 0.165 0.154 0.116 0.079 0.060 0.048 0.040
5.0 0.130 0.127 0.120 0.114 0.109 0.104 0.086 0.064 0.051 0.042 0.036

10.0 0.078 0.077 0.074 0.072 0.070 0.068 0.060 0.048 0.040 0.035 0.030
20.0 0.044 0.043 0.042 0.042 0.041 0.040 0.037 0.032 0.029 0.026 0.023

(c)
θ

ρ 0.1 0.2 0.4 0.6 0.8 1.0 2.0 4.0 6.0 8.0 10.0

0.0 0.013 0.033 0.069 0.095 0.102 0.111 0.105 0.077 0.057 0.050 0.040
1.0 0.009 0.024 0.056 0.075 0.088 0.095 0.091 0.072 0.056 0.045 0.039
2.0 0.007 0.019 0.046 0.063 0.075 0.080 0.085 0.067 0.053 0.044 0.038
5.0 0.005 0.014 0.032 0.044 0.057 0.059 0.067 0.056 0.047 0.040 0.035

10.0 0.003 0.009 0.023 0.032 0.039 0.043 0.050 0.045 0.039 0.034 0.031
20.0 0.002 0.006 0.015 0.022 0.026 0.029 0.034 0.033 0.030 0.027 0.026

(d)
θ

ρ 0.1 0.2 0.4 0.6 0.8 1.0 2.0 4.0 6.0 8.0 10.0

0.0 0.131 0.128 0.126 0.125 0.121 0.119 0.106 0.077 0.057 0.050 0.040
1.0 0.093 0.093 0.097 0.099 0.102 0.103 0.095 0.072 0.056 0.045 0.039
2.0 0.076 0.078 0.081 0.082 0.088 0.091 0.084 0.067 0.053 0.044 0.038
5.0 0.051 0.052 0.057 0.059 0.062 0.066 0.067 0.056 0.047 0.040 0.035

10.0 0.037 0.038 0.041 0.042 0.046 0.048 0.051 0.045 0.039 0.034 0.031
20.0 0.024 0.026 0.028 0.029 0.031 0.032 0.035 0.033 0.030 0.027 0.026
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(Ohta and Kimura, 1969b). In this section, we use our method to show rigorously that the leading

term of E[r2] in the limit ρ→∞ also goes like 1/ρ, without any dependence on θ; i.e.,

E[r2] =
1

ρ
+O(ρ−2).

4.1 Asymptotic behavior of E[D2pmqn]

In our formulation (c.f., (4)), recall that computing E[r2] amounts to computing E[D2pmqn], for

m,n ≥ 0. No closed-form formula for E[D2pmqn] is known for arbitrary parameter values, and

therefore we have constructed an algorithm that can be used to compute E[D2pmqn] up to some

chosen level `max = m + n. In the limit ρ → ∞, however, it turns out that we can obtain a

closed-form formula for the leading term in the asymptotic expansion of E[D2pmqn]. This analysis

goes as follows: To find the asymptotic behavior

E[D2pmqn] =
C(θ)

ρ
+O(ρ−2),

where C(θ) is some function of θ to be determined, let D̃2 = ρD2. Then, in the limit ρ→∞, the

master equation (2) can be written in terms of p, q, and D̃ as

E
[

p(1− p)
2

∂2f

∂p2
+
q(1− q)

2

∂2f

∂q2
+ D̃(1− 2p)

∂2f

∂p ∂D̃
+ D̃(1− 2q)

∂2f

∂q ∂D̃
+

+
1

2

[

ρ pq(1− p)(1− q) +
√
ρD̃(1− 2p)(1− 2q)− D̃2

] ∂2f

∂D̃2
+

+
θ

4
(1− 2p)

∂f

∂p
+
θ

4
(1− 2q)

∂f

∂q
− ρ

2
D̃
∂f

∂D̃

]

= 0. (18)
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Substituting pm, qn, pmqn, D̃pmqn and D̃2pmqn for f in (18) and letting ρ → ∞, we obtain the

following recursion relations, respectively:

E[pm] =

(

θ
2 + n− 1

θ + n− 1

)

E[pn−1],

E[qn] =

(

θ
2 + n− 1

θ + n− 1

)

E[qn−1],

E[pmqn] =
( θ2 +m− 1)E[pm−1qn] + ( θ2 + n− 1)E[pmqn−1]

m(θ +m− 1) + n(θ + n− 1)
,

E[D̃pmqn] = 0

E[D̃2pmqn] = E[pm+1qn+1]− E[pm+1qn+2]− E[pm+2qn+1] + E[pm+2qn+2].

Now, these recursions can be solved exactly; their solutions are given by

E[pn] = E[qn] =

(

θ
2

)[n]

(θ)[n]
,

E[pmqn] = E[pm]E[qn] =

(

θ
2

)[n] ( θ
2

)[m]

(θ)[n] (θ)[m]
,

E[D̃2pmqn] =

(

1−
θ
2 + n+ 1

θ + n+ 1

)(

1−
θ
2 +m+ 1

θ +m+ 1

)

E[pm+1qn+1] =
1

4

(

θ
2

)[m+1] ( θ
2

)[n+1]

(θ + 1)[m+1] (θ + 1)[n+1]
,

where (z)[k] denotes the rising factorial defined in (7). Since D2 = D̃2/ρ, the last equation implies

that, in the limit ρ→∞,

E[D2pmqn] =
1

4

(

θ
2

)[m+1] ( θ
2

)[n+1]

(θ + 1)[m+1] (θ + 1)[n+1]

1

ρ
+O(ρ−2). (19)

As a non-trivial check, consider E[D2p4q2] as a rational function of ρ and θ; the numerator has

degree 13 in ρ and degree 21 in θ, while the denominator has degree 14 in ρ and degree 22 in θ. In
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the limit ρ→∞, one can show that the asymptotic behavior of this rational function is

E[D2p4q2] =
θ2(θ + 4)(θ + 6)(θ + 8)

1024 (θ + 5)(θ2 + 4 θ + 3)2
1

ρ
+O(ρ−2),

which agrees with (19) when m = 4, n = 2. We used our Mathematica program to make similar

checks for other values of m,n.

4.2 Asymptotic behavior of E[r2]

Since E[r2] = 4
∑

m,n E[D2pmqn], to study the behavior of E[r2] in the limit ρ→∞, we need to sum

over m and n in (19). For M a non-negative integer, we prove the following formula in Appendix A:

M
∑

m=0

(

θ
2

)[m+1]

(θ + 1)[m+1]
= 1−

(

θ
2 + 1

)[M+1]

(θ + 1)[M+1]
. (20)

The right hand side of (20) can be written in terms of Γ-functions using the fact that (x+ 1) [M+1] =

Γ(x+M + 2)/Γ(x + 1). Taking the limit M →∞ and using Stirling’s formula for the asymptotic

expansion of Γ-functions, we obtain, for θ > 0,

∞
∑

m=0

(

θ
2

)[m+1]

(θ + 1)[m+1]
= 1 . (21)

Thus, in the limit ρ→∞, equations (19) and (21) together imply

E[r2] = 4
∞
∑

m=0

∞
∑

n=0

E[D2pmqn] =
1

ρ
+O(ρ−2),

in which the leading term is independent of θ. As mentioned before, this behavior agrees with the

asymptotic limit of σ2
d = E[D2]/E[p(1 − p)q(1− q)] found by Ohta and Kimura (1969b).
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5 Discrete process

In this section, we consider a description of the model in discrete time with a finite state space.

This description was used by Hill and Robertson (1968) in their moment-generating matrix method,

later extended by Ohta and Kimura (1969b) to include recurrent mutation. Although the discrete

process is conceptually easy to grasp, computation in that framework is more complicated than in

the diffusion approximation approach. Our goal in this section is to demonstrate that computing

expectations in the discrete process can be facilitated by combinatorial techniques, and that such

computations may prove useful for studying the accuracy of the diffusion approximation approach.

5.1 Expected changes after one generation

We use p and q to denote the marginal allele frequencies, and fij to denote the frequency of the

gametic type AiBj at the start of generation t. After mutation, the expected marginal allele

frequencies are

pu = (1− 2u)p+ u and qu = (1− 2u)q + u,

while the expected gametic frequencies f uij are given by

fu00 = f00 + u(f01 + f10)− 2uf00,

fu01 = f01 + u(f00 + f11)− 2uf01,

fu10 = f10 + u(f00 + f11)− 2uf10,

fu11 = f11 + u(f01 + f10)− 2uf11.
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Note that, pu = fu00 + fu01 and qu = fu00 + fu10. Expected gametic frequencies after recombination

are given by

f c00 = (1− c)fu00 + cpuqu,

f c01 = (1− c)fu01 + cpu(1− qu),

f c10 = (1− c)fu10 + c(1− pu)qu,

f c11 = (1− c)fu11 + c(1− pu)(1− qu),

and expected frequencies after sampling can be obtained from taking expectations with respect to

the following multinomial probability density:

PS(i, j, k | 2Ne) =
(2Ne)!

i!j!k!(2Ne − i− j − k)!
(f c00)i(f c01)j(f c10)k(f c11)2Ne−i−j−k.

In the remainder of this section, we use ES to denote the expectation with respect to the sampling

probability PS(i, j, k | 2Ne), and E to denote the expectation with respect to the joint distribution

of marginal allele frequencies and linkage disequilibrium.

5.2 Exact computation of E[pl]

In the algorithm described in Section 2.4, the expectation E[pl] appears in some linear equations, and

our computation of the expectation E[r2] depends on E[pl]. The accuracy of E[pl] therefore reflects

the accuracy of the diffusion process approximation. In what follows, we compute E[p l] exactly in

the discrete process setting and compare it with the answer from the diffusion approximation.

We first describe our exact computation of E[pl]. It is straightforward to show that the expo-
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nential generating function ES[ex(I+J)] is given by

ES[ex(I+J)] =

2Ne
∑

i=0

2Ne−i
∑

j=0

2Ne−i−j
∑

k=0

ex(i+j)PS(i, j, k | 2Ne) = [(f c00 + f c01)ex + f c10 + f c11)]2Ne ,

which, using f c00 + f c01 + f c10 + f c11 = 1 and f c00 + f c01 = pu, can be simplified as

ES[ex(I+J)] = [(f c00 + f c01)(ex − 1) + 1]2Ne = [pu(ex − 1) + 1]2Ne .

We denote by p′ the marginal allele frequency at locus 1 at the start of generation t+ 1. Then,

E[(p′)l] = EES

[

(

I + J

2Ne

)l
]

= E
[

1

(2Ne)l
∂l

∂xl
ES[ex(I+J)]

∣

∣

∣

∣

x=0

]

. (22)

We now describe how ES[ex(I+J)] can be computed exactly. First, define G(x) := pu(ex− 1) + 1

(i.e., ES[ex(I+J)] = [G(x)]2Ne ) and

H(j, k) :=
∂j

∂xj
[G(x)]k

∣

∣

∣

∣

x=0

, (23)

for k ≥ j. Then, since

∂j

∂xj
[G(x)]k = k

∂j−1

∂xj−1

{

pue
x[G(x)]k−1

}

= k
∂j−1

∂xj−1

{

[G(x)]k − (1− pu)[G(x)]k−1
}

,

we see that H(j, k) satisfies the following recursion relation:

H(j, k) = k[H(j − 1, k)− (1− pu)H(j − 1, k − 1)]. (24)

The boundary condition for this recursion is H(1, k) = kpu, for all k ≥ 1, and, as shown in
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Appendix B, the solution is given by

H(j, k) =

j
∑

i=1

(k)[i] S(j, i)piu, (25)

where (z)[i] denotes the falling factorial, defined as

(z)[i] := z(z − 1) · · · (z − i+ 1), (26)

and S(j, i) is the Stirling number of the second kind, defined as the number of partitions of

{1, 2, . . . , j} into i non-empty subsets.

At stationarity, E[(p′)l] = E[pl], and we can use (22), (23) and (25) to obtain

E[pl] =
1

(2Ne)l

l
∑

i=1

(2Ne)[i] S(l, i)E[((1 − 2u)p+ u)i], (27)

where we have substituted pu = (1 − 2u)p+ u. After some rearrangement, this equation allows us

to compute E[pl] recursively. We remark that E[1] = 1 implies E[p] = 1/2 for all u and Ne.

5.3 Approximation for small u and large Ne

We now consider a case in which u� 1 and (1/Ne)� 1, such that terms proportional to ui(1/Ne)
j

where i+ j > 1 may be ignored. For small u, note that

pku ≈ uk(pk−1 − 2pk) + pk.

Expanding the right hand side of (27) up to first order in either u or 1/(2Ne), but not both, gives

E[pl] ≈ S(l, l)

[(

1− 1

2Ne

l(l − 1)

2

)

E[pl] + ul(E[pl−1]− 2E[pl])

]

+
1

2Ne
S(l, l − 1)E[pl−1],
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Table 2: Numerical values of E[pm] obtained from the exact recursion (27) or the approximate
recursion (28). Results obtained from (28), which has no explicit dependence on the effective
population size Ne, are equal to that from the diffusion process approximation.

m
θ Recursion Used 50 100 150 200 250 300 350 400

0.1 Eq.(27), Ne = 102 0.404 0.392 0.386 0.383 0.380 0.378 0.377 0.376
Eq.(27), Ne = 103 0.402 0.389 0.381 0.376 0.372 0.369 0.366 0.364
Eq.(27), Ne = 104 0.402 0.388 0.380 0.375 0.371 0.368 0.365 0.362
Eq.(28) 0.402 0.388 0.380 0.375 0.371 0.367 0.365 0.362

1.0 Eq.(27), Ne = 102 0.0834 0.0621 0.0533 0.0485 0.0454 0.0434 0.0419 0.0409
Eq.(27), Ne = 103 0.0800 0.0569 0.0467 0.0407 0.0366 0.0336 0.0312 0.0294
Eq.(27), Ne = 104 0.0796 0.0564 0.0461 0.0400 0.0358 0.0327 0.0303 0.0283
Eq.(28) 0.0796 0.0563 0.0460 0.0399 0.0357 0.0326 0.0301 0.0282

which, since S(l, l) = 1 and S(l, l − 1) = l(l − 1)/2, implies

E[pl] ≈
(

θ
2 + l − 1

θ + l − 1

)

E[pl−1], (28)

which, in turn, implies E[pl] ≈
(

θ
2

)[l]
/ (θ)[l]. Similar results hold for E[ql]. Note that (28) is precisely

the result we have obtained in (5) using diffusion theory. This example well illustrates the power

of diffusion approximation; relations like (5) can be obtained very easily in that approach, whereas

they may require a lot of effort to derive in the discrete analogue.

5.4 Comparison of the exact and approximate solutions

We now compare some results from the exact recursion (27) with that from the approximate

recursion (28). Note that the former explicitly depends on the effective population size Ne, whereas

the latter does not. Table 2 shows that, for fixed θ, (28) becomes a better approximation to the

exact recursion (27) as Ne increases. Further, for small Ne, (28) becomes a significantly better

approximation as the scaled mutation rate θ decreases. For Ne ≥ 104, (28) is in general a good

approximation for all θ ≤ 1.
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6 Discussion

Although we have considered a symmetric recurrent mutation model for simplicity, the technique

developed in this paper can be generalized to other mutation models. In particular, for a case

with non-symmetric mutation rates or with unequal mutation rates at different loci, it should be

straightforward to devise an algorithm similar to that in Section 2.4. Further, it should be possible

to generalize our method to include natural selection, as described in (Ohta and Kimura, 1969a).

As we have shown in this paper, one can use our method to compute E[r2] numerically for

given θ and ρ. It would, of course, be desirable if we could obtain a closed-form formula for E[r2].

We believe that that is not completely out of reach. We here conclude with a description of an

alternative perspective that may prove useful for future work on deriving a closed-form formula for

E[r2]. If f = Dpm+1qn+1 is used in the master equation (2), we obtain

4(1 +m)(1 + n)E[D2pmqn] = 2[ρ+ θ(4 +m+ n) + 10 +m2 + n2 + 5m+ 5n]E[Dpm+1qn+1]

−(1 +m)(4 + 2m+ θ)E[Dpmq1+n]− (1 + n)(4 + 2n+ θ)E[Dpm+1qn]. (29)

Further, using f = pkql, one can show that

E[Dpk−1ql−1] =
1

2kl

{

[k(k − 1 + θ) + l(l − 1 + θ)]E[pkql]

−k
(

k − 1 +
θ

2

)

E[pk−1ql]− l
(

l − 1 +
θ

2

)

E[pkql−1]

}

. (30)

Hence, if the joint expectation E[piqj] of powers of marginal frequencies are known, then E[D2pmqn]

can easily be computed using (29) and (30), and there would be no need to solve systems of coupled

equations as described in Section 2.4. At this point, however, we do not know how to obtain a

general expression for E[piqj]. Using (6), we can obtain the following generating function for E[pk]
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and E[qk]:

E[eαp] = E[eαq] = 2θ−1 e
α

2 α
1

2
− θ

2 I θ−1

2

(α

2

)

Γ

(

1

2
+
θ

2

)

,

where Iν(z) is the modified Bessel function of the first kind. Moreover, we can show that the

generating function E[eαp+βq] for E[piqj ] has the form

E[eαp+βq] = E[eαp]E[eβq]h(α2, β2), (31)

where h(α2, β2) is a symmetric function in α2 and β2. We believe that finding an explicit formula

for h(α2, β2) is worthy of further research, since knowing the generating function E[eαp+βq] may

lead to a closed-form formula for E[r2].

Acknowledgment

We thank Charles H. Langley for helpful comments. This research is supported in part by grants

CCF-0515278 and IIS-0513910 (YSS) from National Science Foundation.

28



References

Ethier, S. N., Griffiths, R. C., 1990. On the two-locus sampling distribution. J. Math. Biol. 29,

131–159.

Golding, G. B., 1984. The sampling distribution of linkage disequilibrium. Genetics 108, 257–274.

Grassly, N. C., Harvey, P. H., Holmes, E. C., 1999. Population dynamics of

HIV-1 inferred from gene sequences. Genetics 151, 427–438, (Software webpage:

http://evolve.zoo.ox.ac.uk/software.html?id=treevolve).

Hill, W. G., Robertson, A., 1968. Linkage disequilibrium in finite populations. Theor. Appl. Genet.

38, 226–231.

Hill, W. G., Weir, B. S., 1994. Maximum-likelihood estimation of gene location by linkage disequi-

librium. Am. J. Hum. Genet. 54, 705–714.

Hudson, R. R., 1985. Sampling distribution of linkage disequilibrium under an infinite allele model

without selection. Genetics 109, 611–631.

Hudson, R. R., 2001a. Linkage disequilibrium and recombination. In: Balding, D. J., Bishop, M.,

Canning, C. (Eds.), Handbook of Statistical Genetics. Wiley, pp. 309–324.

Hudson, R. R., 2001b. Two-locus sampling distributions and their application. Genetics 159, 1805–

1817.

International HapMap Consortium, 2005. A haplotype map of the human genome. Nature 437,

1299–1320.

Maruyama, T., 1982. Stochastic integrals and their application to population genetics. In: Kimura,

M. (Ed.), Molecular Evolution, Protein Polymorphism and their Neutral Theory. Springer-Verlag,

Berlin, pp. 151–166.

29



McVean, G. A. T., 2002. A genealogical interpretation of linkage disequilibrium. Genetics 162,

987–991.

Ohta, T., Kimura, M., 1969a. Linkage disequilibrium due to random genetic drift. Genet. Res.

Camb. 13, 47–55.

Ohta, T., Kimura, M., 1969b. Linkage disequilibrium at steady state determined by random genetic

drift and recurrent mutation. Genetics 63, 229–238.

Pritchard, J. K., Przeworski, M., 2001. Linkage disequilibrium in humans: models and data. Am.

J. Hum. Genet. 69, 1–14.

30



Appendix

A Proof of Equation (20)

We prove the claim by induction. The lemma clearly holds for M = 0. Now, assume the case for

M . Then, using the induction hypothesis, we have

M+1
∑

n=0

(

θ
2

)[n+1]

(θ + 1)[n+1]
= 1−

(

θ
2 + 1

)[M+1]

(θ + 1)[M+1]
+

(

θ
2

)[M+2]

(θ + 1)[M+2]

= 1−
(

θ
2 + 1

)[M+1]
(θ +M + 2)−

(

θ
2

)[M+2]

(θ + 1)[M+2]

= 1−
(

θ
2 + 1

)[M+1]
(θ +M + 2− θ

2)

(θ + 1)[M+2]

= 1−
(

θ
2 + 1

)[M+2]

(θ + 1)[M+2]
,

which proves the claim.

B Proof of Equation (25)

Let X,Y and Z be finite sets of order x, y and z. Let Φ = {ϕ : X → Y } be the set of all maps

from X to Y and likewise for Ψ = {ψ : Y → Z}, with order of |Φ| = yx and |Ψ| = zy. Now

define Rϕ,ψ = {(x, y, z) ∈ X × Y × Z | y = ϕ(x) and z = ψ(y)} for each pair ϕ ∈ Φ, ψ ∈ Ψ. Let

R = {Rϕ,ψ|ϕ ∈ Φ, ψ ∈ Ψ} and Hz(x, y) := |R|. Note that Rϕ,ψ may be equal to Rϕ′,ψ′ for ϕ 6= ϕ′

and ψ 6= ψ′, and Hz(x, y) counts the number of distinct sets Rϕ,ψ in R.

Lemma B.1 Hz(x, y) can be expressed as

Hz(x, y) =

x
∑

i=1

(y)[i]S(x, i)zi,
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where S(x, i) denotes the Stirling number of the second kind. In particular, Hz(1, y) = y z.

Proof: We first partition R as R = R1 t · · · t Rx where Ri = {Rϕ,ψ| |ϕ(X)| = i}. Then, there

are z choices for mapping i preimages of ψ, (y)[i] choices for the i image of ϕ, and S(x, i) ways

of partitioning X into kernels of ϕ. Hence, |Ri| = (y)[i]S(x, i)zi. Summing over i thus gives the

desired result.

Lemma B.2 Hz(x, y) satisfies the recursion relation

Hz(x, y) = y[Hz(x− 1, y) + (z − 1)Hz(x− 1, y − 1)]

with initial condition Hz(1, y) = y z.

Proof: Fix an element a ∈ X and c ∈ Z, and define X̃ = X \ {a} and Z̃ = Z \ {c}. Then, we can

partition R as R = R1 tR2 tR3, where

R1 = {Rϕ,ψ | ϕ(a) ∈ ϕ(X̃)},

R2 = {Rϕ,ψ | ϕ(a) /∈ ϕ(X̃), ψ(ϕ(a)) = c},

R3 = {Rϕ,ψ | ϕ(a) /∈ ϕ(X̃), ψ(ϕ(a)) 6= c}.

Now, define R̃ϕ̃,ψ to be as before by replacing X by X̃ . Then, to each of the Hz(x − 1, y) sets

R̃ϕ̃,ψ, we can obtain y sets Rϕ,ψ by adjoining one element (a, b, ψ(b)) for b ∈ ϕ̃(X̃) and (a, b, c) for

b /∈ ϕ̃(X̃), and extending ϕ̃ to ϕ so that ϕ(a) = b. Then, there exits a one-to-one correspondence

between the set of all such sets obtained and R1tR2, and we thus see that |R1tR2| = yHz(x−1, y).

It is also easy to see that |R3| = y(z − 1)Hz(x− 1, y − 1).

Note that even when z is not an integer, Hz(x, y) still satisfies the recursion relation in Lemma B.2

as a purely algebraic relation.

32


