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Prologue

Seek a scientific and theoretical foundation for Intelligence:

« what to learn?
 how to learn?
* why correct?

“What | cannot create, | do not understand.”
-- Richard Feynman
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Evolution of Life and Intelligence

Evolution of the Universe is Physics at work Evolution of Life is Intelligence at work

‘Just as the constant increase of entropy is the basic law of the universe, so it is the
basic law of life to be ever more highly structured and to struggle against entropy.”

-- VVaclav Havel



Evolution of Life and Intelligence: From DNA to Brain

From the first DNA to the emergence of life with Brain: 3.6 Billion Years
From the first Brain to the explosion of lives in the Cambrian period: 50 Million Years

DNAs: Pretrained “Large Models” Emergence of Brain & Senses Explosion of Lives
Random Mutation & Natural Selection Individual Models: Memory
Reinforcement Learning Learn from Feedback

The Cambrian period

DNA appeared near Common ancestor First life form with a brain
some volcano in the of all lives: LUCA” (Nematode)
ocean
40B Years 3.5B Years 550M Years 500M Years
First DNA First Life Form First Brain Cambrian Period

A Brief History of Intelligence, Max Bennett, 2023



Evolution of Life and Intelligence: From Species to Individuals

Emergence and evolution of life are mechanisms of intelligence at work!

Life depends on intelligence to continuously acquire more knowledge to better predict the world.

Phylogenetic Intelligence: DNA inheritance, Ontogenetic Intelligence: Individual memory,
random mutation, and natural selection perception & feedback, and error correction.

3.7B yearsago 500M yearsago 400M yearsago 360M yearsago 250M years ago 200M years ago 310T years ago
Life begins Cambrian period fish amphibian reptile bird and mammal neanderthal



Evolution of Intelligence: From Societal to Artificial Intelligence

Emergence and evolution of life are mechanisms of intelligence at work!

Life depends on intelligence to continuously acquire more knowledge to better predict the world.

Societal Intelligence: Languages and texts, Artificial Intelligence: Scientific facts,
empirical knowledge, trial and error theorize, hypothesis testing & falsification.

310T years ago 70T years ago 3500 BC 600-300 BC 14-18!" Century The 1940s
neanderthal Societal intelligence written language Artificial Intelligence Renaissance Machine Intelligence
Tools and Languages Knowledge Abstraction, formal Science Computing machines

group hunting Information sharing accumulation logic, and mathematics Hypothesis Testing



The Origin of Machine Intelligence (the magic era!)

1940s, people started to make machines imitate intelligence (of animals).

'NORBERT WIENER

1948, Cybernetics & System Theory, Nobert Wiener

1943, Artificial Neural Networks, Warren McCulloch and Walter Pitts
1948, Information Theory, Claude Shannon

1944, Game Theory, John von Neumann

1940’s, Turing Machine and Turing Test, Alan Turing

Perceive
(encode)

0\

Predict




Artificial Neurons and Neural Networks: Learn from Nature

Golgi and Cajal 1888 (1901 Nobel Prize)

Outputs

Myelin sheat Output points = synapses

Myelinated axon trunk

>

Warren McCulloch & Walter Pitts 1948

Hubel and Wiesel 1959 (1981 Nobel Prize)

(A) Experimental setup
Light bar
stimulus

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

Fukushima 1980 & LeCun 1989 (Turing Award)



History of Machine Intelligence (Artificial Neural Networks)

Thresholded
Logic Unit

1943

S. McCulloch - W, Pitts

Beginnings
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R. Rosenblatt

X AND Y XORY NOT

b

|
X

Adaline

1st
Neural
Winter

XOR
Problem

1970

O . O
. om‘ S .\J

Multilayer

Backprop

1982

1986 I 19

P. Werbos D. Rumelhart -
G. Hinton -

R. Williams

0 [] [Asivesens ow\l‘ofwa{>

Input Units

Figure courtesy of Professor Rene Vidal

89 1997 I

1990

Y. Lecun

J. Schmidhuber
K. Fukushima

indingQ 1068

£ |

2nd
Neural
Winter

oA
N

GPU
Era

2010

B
=
R v

R. Salakhutdinov - J. Hinton -
A. Krizhevsky - |. Sutskever

e
-
-
™
3
e
revening

M
-n
1“
7 A
-ut
)‘n
——y

'v'
-
e
’l
3
“.
ting



Modern Evolution of Deep Neural Networks

Deep I 9|89 20|I 2 20I 12 20|I 5 20|I 7

Neural >
Nets LeNet (CNN) AlexNet GoogleNet ResNet  Transforme -

[LeCun et al.] [Krizhevsky et al.] [Szegedy et al.] [He et al.] [Vaswani et al.]

Transformers utilize self-attention, where
words in the input text attend to or focus on
other relevant words to determine their
meaning within the context. This allows
capturing long-range dependencies...

i

Language Model

Could you explain how transformer works? Sresented by Meta Al AlphaFold Experiment
r.m.s.d.gs = 2.2 A; TM-score = 0.96

Prompt ] T : s
] SAM: Segment Anything Model




Why Must Turn Blackbox to Whitebox?

 Modern Al systems all based on empirically designed deep networks (alchemy?)
« Blackbox is difficult to explain, impossible to guarantee, costly to improve, ...

It is high time to develop a principled approach!

What to Learn? How to Learn? Why Correct?
(Parsimony) (Compression) (Consistency)
Learn what is predictable * Unroll iterative optimization * Encoding & decoding
» Low-dim structures  lIterative compressing « Continuous learning

* Information gain  Make DNN a whitebox » Closed-loop feedback



What to Learn?

The fundamental reason why intelligence exists and evolves:
The world is not entirely random yet, and it is still largely predictable.

Intelligence and Science learn what is predictable from sensed data of external
world (so every animal is Newton and has learned an accurate “world model.”)

2 °C|°F Precipitation: 44% Weather Acceleration due to Gravity . P. Paviov
H;‘{?:d;l;k‘:; Wednesday 5:00 pm o 9 6 ONDIT 0 E
N ' Showers c I N n
Temperatire | Pracipiation | Wind oo e A il ok ey REFLEXES

Fri Sat Sun Mon Tue Wed Thu Fri

28 ‘ ’
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32° 27° 31° 27° 31 27 29° 26° 29° 26° 29° 26° 29° 27° 29° 27° due to gravity




What to Learn?

The fundamental reason why intelligence exists and evolves:
The world is not entirely random yet, and it is still largely predictable.

Mathematically, all predictable information is encoded as a distribution p(x)
of low-dimensional supports in observed high-dimensional data space.

This is the only “inductive bias” necessary!

High-dimensional Data Analysis with Low-Dimensional Models, \Wright and Ma, 2022



What to Learn: Low-dimensionality

Important properties of low-dimensional structures: Completion
Bayes inference: y = Py(x) — 5\\? ~p(x | 3’1)

Conditional sampling

_ _ Text prediction (GPT)
Partial observations

Image completion




What to Learn: Low-dimensionality

Important properties of low-dimensional structures: Denoising
Empirical Bayes: y=x+on = X ~E(x|y) =y + ¢?Vlogp(x)

1
Tweedie’s formula

Noisy observations

Natural image denoising (or generation)

A
1




What to Learn?

Important properties of low-dimensional structures: Error Correction

Robust Bayes inference: y=x+e —» X ~ argmin ||x||; + ||e||;

Exploiting sparsity prior
Corrupted observations
®

Robust (face) recognition via sparsity [\WWY+Ma, TPAMI'09]

=—&— Algorithm 1
=8 PCA + NN
== ICA |+ NN
—#— LMMF & NN

10 20 30 40 50 i8] 70 BO 30
Parcent occluded (%)




What to Learn: Seeking Parsimony

The main objective of learning:
|dentify a distribution with low-dimensional structures from sensed data x
and transform them to a compact and structured representation z.




How to Learn: Measure of Parsimony

For distributions with low-dim structures, entropy (or “volume”) of the
underlying data distribution should be very small (or “zero”):

(Discrete) Entropy: H(X) = ) ,ex —p(x) logp(x)

Differential Entropy: h(x) = [ —p(x) log p(x) dx




Censity

How to Learn: Compress

A fundamental and unifying mechanism to learn low-dim structures:
compress to reduce entropy of the observed (noisy) data distribution.

minimize h(x) = [ —p(x) logp(x) dx

Noisy observations Converged law!

A

h(x) decreases p(x*)

>

Density

000 005 010 015
000 005 010 015

xt1l =xt + pViogp(xh)



X2

How to Learn: Compress via Denoising
Theorem [Diffusion] Consider the diffusion process:
X; =X, + tn, n~ N(0,I).
Under natural technical assumptions, the entropy of the process increases:

d
Eh(xt) > 0, Vit>O0.

t=5.0 \ t=10.0

X2
X2
X2
. X2

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

——————————————————————————————————————————————————————————————————————————————

Learning Deep Representations of Data Distributions, Ma+PBWY, 2025



How to Learn: Compress via Denoising

Theorem [Denoising] Consider the inverse denoising process:
Xi—s = E[x;_s | x| = x¢ + stViog p(x;)
Under natural technical assumptions, the entropy of the process decreases:

d
___'}l(jEt_1;) <: (), \/.S :> ().

ds
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Learning Deep Representations of Data Distributions, Ma+PBWY, 2025



How to Learn: Empirical Approaches

Compression via iterative denoising
2t =7+ pViegp(zh)
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How to Learn: Empirical Approaches

Empirically designed networks to realize the denoising operator:

Fl+1 >l

z't1 =z ¥ B Vlog p(z"Y)) how to realize?

Diffusion Transformer (DiT)
s N\

Image or video generation
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Latent Diffusion Transformer DiT Block with adaLN-Zero



How to Learn: An Analytical Case

Analytically derived operation to realize the denoising operator:

AR B Vlog p(z')) how to realize?

If we approximate a general distribution p(z) with a

Piecewise Linear Approximation

10

mixture of subspaces or low-dim Gaussians, e.g. 1001
PCA, ICA, GPCA, Sparse Coding [W+Ma, 2022], 80y N
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ZJ\/“(O U, U;) U, e€0(D,d), "

then a0l \
1 K -60 | \
AR EE softmax{a||U] 2"||%} U, U;Z" | | e i sroumaten
k=1 -10 -5 0 5



How to Learn: Measure of Information Gain

How to explicitly represent a distribution with a low-dimensional support?
A key idea: lossy encoding and decoding

construct a finite codebook by packing the support of the distribution with e-balls.

differential entropy rate distortion
h(x) = —0 R(x,e) = min h(X) —h(X|x)
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Segmentation of Mixed Data via Lossy Coding and Compression [Ma+DHW, TPAMI2007].



How to Learn: Organize Information

How to make the resulting representation the most informative?

compress what is similar; contrast what is dissimilar.

T .

contrast

i
ar
L 1

R(z,€) 550/,

Mathematically: maximize information gain or reduce coding rate:
max AR(z,e) = R(z,e) — R°(z,¢)

ReduNet: A White-box Deep Network from the Principle of MCR”2 [YCY+Ma, JMLR2022].



How to Learn: Maximal Coding Rate Reduction (ReduNet)

When Z = f(X: 0) is a mixture of K Gaussians with I, encodes membership of samples in the kth class.

Maximal Coding Rate Reduction (MCR?)

1 d ZZT K tr(IT d ZILZ'
maxAR(ZlH)=§logdet(I+ . )—Z (k)logdet(1+ . k )
f

€2 m ~ 2m g2 tr(IL,)

R(2Z) R(Z|II)

Unrolled optimization: gradient ascent on the MCR? objective,

O0AR s
Zf'l'l —_ Zf + 17 —_ | 256-d in
aZ Z=Zf l l ]’ 256, 1x1, 64
A @ «ve Cf Ey 1 l :
— l l'n 64, 3x3, 64 I
g/ o 7 - + i
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ol Po | |
I ; l ¥
E : 241 Ul 22222222
— >
7?¢ gt+l ReduNet ResNet

ReduNet: A White-box Deep Network from the Principle of MCR”2 [YCY+Ma, JMLR2022].



How to Learn: Maximal Coding Rate Reduction (ReduNet)

Benign local and global optimization landscape of MCR?

Maximal Coding Rate Reduction (MCRZ)
max AR(Z |II) = R(Z) — R°(Z | II)
f

Regularized Maximal Coding Rate Reduction (MCR?)
max F(Z) := AR(Z|II) = R(Z) — R°Z|ID) - A - || Z||%
f

Theorem [YCY+M NeurlPS2020].
The global optimal solution Z* = [Z*,Z7, ...,ZZ] of MCR? satisfies:

o Subspaces of different classes are orthogonal to each other, (Zl.*)TZj* =0fori#j;

K

k=1

e Each subspace achieves its maximal dimension, i.e., rank(Z}) = d, and and d = Z dy.

Theorem [WLY+M 2024].

Every critical point {Z : VF(Z) = 0} is either a local maximizer or a
strict saddle point: each local maximizer corresponds to a feature
representation that consists of a family of orthogonal subspaces.

global maximizer
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‘ ...... local maximizer

f
local minimizer (strict saddle point)




How to Learn: Sparse Rate Reduction (SRR)

Maximize the difference between the coding rate of all features and the
coding rate of features within each subspace, and promote sparsity:

—Al|Z||; : measure how sparse all features are.

sparsify

CRATE: White-box Transformer via Sparse Rate Reduction [YBP+Ma, JMLR2024].



How to Learn: DNN to Realize Iterative Optimization

Optimize Sparse Rate Reduction via gradient descent (GD)

min Lgppr(Z) = —SRR(Z | Ug))  gradient descent Z“*! = f(Z%) ~ Prox[Z? — 5 - V Lgpr(Z?))]
A

Sparse Rate Reduction (SRR):
n}in Lspr(Z | Uk = RZ| Uy + A Z]|, — R(Z)

L(Z)

compression  sparsification

> Design the Z-th layer f7 = ff 0 ff via an Alternating Minimization Scheme:
e Compression Step: Z72 = f{(Z) » Z° —n- VRY(Z%; U ;

° Sparsiﬁcation Step: Zf+1 =f25(zf+1/2) ~ PI‘OXA”.HI [Zf+1/2 —n- gr.ad(zf+1/2)].

CRATE: White-box Transformer via Sparse Rate Reduction [YBP+Ma, JMLR2024].



How to Learn: Interpretation of Each Layer

Gradient Descent (GD) operator:
Sparsification Step:

Z+1 — Prox;. ZE+12 _ n - r.acl(zlf’+1/2)
-1l g

— RelU (sz+1/2 +5-DTEZA2 _pZIHI2) ). 1)

ISTA(Z £+ 1/2)

Compression Step:

Z72 =77 — - VRYZ; Uy
R(1=n-p)Z" +n-p -MSSAZ’| Uy,

TSR
|

AttentlonHead(- -, -}

AttentionHend(-. -, -]

e v

Subspace-AttentionHead
CRATE: White-box Transformer via Sparse Rate Reduction [YBP+Ma, JMLR2024].



How to Learn: DNN to Realize Iterative Optimization

Optimize Sparse Rate Reduction via iterative gradient descent (GD)

min Lgpr(Z) = —SRR(Z | Ujg) sz:Zo_fZZl_z)Zz_)m_L)ZL:Z
t 0000000000z
s |8 REEEEERRE
= i Transformer block - L
Z:f Z:f_,_l > Transfo.rrr.\e;~ block - (£ + 1) > Zf+1
- N Transfo.rrr.\ei* block - 7 1->7 4
Z°+ =(Z7 - n-VI(Z) ‘Z=Z > Transformer block - 1
‘ — ’ £ O N A O A
Jid 0000000000 «x

Each layer of a deep network (e.g., Transformer) realizes a GD operator.



How to Learn: Interpretation of the Whole Network

e Forward encoding: given fixed subspaces and dictionaries (Ufy, D%) ¢z
each layer performs compression and sparsification on representations.

* Backward learning the “codebook’: backpropagation to learn subspaces
and dictionaries (Uy,, D?);c;;; from data.

UO0000000QO0Q0 2zt—| Ssupervision/Task
L R Y R A A A N O |

Transformer block - L Params: [(U{k],DL)]

Transformer block - (£ + 1) | Params [(U%!, D?*)) e/_\[

Transformer block - # Params: |(Uf,, D7)] ~

Z7+1 — GD(ZK’)]

Transformer block - 1 r Params: (U, D")]

K O Y A A A
0000000000 2

CRATE: White-box Transformer via Sparse Rate Reduction [YBP+Ma, JMLR2024].




How to Learn: Better Semantic Interpretability

Not only mathematically fully explainable, but also semantically more interpretable!

Transformer ‘ — CRATE [NeurlPS 2023] For real data (ImageNet), CRATE learns
semantically meaningful structures.
41
@ﬁ ==
MLP Lx | 18TA
Norm LayerNorm
(j) — gitl/d
[ Multi-Head | o LY
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' MSSA
o | B —
— LayerNorm
Embedded P——
Patches zZ!t

Head 0 Head 1 Head 3 Head 4 Head 0 Head 1 Head 3 Head 4
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How to Learn: Better Networks from First Principles
No more trial and error to design better network architectures:

Explainable [NeurlPS 2023]
Scalable [NeurlPS 2024]
More efficient [[CLR 2025]
More compact [CPAL 2025]

Scalable, NeurlPS 2024

NeurlPS 2023

@ CRATE

More Compact
(Attention Only, ICML2025)

AttentionHead:

Z(Hl)

More Efficient
(Linear-Time Complexity, ICLR2025)

Token Statistics

3
84 O 116 *
) B/1 /8
= ® K 14
73 * B8
@ go| BR2@KBIG
E
=
1
§ *n‘ 32 K CRATE-a
2 75
< CRATE
&
S /16 ® VviT
B/16
70 >
0 100 200 300 400
FLOPs(G)

Selfl Attention

[u*;]: . H Diagonal Attention (Head 1) }—l
L
E K heads . [ N Membership Aggregate ]—)@

~

() - H Diagonal Attention {Head K) }—I
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| I RETOETTY

Token Statistics
Diagomal Attention

Updated Tokens

PFrojected Tokens
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How to Learn: Better Networks from First Principles

No more trial and error to design better network architectures:
SimDINO: Simplifying DINO via Coding Rate Regularization [ICML2025]

{aj: DING

{ch DIMOwy2

d

-~ DN .

Classification (ImageNet)

(b SienDMMNC

(dy: SimDMMOw2

~ I -

Segmentation (Microsoft COCO)

Hyperparameter

SimDINOv2

DINOv2

SimDINO

DINO

Model

Patch size

16

Register tokens

4

0

Pos-embedding anti-alias

True

False

Init layer scale

0.1

le-5

Drop path rate

0.3

0.1

Weight normalize last layer

removed

True

removed

True

Output prototypes K

removed

65536

removed

65536

Pipeline

Init EMA momentum

0.9

0.992

0.996

Centering temperature

removed

0.07

removed

0.07

Warm-up temperature

removed

0.04

removed

0.04

Warm-up temperature epochs

removed

30

removed

30

iBOT sample prob.

0.5

iBOT mask ratio

0.1-0.5

iBOT head tying

False

Koleo loss weight

removed

0.1

Data

Global crops scale

04-1

Local crops scale

0.05-0.4

Local crops number

10

Global crops size

224

Local crops size

96

Method Model Epochs k-NN Linear
DINO ViT-B 100 729 763
SimDINO ViT-B 100 749 773
DINO ViT-L 100 - -
SimDINO ViT-L 100 756 774
DINOv2 ViT-B 100 76.0 772
SimDINOv2 ViT-B 100 78.1 79.7
DINOv2 ViT-L 100 808 820
SimDINOv2  ViT-L 100 81.1 824
SwAV ViT-S 800 66.3 735
MoCov3 ViT-B 300 - 76.7

Detection 1 Segmentation T
Method Model AP50 AP75 AP AP50 AP75 AP
SimDINO ViT-L/16 5.4 19 24 45 14 19
SimDINO ViT-B/16 52 2.0 25 4.7 1.5 2.0
DINO ViT-B/16 3.9 1.5 1.8 3.1 1.0 14
DINO ViT-B/8 5.1 23 25 4.1 1.3 1.8

Optim.

Batch size

128x8

64x8

Epochs

100

Warm-up epochs

10

Freeze last layer epochs

removed

removed

Learning rate

0.004

0.002

Layerwise Ir decay

0.9

Weight decay

0.04

Weight decay end

0.4

Gradient clip

3.0

0.3




How to Learn: Summary with a Comparison

No more trial and error to design better network architectures:

T RD R4 S;
Deep
Representation
Learning m_’ z
S1 52
‘ Black-box White-box
Objective Input/label fitting Information gain

Deep architecture

Empirical design

Iterative optimization

Representation

Hidden/latent

Incoherent subspaces/
dictionaries




Why Correct? (Consistency)

Bi-directional encoding and decoding (e.g., compression and generation)

RD x

p(®) = p(x)? or X~ X?

Autoencoding
(2024 Nobel Prize Physics) A

g(z,m)

N

L2




Why Correct? (Consistency)

Bi-directional encoding and decoding (e.g., compression and generation)

Masked autoencoding with a whitebox architecture Image completion with 75% patches/pixels masked
[PBWY+Ma, ICLR2024] VTMAE

Polx) » X=x

CRATE-MAE Original Masked ViT-MAE CRATE-MAE Original

________ VA .zt Lzt
Z = Y0
f fl ° fl fl f ...............................
o
................... @
........................................................... S
. °
Rl R LA £ le-e-0oe
"""" yi “Y?z:TT T
fg [ Zz! HLayerNomH MSSA ZEr1/2 }—)[LayerNormJ—)( ISTA H g+l ]

° MSSA j(—{LayerINorm](—‘ yirL/2 I‘—[ Linear HLayerNomH Y* l ¢

Models: CRATE-MAE-Base versus ViT-MAE-Base [PBWYM, ICLR2024]



| NORBERT WIENER

Towards Autonomous Intelligence (Al 2.0)

How to self-learn a more consistent representation, continuously?

Improve?

pe(x) T

T > Dey1(X)

- 8= xX(z) —x

> )

In nature, all intelligent systems learn from closed-loop feedback! (Cybernetics)



Towards Al 2.0: Close the Loop

Closed-loop systems learnt via minimax game do not forget catastrophically!

Incremental Learning via Closed-Loop [TDWLY+Ma, ICLR 2023]

Unsupervised Learning of Structured Memory: one sample at a time'’

_High-dim data space X Low—dim LDR feature space Z

encoder

e =) . " RY ’}“4'-—421
f(w: 0) z
transcription
g(z, Tn') 2
P

decoder

maxmin R(Z)+ AR(Z,Z)
v H

subject to

—— X
AR(z',2')= 0, and
i2N

AR(Z',zL) = 0.
i2N

"Unsupervised Learning of Structured Representations via Closed-Loop Transcription,
S. Tong, Yann LeCun, and Yi Ma, arXiv:2210.16782, 2022.

via Minimax Game

L0 on 3100 »ao0c

¥

Figure: t-SNE of learned features . Left: U-CTRL and Right: MoCoV?2.

EMP-SSL: Towards Self-Supervised Learning in One Training Epoch,
Shengbang Tong, Yubei Chen, Yi Ma, Yann Lecun, arXiv:2304.03977




Towards Al 2.0: Time to Learn from Nature Again?

Similar characteristics and mechanisms are ubiquitous in nature!

Sparse coding in visual cortex (Olshausen, Nature 1996) 2.
Subspace embedding (Tsao, Cell 2017, Nature 2020)."3
* Predictive coding in visual cortex (Rao, Nature Neuroscience 1999).

sparse coding in visual cortex Cell d Similarity matrix of the
« yARNSEENERNNREZE The Code for Facial Identity in the Primate Brain response profile from each area
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Towards Al 2.0 (Neural Science)
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Towards Al 2.0 (Neural Science)

e Parsimony: what’s in neuroscience to verify this principle?

e Self-consistency: what’s in neuroscience to verify this principle?
e Forward optimization versus backward propagation?

e Closed-loop versus open-loop?

e Self-correcting or self-improving mechanisms?

The Forward-Forward
Algorithm for
Training Deep Neural
Networks

Invited Talk at NeurlPS 2022
Thurs 01 Dec
02:30 PM CST [Hall H ]

Geoffrey Hinton



Towards Al 2.0: How to Implement (Computer Science)

To understand intelligence, one must understand computational complexity:

Incomputable = computable — tractable — scallable = natural

Kolmogorov Turing & Shannon NP vs P DNN & BP Closed-loop
complexity & feedback?

A massive parallel, distributed, hierarchical system of autoencoders (cortical columns in cortex)

sensing & processing compressive closed-loop transcription binding & grounding
(parallel) (parallel & distributed) (sparse)
" continuous a l: "D- discrete concepts h
sensory data - [l F
visual a - : :g - .u'?: . - '
: N ZAYEGANE
external | : . — L QNS AT e NS . w= = high-level
environment il : | g ST o AN " * | inference,
with i, : + e M . VT ~ decision,
objects || tactile g I: -l f S X . p‘ and critic
1 - Lo :3{ _' .
. | of o7 /
auditory a j [ os N v
s Fy &7  semantics
" olfactory | = - [ -ch objects
. . SENsory cortex cortical columns in neocortex inter-region voting axons .
Perception: Memory:

vision-centric multi-modal senses language-centric knowledge representation



Towards Al 2.0: Time to Learn from Nature Again?

input layer

Neural networks are nature’s
optimization algorithms that
maximize information gain.

sensing & processing compressive closed-loop tpdnscription

external
environment
with
objects

hidden layer 1

Deep Neural Network

hidden layer 2

hidden layer 3

/\ Closed-loop Transcription
r —

f(z,0)

-

|

binding & grounding

sensory cortex

(parallel) (parallel & distribated) (sparse)
sonsoryadata o L [ [ [ [P [T T 2SS o0
. —E[ [[[[TJIITTTF=8
visual
‘— : 74 .
tactle & | | | [ 1] | [ 23 )
audtory —H [ [ [[] [[ T[] =&
offactory & | [ TTTTTTTF T& objecs

cortical columns in neocortex inter-region voting axons

high-level
inference,
decision,
and critic

Closed-loop transcription
is a basic unit for autonomously
learn consistent knowledge.

Parallel, distributed, hierarchical
autoencoders efficiently learn
knowledge of the external world.

percept !

~

A unified purpose of intelligence: maximize “information gain” with every unit, at every stage!



What is Intelligence?

Definition [Intelligence]: an intelligent system is one that has the mechanisms
for self-correcting and self-improving its existing knowledge (or information).

t
Knowledge = / Intelligence,
0

Intelligence = %Knowledge.

Any system without such mechanisms, however large, does not have any intelligence!

Who has intelligence,
who has knowledge?




Evolution of Intelligence in Nature: Four Stages

Phylogenetic

Ontogenetic

Societal

ELEMEN T|
[ EUCLID. |
| spleined and l)r‘zlﬁz;'rim «Nevand

Artificial

Intelligence is all about how to encode and improve information for better prediction of the world!

Phylogentic Ontogenetic Societal Artificial
Codebook Amino Acids Neural Networks Alphabet & Words | Mathematics/Logic
Information Genes/DNAs Memory Natural Languages Scientific Facts
Improvement | Natural Selection | Continuous Feedback Trial & Error Hypothesis Testing




Today’s “Artificial Intelligence” is not that Artificial Intelligence!

A quote from the 1956 Dartmouth proposal: “An attempt will be made to find
how to make machines use language, form abstractions and concepts, solve
kinds of problems now reserved for humans, and improve themselves”.

1940s 1956 Today’s Al

(animal intelligence) (unique to human) (animal or human?)

'Lnonsnnsnsn - Signal processing * Abstraction « Denoising 1. P. Paviov
=  Information Rep.  Logic deduction « Compression GONDITIONED

- . . ” REFLEXES

* Prediction » Causality * Object recognition

» Error correction * Hypothesis * Image generation

* Optimal control forming & testing « Text generation

« Game theory * Problem solving » Reinforce learning




An Open Question: Scientific Tests for Intelligence?
How to scientifically certify different types of ability of an “intelligent” system:

 Memorize: simply having memorized a large amount of knowledge-carrying data and regenerating them;
+ Self-Learn: being able to autonomously and continuously develop better knowledge from new observations;
* Understand: having truly understood existing knowledge and knowing how to deduce and apply it correctly;

* Theorize: being able to generate new scientific hypotheses and mathematical theories and verify them.

machine animal machine human machine scientist
N e
Self-learn? Understand? Theorize?
C C C
Wiener Test Turing Test Popper Test
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Epilogue

Seek a scientific and theoretical foundation for Intelligence:

 what to learn? parsimony
* how to learn? compression
 why correct? consistency

“Everything should be made as simple as possible,
but not any simpler.”
-- Albert Einstein




Epilogue
Coming soon: A new textbook in 2025

Learning Deep Representations of Data Distributions

Yi Ma, University of Hong Kong
Druv Pai, University of California, Berkeley
Sam Buchanan, Toyota Technological Institute at Chicago

Peng Wang, University of Macau

with contributions from:

Yaodong Yu, University of Maryland, College Park
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Pursuing the Nature of Intelligence

Thanks

SCHOOL OF
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The University of Hong Kong
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