
Runtime Data Layout Scheduling for Machine Learning Dataset

Yang You
Computer Science Division, UC Berkeley, CA, USA

youyang@cs.berkeley.edu

James Demmel
Computer Science Division, UC Berkeley, CA, USA

demmel@cs.berkeley.edu

Abstract—Machine Learning (ML) approaches are widely-
used classification/regression methods for data mining appli-
cations. However, the time-consuming training process greatly
limits the efficiency of ML approaches. We use the example
of SVM (traditional ML algorithm) and DNN (state-of-the-art
ML algorithm) to illustrate the idea in this paper. For SVM,
a major performance bottleneck of current tools is that they
use a unified data storage format because the data formats
can have a significant influence on the complexity of storage
and computation, memory bandwidth, and the efficiency of
parallel processing. To address the problem above, we study the
factors influencing the algorithm’s performance and conduct
auto-tuning to speed up SVM training. DNN training is even
slower than SVM. For example, using a 8-core CPUs to train
AlexNet model by CIFAR-10 dataset costs 8.2 hours. CIFAR-10
is only 170 MB, which is not efficient for distributed processing.
Moreover, due to the algorithm limitation, only a small batch of
data can be processed at each iteration. We focus on finding the
right algorithmic parameters and using auto-tuning techniques
to make the algorithm run faster. For SVM training, our
implementation achieves 1.7−16.3× speedup (6.8× on average)
against the non-adaptive case (using the worst data format) for
various datasets. For DNN training on CIFAR-10 dataset, we
reduce the time from 8.2 hours to only roughly 1 minute. We
use the benchmark of dollars per speedup to help the users to
select the right deep learning hardware.

Keywords-parallel auto-tuning; machine learning

I. INTRODUCTION

Machine Learning (ML) approaches are widely-used clas-
sification/regression methods for data mining applications.
In recent years, ML approaches were adapted to the field
of High Performance Computing for power/performance
prediction, auto-tuning, and runtime scheduling. However,
the time-consuming training process greatly limits the ef-
ficiency of ML approaches. For example, it takes days or
weeks to train a Deep Neural Network (DNN) or a Support
Vector Machines (SVM) model. This concern is likely to
be magnified by the increasing volume of data in the Big
Data era. Meanwhile, this issue is also exacerbated by the
loss of increase in clock frequency and rise of many-core
architectures, whose massive parallelism and complex mem-
ory hierarchies form a barrier to efficient parallel ML design
due to the fact that a typical ML application often is a data-
intensive, memory-bound, and irregular-access application.
While previous ML designers could depend on the ready-
made performance improvement that comes from a faster
clock rate ([1], [2], [3]), now they have to face the challenges

of scaling the performance over tens or even hundreds of
cores within a single node. For example, the latest Intel
Knights Landing architecture has 72 cores on a single chip.
We use the example of SVM (traditional ML algorithm) and
DNN (state-of-the-art ML algorithm) to illustrate the ideas
in this paper.

Previous SVM tools only support one type of data format.
For example, LIBSVM (state-of-the-art implementation on
CPUs [4]) employs the CSR (Compressed Sparse Row)
format for all datasets. GPUSVM (state-of-the-art imple-
mentation on GPUs [5]) uses the DEN (Dense) format
for all the datasets to achieve high efficiency for parallel
processing. However, using a unified data storage format
could be a major bottleneck for performance enhancement
because the data formats can have a significant influence
on the complexity of storage and computation, memory
bandwidth, and the efficiency of parallel processing. Figure
1 shows the performance comparison among different data
formats processed by SVM. It clearly shows that the most
suitable formats for different datasets vary significantly. To
address the problem above, we study the factors influencing
the algorithm’s performance and conduct auto-tuning to
speed up SVM training.

DNN often performs very well for the complicated ap-
plications like computer vision. However, the training part
of DNN is very slow. For example, using a 8-core CPUs
to train AlexNet model by CIFAR-10 dataset [6] costs 8.2
hours. CIFAR-10 is only 170 MB, which is not efficient
for distributed processing. Moreover, due to the algorithm
limitation, only a small batch of data can be processed at
each iteration. The algorithm requires many iterations. We
focus on finding the right algorithmic parameters and using
auto-tuning techniques to make the algorithm run faster.

Our experiments show that our SVM implementation can
achieve 1.7 − 16.3× speedup (6.8× on average) against
the non-adaptive case (using the worst data format) for
various real-world social and scientific datasets. If we use
the parallel LIBSVM (state-of-the-art SVM software on
CPUs using CSR format) as the baseline, the speedups are
1.2 - 16.5× (4 × on average). If we use our own CSR
implementation as the baseline, the average speedup of our
version over fixed-CSR version is 1.3×. For DNN training
on CIFAR-10 dataset, we successfully reduce the time from
8.2 hours to only roughly 1 minute. Our auto-tuning strategy

can be used in similar applications. We use the benchmark
of dollars per speedup to help the users to select the right
deep learning hardware.

II. BACKGROUND

A. Traditional Machine Learning

Machine Learning approaches usually include two kinds
of applications: classification and regression. One of the
state-of-the-art traditional ML methods is Support Vector
Machines (SVM) [7]. We use SVM to illustrate the com-
putational bottleneck of traditional ML approaches.

The ML algorithm generally includes two parts: (1)
Training and (2) Prediction. In the training part, we use the
optimization algorithms to generate a model M based on the
observed data (the information we know). We refer to the
observed data as the training dataset. The training dataset
includes a n × d matrix X and a n dimensional vector y.
n is the number of observations or the number of samples.
d is the number of features. The label of Xi (i-th row of
X) is yi (i-th element of y). If the training dataset has k
classes, i.e. the samples can be classified into k categories,
then yi ∈ {1, 2, ..., k}. A concrete example is that we can
use 100 people’s blood type, weight and height information
to classify them into two parts (n = 100, d = 3, and k = 2).
The data structure of the regression problem is identical to
that of the classification problem. The only difference is that
yi ∈ R for the regression problem. Because the training
part costs much more time than the prediction part, previous
work focused on speeding up the training part ([5], [8], [9],
[10], [11], [12]). Like them, this paper is also focused on
accelerating the training part.

1) SVM Training Phase: In this work, we focus on
binary-class SVMs since multi-class SVMs are generally
implemented as several independent binary-class SVMs.
The multi-class SVMs can be easily trained in parallel
once the binary-class SVMs are available. SVM training
can be presented as a linear-constraint convex Quadratic
Programming (QP) problem (Equations (1) and (2)), where
C represents the regularization constant that balances the
generality and accuracy, αi is the Lagrange multiplier, and
Ki,j denotes the Kernel value of Xi and Xj (Table I). αi is
related to training sample Xi. C can be set by users and each
αi is related to a specific training sample Xi. The standard
Kernel functions in SVM are shown in Table I. The objective
of SVM training part is to get the model α. Then we use
α and the training dataset to predict the label for a given
sample from the test dataset.

Maximize: F (α) =
n∑

i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjKi,j (1)

Subject to:
n∑

i=1

αiyi = 0 and 0 ≤ αi ≤ C,∀i ∈ 1, 2, ..., n (2)

Table I
STANDARD KERNEL FUNCTIONS

Linear Kernel(Xi, Xj) = Xi
TXj

Polynomial Kernel(Xi, Xj) = (aXi
TXj + r)d

Gaussian Kernel(Xi, Xj) = exp{−γ||Xi −Xj ||2}
Sigmoid Kernel(Xi, Xj) = tanh(aXi

TXj + r)

B. Deep Learning (DL)

Deep Learning means Deep Neural Networks (DNN)
training and prediction. Like traditional ML, the training
part of DL is to use the data matrix X and label vector
y to refine the model or weight W . At each step, the
algorithm randomly picks B rows from X and computes
the weight’s gradient ∆W based on these data. Then the
algorithm updates the weight by W = W − η∆W . η is
the step size (or learning rate) and B is the batch size. The
algorithm repeats this step iteratively until we get a good
model. Then we use W to predict the labels ŷ of unknown
data X̂ . If the algorithm finishes n/B iterations, we call
this as 1 epoch. 1 epoch means the algorithm touches the
whole training dataset once. The information of DNN model
is stored in W .

III. MEMORY-EFFICIENT SVM

For machine learning dataset (n-by-d matrix), n is usually
much larger than d because the number of observations
should be larger than the number of features in each obser-
vation. Because of this, the major bottleneck of SVM is the
n-by-n kernel matrix. For example, even on a relative small
dataset (357 megabytes for a 520,000-by-90 matrix [13]),
SVM needs to form a 2 terabytes dense kernel matrix. Also,
solving the QP problem by direct method requires Θ(n3)
floating point operations, which is even more expensive.
Due to these concerns, people designed decomposition and
iterative methods to approach the SVM Kernel.

A. SMO and its Bottleneck

The idea of decomposition method [1] is to divide the
big QP problem into some small QP problems. Then the
algorithm solves these small QP problems one-by-one. Solv-
ing each small sub-QP problem does not require a huge
amount of memory. The extreme case is to divide the original
problem into Θ(n) steps. The algorithm only solves a 2-
variable problem at each step. This algorithm is Sequential
Minimal Optimization (SMO) [3]. In fact, SMO can get the
analytical solution (rather than the numerical solution) of the
2-variable problem. A brief outline of the SMO algorithm
is presented in Algorithm 1, which refers to equations (3)
through (6). We use high and low to denote the indices
of two selected points each step. Xhigh and Xlow are two
rows of data matrix X . Then SMO needs compute two
rows of the kernel matrix (Khigh and Klow). The algoritm
gets Khigh by conducting a sparse-matrix sparse-vector

multiplication (SMSV, not SpMV) between X and Xhigh.
Then the algorithm gets Xlow in the same way. Thus, the
bottlenecks of each SMO step are two SMSVs.

fi =

n∑
j=1

αjyjK(Xi, Xj)− yi (3)

f̂i = fi + ∆αhighyhighKhigh,i + ∆αlowylowKlow,i (4)

∆αlow =
ylow(bhigh − blow)

Khigh,high +Klow,low − 2Khigh,low
(5)

∆αhigh = −ylowyhigh∆αlow (6)

Algorithm 1 The Original SMO Algorithm
1: Input the samples Xi and labels yi, ∀i ∈ {1, 2, ..., n}.
2: Initialize, αi = 0, fi = −yi, ∀i ∈ {1, 2, ..., n}.
3: Initialize, bhigh = −1, high = min{i : yi = −1}, blow = 1,
low = max{i : yi = 1}.
4: Update αhigh and αlow according to Equations (5) and (6).
5: Update fi according to Equation (4), ∀i ∈ {1, 2, ..., n}
6: Ihigh = {i : 0 < αi < C ∪ yi > 0, αi = 0 ∪ yi < 0, αi = C}
7: Ilow = {i : 0 < αi < C ∪ yi > 0, αi = C ∪ yi < 0, αi = 0}
8: high = arg min{fi : i ∈ Ihigh}
9: low = arg max{fi : i ∈ Ilow}
10: bhigh = min{fi : i ∈ Ihigh}, blow = max{fi : i ∈ Ilow}
11: Update αhigh and αlow according to Equations (5) and (6).
12: If blow > bhigh + 2× tolerance, then go to Step 5.

In our experiments, we observe that the data layout of
matrix X significantly affects the performance of SMO.
For sparse matrix, the data layout is dependent on the
data format. In general, there are five basic matrix storage
formats that can be used to process the training samples of
ML: DEN (Dense), CSR (Compressed Sparse Row) [14],
ELL (ELLPACK/ITPACK) [15], COO (Coordinate) [16],
and DIA (Diagonal) [17]. Most of the other storage formats
can be derived from these basic formats. For instance, the
CSC (compressed sparse column) is similar to the CSR
format. The only difference is that the columns are used
instead of the rows. On the other hand, the block variants like
BCSR (Block Compressed Sparse Row) are often used when
there are many dense sub-blocks in a sparse matrix. Figure
1 shows the performance comparison among different data
formats used by SMO algorithm. Let M and N be the # rows
and # columns of the matrix. To store the ML datasets into
different data formats, we have M = n and N = d. In many
real-world scientific computing applications, the matrices are
still often sparse. For the extremely sparse datasets, DEN
has to store M · N elements while COO and CSR only
need to store O(nnz) elements where nnz is the number of
nonzeros. DIA needs to store at least max(nnz,min(M ,N))
elements since there is at least one non-zero element that
requires one diagonal. On the other hand, there are many
dense big datasets in the machine-learning field. For these
datasets, DEN is the most efficient format. For CSR, both

Figure 1. adult [3], aloi [18], minist [19], gisette [20], and trefethen [21]
are five read-world datasets. ELL, CSR, COO, DEN, DIA are five widely-
used data formats for sparse matrices. This figure shows the performance
comparison among different data formats processed by SVM (normalized
to the slowest format for each dataset). We can observe the best format (the
highest speedup) and the worst format (the lowest speedup) for different
dataset are variable. Trefethen is originally from a matrix dataset, we
convert it to an SVM test dataset.

the data array and the indices array have M ·N elements,
and ptr has M elements. In total, CSR needs to store
O(2 · M · N + M) elements for (nearly) dense matrices.
Similarly, COO stores O(3 ·M ·N) elements and ELL stores
O(2 ·M · N) elements for dense datasets. For DIA, since
there are O(M+N−1) diagonals, the data array has to store
O(min(M,N) · (M + N − 1)) elements and the offsets
array needs to store O(M +N − 1) elements. DIA in total
needs to store (min(M,N) + 1) · (M +N −1). We sum up
the maximum and minimum storage of each format in Table
II. The complexity of computation in SVM (two SMSVs) is
proportional to the complexity of storage.

B. Selecting the right data format

Existing SVM tools (e.g. LIBSVM and GPUSVM) use
fixed data formats for all datasets. Nevertheless, Table III
shows that the most suitable formats for different datasets
vary significantly and the speedup of using the best format
over the the worst format can be 3.73−14.3× for processing
the same dataset.

Additionally, the performance of the parallel SVM is also
bounded by memory bandwidth. Our profiling results show
that the bandwidth also varies when using different formats
to process the same dataset. For instance, the bandwidth
of processing gisette dataset [20] is 25.3 GB/s, 63.9 GB/s,
63.5 GB/s, 53.1 GB/s, and 37.7 GB/s for ELL, CSR, COO,
DEN, and DIA, respectively, on Ivy Bridge CPUs. Together
with Equation (7), the bandwidth results further confirm
and explain the performance gaps between various storage
formats shown in Table III. Therefore, current state-of-art
tools such as LIBSVM and GPUSVM can only perform well
for a limited number of real-world datasets.

Execution T ime
>
≈
Transferred Memory

Memory Bandwidth
(7)

Table II
STORAGE SPACE COMPARISON FOR VARIOUS FORMATS

Format DEN CSR COO ELL DIA

Min M ·N O(M + 2) O(1) O(2M) O(M + 1)

Max M ·N 2M ·N +M 3M ·N 2M ·N O((min(M,N) + 1) · (M +N − 1))

Table III
PERFORMANCE COMPARISON AMONG DIFFERENT FORMATS

Dataset ELL CSR COO DEN DIA

adult [3] 14× 13× 8.6× 13× 1.0

aloi [18] 2.8× 6.6× 1.0 3.8× 1.7×
mnist [19] 1.0 4.8× 5.1× 1.5× 1.1×
gisette [20] 1.9× 1.9× 1.2× 3.7× 1.0

trefethen [21] 3.1× 3.6× 3.9× 1.0 4.1×

To select the right data format for a ML dataset, we
need to use the right parameters of the data matrix to tune
the code. The two basic parameters to represent a dataset
are M (the number of samples) and N (the number of
features). The data structures ELL, CSR and COO do not
explicitly depend on the number of columns N . However,
N affects the performance of DEN significantly since the
amount of computation and storage of DEN is growing as
N is increasing. Another basic feature is nnz (# non-zero
elements) since the value of nnz can lead to the discrepancy
of storage space for different formats (Table II). We also add
density (the ratio of the number of the non-zero elements
to the number of all the elements) since it is positively
correlated with the performance of DEN format.

For DIA format, the number of diagonals has a significant
influence on the performance of the matrices that have the
same M , N , and nnz. In our experiment, we generate a
series of matrices that have the same M , N , and nnz (M =
4096, N = 4096, and nnz = 4096) but different number
of diagonals (2, 4, 8, ..., 2048, 4096). We use DIA format to
store and process all these matrices. Fig. 2 shows that the
more diagonals a matrix has, the worse its performance will
be. The major reason is the discrepancy in the number of
elements per diagonal. For example, each diagonal of the
one-diagonal matrix has 4096 elements while each diagonal
of the 4096-diagonal matrix only has one element. Each
of these diagonals will be padded with 4095 zeros, which
increases unnecessary storage and computations. Therefore,
we add ndig (# diagonals) and dnnz (# non-zero elements
per diagonal) to our influencing-parameter space. ndig and
dnnz can be used to evaluate the fitness of DIA format.

We refer to the number of non-zero elements in the i-
th (i ∈ 1, 2, 3, ...,M) row as dim i. For ELL format,
the performance is closely related to the maximum dim i,
which is referred to as mdim (Table IV). To illustrate this,
we make a series of matrices that have the same M , N ,
and nnz (M = 4096, N = 4096, and nnz = 8192)

Figure 2. The matrices that have the same M , N , and nnz but different
number of diagonals. They are stored in DIA format. The baseline of the
speedup is the case with 4096 diagonals (the worst case). The experiments
are based on Ivy Bridge CPUs.

but different mdim (1, 2, 4, ..., 2048, 4096). We use ELL
format to store and process all these matrices. Fig. 3 shows
that the higher mdim, the worse its performance will be.
We refer to the matrix with mdim = 2 as mat2 and the
matrix with mdim = 4096 as mat4096. The major reason
for the performance difference between mat2 and mat4096
is that the size of mat2 is 4096 × 2 while the size of
mat4096 is 4096×4096. Each row of mat4096 will be padded
with 4095 zeros, which increases unnecessary storage and
computations. Therefore, we add mdim and adim (# non-
zero elements per row) to our influencing-parameter space.
From Fig. 3 we can also observe that the performance is
decreasing as vdim (the variation of the number of non-zero
elements in each row) increases. This further confirms that
another reason for the performance difference between mat2
and mat4096 is that the distribution of non-zero elements
in mat2 is much more balanced than that of mat4096.
Therefore, we add vdim to our influencing-parameter space,
shown in Table IV. Finally, we use mdim, adim and vdim
to evaluate the fitness of ELL format.

COO is similar to CSR only with the difference that COO
has to store the row indices for all the non-zero elements.
When dim changes significantly among different rows, it
could potentially have negative effects on the performance
of CSR format on certain architectures such as Intel MIC due
to the inefficient usage of the fixed-width SIMD. However,
this has little influence on the performance of COO format
because all the non-zero elements in data array can be
processed in parallel. Fig. 4 shows that the speedup of COO
over CSR is increasing as vdim is growing, which is in
line with our analysis. Since vdim can reflect whether dim

Table IV
INFLUENCING PARAMETERS OF THE DATA MATRIX, + MEANS POSITIVE CORRELATION BETWEEN THE VALUE AND SOFTWARE EFFICIENCY, − MEANS
NEGATIVE CORRELATION BETWEEN THE VALUE AND SOFTWARE EFFICIENCY, ± MEANS POSITIVE OR NEGATIVE CORRELATION BETWEEN THE VALUE

AND SOFTWARE EFFICIENCY, AND × IS UNCORRELATED

Parameter Description Formula ELL CSR COO DEN DIA

M number of rows number of samples ± ± ± ± ±
N number of columns maximum feature index of all samples × × × − ×
nnz number of non-zero elements

∑M
i=1 dim i ± ± ± + ±

ndig number of diagonals number of diagonals × × × × −
dnnz number of nnz per diagonal nnz/ndig × × × + +

mdim maximum nnz in a row MAX(dim i), i ∈ 1, 2, 3, ...,M − × × × ×
adim average number of nnz in a row nnz/M + × × + ×
vdim variance of dim

∑M
i=1(dimi − adim)2/M − − + × ×

density the ratio of nnz to all the elements nnz/(M ∗ n) ± ± ± + ±

Table V
EVALUATED REAL-WORLD DATASETS

Dataset Application M N nnz ndig dnnz mdim adim vdim density

adult economy 2,265 119 31,404 2,347 13.38 14 13.87 0.059 0.119

breast cancer clinical 38 7,129 270,902 7,166 37.80 7,129 7,129 0.0 1.000

aloi vision 1,000 128 32,142 1,125 28.57 74 32.14 85.22 0.251

gisette selection 6,000 5,000 30,000,000 10,999 2,728 5,000 5,000 0.0 1.000

mnist recognition 450 772 66,825 1,050 63.64 291 148.5 1,594 0.192

sector industry 1,500 55,188 238,790 33,770 7.07 1,819 159.19 17,634 0.003

epsilon AI 390,000 2,000 780,000,000 391,999 1,990 2,000 2,000 0.0 1.000

leukemia biology 38 7,129 270,902 7,166 37.8 7,129 7,129 0.0 1.000

connect-4 game 1,800 125 75,600 1,922 39.33 42 42 0.0 0.336

trefethen numerical 2,000 2,000 21,953 12 1,829 12 10.98 1.25 0.006

dna genomics 3,600,000 200 720,000,000 3,600,199 200.0 200 200 0.0 1.000

Figure 3. The matrices that have the same M , N , and nnz but different
mdim. All of them are stored in ELL format. The baseline of the speedups
is the worst case. The experiments are based on Ivy Bridge CPUs.

changes significantly among different rows, we select it as
the influencing parameter to help the system make the choice
between CSR and COO. In total, we extract nine parameters
from each given dataset, which are detailed in Table IV.

These parameters helped us to select the right data format
for each data matrix. The average speedup in Table VI is the
average speedup of using our selection over the other four
data formats. The maximum speedup is the speedup of using
our selection over the worst data format. Compared with the

Figure 4. The speedups of COO over CSR for the datasets with different
vdim. The experiments are based on Ivy Bridge CPUs.

traditional method, our decision system achieves 1.7−16.2×
speedup (average: 6.8×).

IV. DEEP LEARNING

For speeding up DNN training, our ultimate objective is
to get the target accuracy in a shorter time. In this paper, our
target systems include a 8-core CPU, a 68-core Intel KNL, a
32-core Intel Haswell CPU, a P100 GPU and a Nvidia GTX
station. Our target application is to get 0.8 testing accuracy
for CIFAR-10 dataset [6], which is a standard benchmark of

Figure 5. The figure shows the time for 0.8 CIFAR-10 accuracy by different methods. 8 CPUs means Intel Caffe on 8-core CPU, KNL means Intel Caffe
on KNL, Haswell means Intel Caffe on Haswell, GPU means NVIDIA Caffe on 1 Tesla P100 GPU, DGX means NVIDIA Caffe on DGX station, DGX1
means our version with tuned batch size, DGX2 means our version with tuned batch size and learning rate, DGX3 means our version with tuned batch
size, learning rate, and momentum. Detailed information can be found in Table VII.

Figure 6. The figure shows the price per speedup for 0.8 CIFAR-10 accuracy by different methods. 8 CPUs means Intel Caffe on 8-core CPU, KNL
means Intel Caffe on KNL, Haswell means Intel Caffe on Haswell, GPU means NVIDIA Caffe on 1 Tesla P100 GPU, DGX means NVIDIA Caffe on
DGX station, DGX1 means our version with tuned batch size, DGX2 means our version with tuned batch size and learning rate, DGX3 means our version
with tuned batch size, learning rate, and momentum. 8 CPUs is the slowest case, which is the baseline and 1.0× speedup. Detailed information can be
found in Table VII.

DL research. Our baseline is Caffe’s cifar10 full model [22].
The CIFAR-10 dataset includes 60,000 32×32×3 colour
images in 10 classes, with 6,000 images per class. There are
50,000 training images and 10,000 test images. Each image
is a sample. Obviously, the initial point (random guess) for
CIFAR-10 testing accuracy is 1/10. The accuracy becomes
8/10 after the algorithm finishes.

A. Challenges of Speeding up CIFAR-10 Training

For speeding up deep learning applications, one bottle-
neck is that the datasets and weights are often not large
enough to use distributed systems. For example, CIFAR-10

is only a 162 MB dataset. However, the training part is very
slow because the algorithm has to pass a small batch of
data through the deep neural networks for many iterations.
Moreover, it is not helpful to load a lot of data to memory at
each iteration because using large batch may slow down the
algorithm’s convergence rate [23]. Our experimental results
show that using Caffe [22] (state-of-the-art DL framework)
to process CIFAR-10 dataset on a 8-core CPUs (Intel Xeon
E5-1660 v4 @ 3.20GHz) for 0.8 testing accuracy will cost
8.2 hours and 120 epochs.

Table VI
EFFECTS OF ADAPTIVE SYSTEM

Dataset Worst Selection Average & Max Speedup

adult DIA ELL 3.8× & 14.3×
breast cancer ELL CSR 16.2× & 35.7×
aloi COO CSR 3.1× & 6.6×
gisette DIA DEN 2.4× & 3.7×
mnist ELL COO 3.0× & 5.1×
sector DEN COO 14.3× & 39.6×
leukemia ELL DEN 13.3× & 29.0×
connect-4 COO DEN 3.3× & 6.4×
trefethen DEN DIA 1.7× & 4.1×

B. Choose the Right Hardware

One reason why CIFAR-10 training is so slow is that the
computational power of a 8-core CPU is limited. Thus, we
need to choose the right architecture to speed up it. Our
first choice is the Intel Knights Landing (KNL) archiec-
ture, which is the 2nd generation Intel Xeon Phi platform.
KNL has been used in some High Performance Computing
data centers since it was released recently. For example,
Lawrence Berkeley National Laboratory has a cluster with
9,304 KNLs, and Texas Advanced Computing Center has
a cluster with 4,200 KNLs. Our KNL platform is Intel
Xeon Phi Processor 7250 processor with 68 cores per node
@ 1.4 GHz. The measured peak double-precision peak
performance is 3 Tflops.

The major distinct features of KNL that can benefit
deep learning applications include the following: (1) Self-
hosted Platform. The traditional accelerators (e.g. FPGA
and GPUs) rely on CPU for control and I/O management.
For some machine learning applications, the transfer path
like PCIE may become a bottleneck at runtime because
the memory on accelerator is limited (e.g. 12 GB GDDR5
on Nvidia K80 GPU). KNL does not need a CPU host.
It is self-hosted by an operating system like CentOS 7.
(2) Better Memory. KNL’s measured bandwidth is much
higher than that of a 24-core Haswell CPU (450 GB/s vs
100 GB/s). KNL’s 384 GB DDR memory size is large
enough to handle a typical deep learning dataset. Moreover,
KNL is equipped with Multi-Channel DRAM (MCDRAM).
MCDRAM’s measured bandwidth is 475 GB/s. MCDRAM
has three modes: a) Cache Mode. KNL uses it as the last
level cache; b) Flat Mode. KNL treats it as the regular DDR;
c) Hybrid Mode. Part of it is used as cache, the other is used
as the regular DDR memory. (3) Configurable NUMA.
The basic idea is that the users can partition the on-chip
processors and cache into different groups for better memory
efficiency and less communication overhead. This maybe
useful for some complicated memory-access applications
like DNN training.

We then use Intel Haswell CPUs to speed up DNN
training. Our Haswell platform is a double-socket Intel

Xeon E5-2698 v3 @ 2.3 GHz. The measured peak double-
precision peak performance is 1.2 Tflops. Since KNL has a
much higher peak floating-point performance than Haswell,
the readers maybe surprised to see that KNL runs much
slower than Haswell (Figure 7). We tune the code based
on Intel’s Caffe implementation and report the best perfor-
mance. We do not claim this is the best implementation
on Haswell or KNL. The setting of Haswell is to use 32
threads, OMP PLACES = threads, and OMP PROC BIND
= spread. The setting of KNL is to use Cache Mode
for MCDRAM, use Quad partition for NUMA, use 68
threads, OMP PLACES = threads, and OMP PROC BIND
= spread. The BLAS we use is Intel MKL 2017.

We also use GPUs to process CIFAR-10. Our GPU code is
based on NVIDIA Caffe. We observe that Tesla P100 GPU
achieves 4× speedup over Haswell CPUs. To furthermore
explore the opportunity of improving training speed, we use
multiple GPUs. Our parallel strategy is divide-and-conquer
for the data and replication for the weights. Let us assume
we have P workers. At each iteration, we partition a batch
of B samples and each worker gets B/P samples. Each
worker gets one copy of the weights W . Different workers
will generate different gradients for W because they have
different data. Let us refer to ∆Wi as the gradients of W
that computed by i-th worker. After a global sum reduce
operation, each worker will get

∑P
1 ∆Wi. Then each worker

can update their local weights by W = W − η
∑P

1 ∆Wi/P .
Our target system is a NVIDIA DGX station, which

includes one Intel Xeon E5-1660 v4 @ 3.20GHz CPUs and
4 Tesla P100 GPUs. We use NVIDIA NCCL to connect
different GPUs and CUDNN to conduct the neural networks
computations. The DGX station is a personal AI supercom-
puter. However, the straightforward porting from one P100
GPU to one DGX station only brings 1.3× speedup. We
expect to at least achieve roughly 4× speedup. Thus, we
need to optimize the code to make full use of DGX station’s
computational power.

C. Tune the Batch Size

There is a tradeoff for tuning the batch size. On one
hand, a larger batch size means the BLAS functions can
process a larger matrix. Since the computational kernels of
deep learning are mainly matrix-matrix multiply and FFT, a
larger matrix often can improve the processors’ throughput.
On the other hand, a large batch size may lead to a sharp
optimization problem, which requires more epochs to get the
target accuracy [23]. This means that the computational cost
per iteration increases at the speed of Θ(B) while number
of iterations (convergence rate) decreases at the speed lower
than Θ(B). To a get a high performance, we have to tune
the batch size. After our comprehensive tuning, we observe
B = 512 is the best choice for CIFAR-10 training on a DGX
station. Our tuning space is {64, 100, 128, 256, 512, 1024,
2048, 4096, 8192}.

Table VII
TIME AND SPEEDUP FOR GETTING 0.8 CIFAR-10 ACCURACY. B: BATCH SIZE, η: LEARNING ATE, µ: MOMENTUM.

Methods B η µ Iterations Epochs Time (s) Price ($) Speedup Price/Speedup ($)

Intel Caffe on 8-core CPUs 100 0.001 0.90 60,000 120 29427 1,571 1× 1,571

Intel Caffe on KNL 100 0.001 0.90 60,000 120 4922 4,876 6× 813

Intel Caffe on Haswell 100 0.001 0.90 60,000 120 1997 7,400 15× 493

Nvidia Caffe on Tesla P100 GPU 100 0.001 0.90 60,000 120 503 11,571 59× 196

Nvidia Caffe on DGX station 100 0.001 0.90 60,000 120 387 79,000 76× 1,039

Tune B on DGX station 512 0.001 0.90 30,000 387 361 79,000 82× 963

Tune η on DGX station 512 0.003 0.90 12,000 123 138 79,000 213× 371

Tune M on DGX station 512 0.003 0.95 7,000 72 83 79,000 355× 223

D. Tune the Learning Rate
A large learning rate may help to speed up the algorithm

to converge to global minimum. However, due to the non-
convex property of deep neural networks, a large learning
rate may easily make the algorithm miss the global minimum
and get into local minimum. Different batch sizes generally
have different optimal learning rate. We tune the learning
rate based on the batch size and find the optimal learning
rate for B = 512 is 0.03. Our tuning space is {0.001, 0.002,
0.003, ..., 0.015, 0.016}. We achieve a 2.6× speedup by
tuning the learning rate.

E. Tune the Momentum
Due to complicated optimization path of non-convex

applications (e.g. DL), the algorithm often falls into the
local minimum. The momentum technique [24] often can
help the algorithm to get out of the local minimum and
achieve the global minimum faster. The updating rule of
momentum technique is defined in Equations (8) and (9).
µ is the momentum parameter. Vt is the momentum vector
at iteration t and Vt has the same dimension with Wt. The
updating rule becomes the original version if µ = 0. Based
on our exprience, µ should be set close to 1 because we
want the algorithm to have a good short-term memory to
reschedule the optimization path. Our tuning space is {0.90,
0.91, 0.92, ..., 0.99}. After tuning the momentum, we get
an additional 1.7× speedup.

Vt+1 = µVt − α∆Wt (8)

Wt+1 = Wt + Vt+1 (9)

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup
The experimental platforms of deep learning are described

in Section IV-B. The platform for SVM has one 24-core
Intel Ivy Bridge CPU and three 61-core Intel Xeon Phi
Knights Corner coprocessors (Intel MIC). We use OpenMP
to provide multi-threading. The vectorization of our imple-
mentation is based on Xeon Phi Vector Instruction Set and
Intel Cilk array notation [25]. The 9 test datasets are listed
in Table V.

B. SVM Performance

Comparison with State-of-the-Art SVM Implementa-
tion. LIBSVM [26] is the state-of-the-art SVM implementa-
tion on CPUs and the most widely used SVM software. To
provide a fair comparison, we run parallel LIBSVM (state-
of-the-art SVM software on CPUs using CSR format) on our
Ivy Bridge CPUs (without using Xeon Phi coprocessor). We
achieve 1.2−16.5× speedups (4× on average) over parallel
LIBSVM for a series of real-world datasets (Fig. 7). If we
use our own fixed-CSR version as the baseline, the average
speedup of adaptive system over fixed-CSR is 1.3× because
our CSR implementation is more efficient than LIBSVM’s
CSR implementation.

C. Deep Learning Results

After efficient optimization, we manage to reduce the
time of CIFAR-10 training from 8.2 hours (8-core CPU)
to roughly 1 minute (DGX station). We achieve a 355×
speedup. On the other hand, this comparison maybe unfair
because the 8-core CPU is much cheaper than the DGX
station. To give a fair comparison, we define the comparison
benchmark as price (U.S. Dollars) per speedup. A lower
value means a higher efficiency. We make the overall com-
parisons among all the methods. We observe that the Tesla
P100 GPU is the most efficient platform and the 8-core CPU
is the least efficient platform (Table VII and Figure 6).

VI. RELATED WORK

In terms of runtime scheduling, there is some related
work on auto-tuning sparse-matrix-dense-vector (SpMV)
multiplication such as OSKI [27]. The computation pattern
of each SMO loop is like sparse-matrix-sparse-vector
multiplication (double vectors). Compared to the traditional
sparse-matrix-dense-vector multiplication, there are three
major differences: 1) The two vectors (Xhigh and Xlow)
are randomly selected from the rows of the matrix, which
makes the design space fundamentally different from the
sparse-matrix-dense-vector multiplication. 2) The choice of
the format for these two vectors is highly related to the
performance. 3) OSKI only targets SpMV, while for machine
learning applications, some matrices are dense [28].

Figure 7. Speedups of HPC-SVM over Parallel Libsvm on the same Ivy Bridge CPUs for different real-world applications

In terms of fast SVM design, continuous efforts have
been made to speedup SVM training in the last twenty
years. Some pioneers proposed strategies for faster serial
algorithms such as dataset decomposition technique [1],
points shrinking, caching [2], minimal working set [3], and
second order working set selection [29]. Most of these serial
techniques have already been adapted in LIBSVM [26].
Others have tried to design parallel SVM on distributed
memory systems (e.g. [8]). Since 2008, there have been
some existing efforts for accelerating the time-consuming
training phase in SVM on many-core GPUs. Almost all
of them have been focusing on using GPUs to accelerate
the SMO [3] algorithm. Catanzaro [5] first proposed the
GPUSVM for the binary classification problem. Herrero-
Lepez then [30] improved Catanzaro’s work by adding the
support for Multiclass classification. Tsung-Kai Lin [4] used
a CSR sparse format for data processing on GPUs. How-
ever, all of them lack dynamic adaptive support for input
data patterns, which can dramatically reduce performance
and practicality of the implementation. We designed and
implemented MIC-SVM [31], which is a fast software for
x86 platform. Our previous work CA-SVM [7] is a general
divide-and-conquer approach for distributed systems. The
techniques of this paper can be added to CA-SVM for better
performance.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S.
Department of Energy Office of Science, Office of Advanced
Scientific Computing Research, Applied Mathematics pro-
gram under Award Number DE-SC0010200; by the U.S.
Department of Energy Office of Science, Office of Ad-
vanced Scientific Computing Research under Award Num-
bers DE-SC0008700 and AC02-05CH11231; by DARPA
Award Number HR0011-12-2-0016, ASPIRE Lab industrial
sponsors and affiliates Intel, Google, HP, Huawei, LGE,

Nokia, NVIDIA, Oracle and S Samsung. Other industrial
sponsors include Mathworks and Cray. Yang You also thanks
his previous funding mentioned in [32] [33] [34] [35].

REFERENCES

[1] E. Osuna, R. Freund, and F. Girosi, “An improved training
algorithm for support vector machines,” in Neural Networks
for Signal Processing [1997] VII. Proceedings of the 1997
IEEE Workshop. IEEE, 1997, pp. 276–285.

[2] T. Joachims, “Making large scale svm learning practical,”
1999.

[3] J. C. Platt, “12 fast training of support vector machines
using sequential minimal optimization,” Advances in kernel
methods, pp. 185–208, 1999.

[4] T.-K. Lin and S.-Y. Chien, “Support vector machines on
gpu with sparse matrix format,” in Machine Learning and
Applications (ICMLA), 2010 Ninth International Conference
on. IEEE, 2010, pp. 313–318.

[5] B. Catanzaro, N. Sundaram, and K. Keutzer, “Fast support
vector machine training and classification on graphics pro-
cessors,” in Proceedings of the 25th international conference
on Machine learning. ACM, 2008, pp. 104–111.

[6] A. Krizhevsky and G. Hinton, “Learning multiple layers of
features from tiny images,” 2009.

[7] Y. You, J. Demmel, K. Czechowski, L. Song, and R. Vuduc,
“Ca-svm: Communication-avoiding support vector machines
on distributed systems,” in Parallel and Distributed Process-
ing Symposium (IPDPS), 2015 IEEE International. IEEE,
2015, pp. 847–859.

[8] E. Y. Chang, “Psvm: Parallelizing support vector machines on
distributed computers,” in Foundations of Large-Scale Mul-
timedia Information Management and Retrieval. Springer,
2011, pp. 213–230.

[9] Y. You, S. L. Song, H. Fu, A. Marquez, M. M. Dehnavi,
K. Barker, K. W. Cameron, A. P. Randles, and G. Yang, “Mic-
svm: Designing a highly efficient support vector machine for
advanced modern multi-core and many-core architectures,” in
Parallel and Distributed Processing Symposium, 2014 IEEE
28th International. IEEE, 2014, pp. 809–818.

[10] Y. You, H. Fu, S. L. Song, A. Randles, D. Kerbyson,
A. Marquez, G. Yang, and A. Hoisie, “Scaling support vector
machines on modern hpc platforms,” Journal of Parallel and
Distributed Computing, vol. 76, pp. 16–31, 2015.

[11] Y. You, X. Lian, J. Liu, H.-F. Yu, I. S. Dhillon, J. Demmel,
and C.-J. Hsieh, “Asynchronous parallel greedy coordinate
descent,” in Advances In Neural Information Processing Sys-
tems, 2016, pp. 4682–4690.

[12] Y. You, J. Demmel, K. Czechowski, L. Song, and R. Vuduc,
“Design and implementation of a communication-optimal
classifier for distributed kernel support vector machines,”
IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 4, pp. 974–988, 2017.

[13] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere,
“The million song dataset,” in ISMIR 2011: Proceedings of
the 12th International Society for Music Information Retrieval
Conference, October 24-28, 2011, Miami, Florida. Univer-
sity of Miami, 2011, pp. 591–596.

[14] L. group. (2015) Compressed row storage (crs). [Online].
Available: http://netlib.org/linalg/html templates/node91.html

[15] R. G. Grimes, D. R. Kincaid, W. I. MacGregor, and D. M.
Young, “Itpack report: adaptive iterative algorithms using
symmetric sparse storage,” CNA-139, Center for Numerical
Analysis, University of Texas, Austin, Texas, vol. 78712, 1978.

[16] Y. Saad, SPARSKIT: A basic toolkit for sparse matrix compu-
tations. Research Institute for Advanced Computer Science,
NASA Ames Research Center Moffet Field, California, 1990.

[17] Iterative methods for sparse linear systems. Siam, 2003.

[18] A. Rocha and S. Goldenstein, “Multiclass from binary: Ex-
panding one-vs-all, one-vs-one and ecoc-based approaches.”

[19] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[20] I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror, “Result analysis
of the nips 2003 feature selection challenge,” in Advances in
Neural Information Processing Systems, 2004, pp. 545–552.

[21] T. Davis and Y. Hu, “The university of florida sparse matrix
collection,” 2014. [Online]. Available: http://www.cise.ufl.
edu/research/sparse/matrices/

[22] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell, “Caffe: Convolutional
architecture for fast feature embedding,” in Proceedings of the
22nd ACM international conference on Multimedia. ACM,
2014, pp. 675–678.

[23] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy,
and P. T. P. Tang, “On large-batch training for deep learn-
ing: Generalization gap and sharp minima,” arXiv preprint
arXiv:1609.04836, 2016.

[24] I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton, “On the
importance of initialization and momentum in deep learning.”
ICML (3), vol. 28, pp. 1139–1147, 2013.

[25] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou, Cilk: An efficient multithreaded
runtime system. ACM, 1995, vol. 30, no. 8.

[26] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support
vector machines,” ACM Transactions on Intelligent Systems
and Technology (TIST), vol. 2, no. 3, p. 27, 2011.

[27] R. Vuduc, J. W. Demmel, and K. A. Yelick, “Oski: A library
of automatically tuned sparse matrix kernels,” in Journal of
Physics: Conference Series, vol. 16, no. 1. IOP Publishing,
2005, p. 521.

[28] S. Sonnenburg, V. Franc, E. Yom-Tov, and M. Sebag, “Pas-
cal large scale learning challenge,” in 25th International
Conference on Machine Learning (ICML2008) Workshop.
http://largescale. first. fraunhofer. de. J. Mach. Learn. Res,
vol. 10, 2008, pp. 1937–1953.

[29] R.-E. Fan, P.-H. Chen, and C.-J. Lin, “Working set selection
using second order information for training support vec-
tor machines,” The Journal of Machine Learning Research,
vol. 6, pp. 1889–1918, 2005.

[30] S. Herrero-Lopez, J. R. Williams, and A. Sanchez, “Parallel
multiclass classification using svms on gpus,” in Proceedings
of the 3rd Workshop on General-Purpose Computation on
Graphics Processing Units. ACM, 2010, pp. 2–11.

[31] Y. You, S. Song, H. Fu, A. Marquez, M. Dehnavi, K. Barker,
K. W. Cameron, A. Randles, and G. Yang, “Mic-svm: Design-
ing a highly efficient support vector machine for advanced
modern multi-core and many-core architectures,” in Parallel
& Distributed Processing (IPDPS), 2014 IEEE 28th Interna-
tional Symposium on. IEEE, 2014.

[32] Y. You, H. Fu, S. L. Song, M. M. Dehnavi, L. Gan,
X. Huang, and G. Yang, “Evaluating multi-core and many-
core architectures through accelerating the three-dimensional
lax–wendroff correction stencil,” The International Journal
of High Performance Computing Applications, vol. 28, no. 3,
pp. 301–318, 2014.

[33] Y. You, H. Fu, X. Huang, G. Song, L. Gan, W. Yu, and
G. Yang, “Accelerating the 3d elastic wave forward modeling
on gpu and mic,” in Parallel and Distributed Processing
Symposium Workshops & PhD Forum (IPDPSW), 2013 IEEE
27th International. IEEE, 2013, pp. 1088–1096.

[34] Y. You, D. Bader, and M. M. Dehnavi, “Designing a heuristic
cross-architecture combination for breadth-first search,” in
Parallel Processing (ICPP), 2014 43rd International Confer-
ence on. IEEE, 2014, pp. 70–79.

[35] Y. You, H. Fu, D. Bader, and G. Yang, “Designing and imple-
menting a heuristic cross-architecture combination for graph
traversal,” Journal of Parallel and Distributed Computing,
2016.

http://netlib.org/linalg/html_templates/node91.html
http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/

	Introduction
	Background
	Traditional Machine Learning
	SVM Training Phase

	Deep Learning (DL)

	Memory-Efficient SVM
	SMO and its Bottleneck
	Selecting the right data format

	Deep Learning
	Challenges of Speeding up CIFAR-10 Training
	Choose the Right Hardware
	Tune the Batch Size
	Tune the Learning Rate
	Tune the Momentum

	Experimental Results and Analysis
	Experimental Setup
	SVM Performance
	Deep Learning Results

	Related Work
	References

