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Prologue

Seek a scientific and theoretical foundation for Intelligence

A what to learn?
A how to learn?
A why correct?

AWh at I cannot cCreat e,
-- Richard Feynman
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Evolution of Life and Intelligence

Evolution of the Universe is Physics at work Evolution of Life is Intelligence at work

AJust as tirntreasecobemtspy & the basic law of the universe, so it is the
basic law of life to be ever more highly structured and to struggle against entropy. 0

-- Vaclav Havel



Evolution of Life and Intelligence: From DNA to Brain

From the first DNA to the emergence of life with Brain: 3.6 Billion Years
From the first Brain to the explosion of lives in the Cambrian period: 50 Million Years

DNAs: Pretrai ned 0 Emerggnee oMraih& [Senses Explosion of Lives
Random Mutation & Natural Selection Individual Models: Memory
Reinforcement Learning Learn from Feedback

The Cambrian period

P appeared_ near Common ancestor First life form with a brain
some volcano in the of all lives: LUCAd (Nematode )
ocean
40B Years 3.5B Years 550M Years 500M Years
First DNA First Life Form First Brain Cambrian Period

A Brief History of Intelligence, Max Bennett, 2023



Evolution of Life and Intelligence: From Species to Individuals

Emergence and evolution of life are mechanisms of intelligence at work!

Life depends on intelligence to continuously acquire more knowledge to better predict the world.

Phylogenetic Intelligence: DNA inheritance, Ontogenetic Intelligence: Individual memory,
random mutation, and natural selection perception & feedback, and error correction.

3.7Byearsago 500M yearsago 400Myearsago 360Myearsago 250M years ago 200M years ago 310T years ago
Life begins Cambrian period fish amphibian reptile bird and mammal neanderthal



Evolution of Intelligence: From Societal to Artificial Intelligence

Emergence and evolution of life are mechanisms of intelligence at work!
Life depends on intelligence to continuously acquire more knowledge to better predict the world.

Societal Intelligence: Languages and texts, Artificial Intelligence: Scientific facts,
empirical knowledge, trial and error theorize, hypothesis testing & falsification.

N ELEMEN TS
| BUCLID. |

310T years ago 70T years ago 3500 BC 600-300 BC 14-18™ Century The 1940s
neanderthal Societal intelligence written language Artificial Intelligence Renaissance Machine Intelligence
Tools and Languages Knowledge Abstraction, formal Science Computing machines

group hunting Information sharing accumulation logic, and mathematics Hypothesis Testing



The Origin of Machine Intelligence (the magic era!)
1940s, people started to make machines imitate intelligence (of animals).

A 1948, Cybernetics & System Theory , Nobert Wiener | NORBERT WIENER
A 1943, Artificial Neural Networks , Warren McCulloch and Walter Pitts " -
A 1948, Information Theory , Claude Shannon

A 1944, Game Theory , John von Neumann

A1 9 4 OTarimg Machine and Turing Test , Alan Turing
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Artificial Neurons and Neural Networks: Learn from Nature

Golgi and Cajal 1888 (1901 Nobel Prize)

Outputs

Myelin sheat Output points = synapses

Myelinated axon trunk

>

Warren McCulloch & Walter Pitts 1948

Hubel and Wiesel 1959 (1981 Nobel Prize)
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Fukushima 1980 & LeCun 1989 (Turing Award)



History of Machine Inte

Beginnings

Thresholded

Logic Unit Adaline

Perceptron

1943 1957

S. McCulloch - W, Pitts R. Rosenblatt

NOT

b

AR TALI

1st
Neural
Winter

XOR
Problem

1970

®|o @ o
=l o\"‘ o

Multilayer

Backprop

1982

1986 I 1989 1997 I

1990

P. Werbos D. Rumelhart - Y. Lecun
G. Hinton - J. Schmidhuber
R. Williams

K. Fukushima

0 [] [Asivesens ow\l‘ofwa{>

Input Units
indingQ 1068

Figure courtesy of Professor Rene Vidal

£ |

2nd
Neural
Winter

ligence (Artificial Neural Networks)

oA
N

GPU
Era

2010

B
=
R v

R. Salakhutdinov - J. Hinton -
A. Krizhevsky - |. Sutskever

e
-
-
™
3
e
revening

H 5
Te
MO —
] —
M

o
s
2

=
'ﬁ
=

ey

'v'
o
1—‘4
’l
3
“.
ting



Modern Evolution of Deep Neural Networks

Deep I 9|89 20|I 2 20I 12 20|I 5 20|I 7

Neural >
Nets LeNet (CNN) AlexNet GoogleNet  ResNet  Transforme

[LeCun et al.] [Krizhevsky et al.] [Szegedy et al.] [He et al.] [Vaswani et al.]

Transformers utilize self-attention, where
words in the input text attend to or focus on
other relevant words to determine their
meaning within the context. This allows
capturing long-range dependencies...

i

Language Model

Could you explain how transformer works? Sresented by Meta Al AlphaFold Experiment
r.m.s.d.gs = 2.2 A; TM-score = 0.96

Prompt ] T : s
] SAM: Segment Anything Model




Why Must Turn Blackbox to Whitebox?

A Modern Al systems all based on empirically designed deep networks (alchemy?)

A Bl

expl ai n,

Why Correct?
(Consistency )

A Encoding & decoding
A Continuous learning

ackbox 1 s difficult to
It is high time to develop a principled approach!
What to Learn? How to Learn?
(Parsimony ) (Compression )
A Learn what is predictable A Unroll iterative optimization
A Low-dim structures A lterative compressing
A Information gain A Make DNN a whitebox

A Closed-loop feedback

mp o



What to Learn?

The fundamental reason why intelligence exists and evolves:
The world is not entirely random yet, and it is still largely predictable.

Intelligence and Science learn what is predictable from sensed data of external
world (so every ani mal I s Newton and has

2 "C|°F Prechiation: 4¢% Weather Acceleration due to Gravity . P. Paviov
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Acceleration
32° 27 31° 27 31 27" 29° 26° 29" 26° 29° 26° 29" 27 29" 27° due to gravity




What to Learn?

The fundamental reason why intelligence exists and evolves:

The world is not entirely random yet, and it is still largely predictable.

Mathematically , all predictable information is encoded as a distribution ) e
of low -dimensional supports in observed high -dimensional data space.

High-dimensional Data Analysis with Low-Dimensional Models, Wright and Ma, 2022
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What to Learn: Low -dimensionality

Important properties of low-dimensional structures: Completion

Bayes inference :« vV (o) O \oDr‘] ®

Y
Conditional sampling

Text prediction (GPT)

J

Partial observations

Image completion




What to Learn: Low -dimensionality

Important properties of low-dimensional structures: Denoising
Empirical Bayes :« o = eDV(e]|¢) « , i iNGe

\
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Noisy observations

Natural image denoising (or generation)
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What to Learn?

Important properties of low-dimensional structures: Error Correction
Robust Bayes inference :« o g0 eDAOCIishkd s

Exploiting sparsity prior

Corrupted observations
Robust (face) recognition via sparsity [WY+Ma, T PA MI 06 0 9 |
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What to Learn: Seeking Parsimony

The main objective of learning
|dentify a distribution with low-dimensional structures from sensed data e
and transform them to a compact and structured representation ».




How to Learn: Measure of Parsimony

For distributions with low -dim structures, entropy ( or n v oflthea me
underl ying data distribution shoul

(Discrete) Entropy: O=) B.,. f(e)1 THCs)

Differential Entropy: "@e) _ 1(e)1 TnCe) Qe




Censity

How to Learn: Compress

A fundamental and unifying mechanism to learn low-dim structures:
compress to reduce entropy of the observed (noisy) data distribution.

. N T T7Ce) Qe

Noisy observations Converged law!
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How to Learn: Compress via Denoising

Theorem [Diffusion] Consider the diffusion process:
e o Ooh =D (H)S8
Under natural technical assumptions, the entropy of the process increases

d
Eh(xt) > 0, Vit>O0.

t=5.0 \ t=10.0

X2
X2
X2
. X2
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Learning Deep Representations of Data Distributions, Ma+PBWY, 2025



How to Learn: Compress via Denoising
Theorem [Denoising] Consider the inverse denoising process:
o M[e |eo] e il INCe
Under natural technical assumptions, the entropy of the process decreases

d
Eh(xt_s) < O, V S > O
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Learning Deep Representations of Data Distributions, Ma+PBWY, 2025



How to Learn: Empirical Approaches

Compression via iterative denoising
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How to Learn: Empirical Approaches

Empirically designed networks to realize the denoising operator:

> > how to realize?

Diffusion Transformer (DIT)
s N\

Image or video generation
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Latent Diffusion Transformer DiT Block with adaLN-Zero



How to Learn: An Analytical Case

Analytically derived operation to realize the denoising operator:

) ) how to realize?

If we approximate a general distribution rj(») with a

Piecewise Linear Approximation

mixture of subspaces or low -dim Gaussians, e.g. 100
PCA, ICA, GPCA, Sparse Coding [W+Ma, 2022], o\ N
40 r \
Z NO,UUL), U, €e0oD,d), d
then a0l \
1 K -60 | \
~ T~ ~ 80t — nonlinear function o
VAR Ez softmax{a||U; zl||2}k U,U,.z" N | o —
k:1 -10 -5 ] 5 10



How to Learn: Measure of Information Gain

How to explicitly represent a distribution with a low-dimensional support?
A key idea: lossy encoding and decoding

construct a finite codebook by packing the support of the distribution with T -balls.

differential entropy 5 rate distortion
(o) Hb Y(ohy ) V|$$I' E%SI "Me) Qe o
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Segmentation of Mixed Data via Lossy Coding and Compression [Ma+DHW, TPAMI2007].



How to Learn: Organize Information

How to make the resulting representation the most informative?

compress what is similar; contrast what is dissimilar.

Mathematically: maximize information gain or reduce coding rate:

maxaq4 (OR) HOh) 4 Of

ReduNet: A White-box Deep Network from the Principle of MCR”2 [YCY+Ma, JMLR2022].



How to Learn: Maximal Coding Rate Reduction (

WhenZ "QLdgP is a mixture of U Gaussians with

ReduNet)

encodes membership of samples in the @h class.

Maximal Coding Rate Reduction (MCR?)
d ZZ'T
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ReduNet: A White-box Deep Network from the Principle of MCR"2 [YCY+Ma, JIMLR2022].



How to Learn: Maximal Coding Rate Reduction (ReduNet)

Benign local and global optimization landscape of EA

Maximal Coding Rate Reduction (MCRZ)
max AR(Z |II) = R(Z) — R°(Z | II)
f

Regularized Maximal Coding Rate Reduction (MCR?)
max F(Z) := AR(Z|II) = R(Z) — R°Z|ID) - A - || Z||%
f

Theorem [YCY+M NeurlPS2020].
The global optimal solution Z* = [Z*,Z7, ...,ZZ] of MCR? satisfies:

o Subspaces of different classes are orthogonal to each other, (Zl.*)TZj* =0fori#j;

K

k=1

e Each subspace achieves its maximal dimension, i.e., rank(Z}) = d, and and d = Z dy.

Theorem [WLY+M 2024].

Every critical point {Z : VF(Z) = 0} is either a local maximizer or a
strict saddle point: each local maximizer corresponds to a feature
representation that consists of a family of orthogonal subspaces.
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How to Learn: Sparse Rate Reduction (SRR)

Maximize the difference between the coding rate of all features and the
coding rate of features within each subspace, and promote sparsity:

_ssilss : measure how sparse all features are.

sparsify

CRATE: White-box Transformer via Sparse Rate Reduction [YBP+Ma, JMLR2024].



How to Learn: DNN to Realize Iterative Optimization

Optimize Sparse Rate Reduction via gradient descent (GD)

mnd @) 322 5 gradient descent  Z°*! = f(Z%) ~ Prox[Z% — - V L (Z9)]
A

Sparse Rate Reduction (SRR):
n}in Ly (Z | U[K]) = R(Z] U[K]) + A||Z]|, — R(Z)

L(Z)

compression  sparsification

> Design the Z-th layer f7 = ff 0 ff via an Alternating Minimization Scheme:
e Compression Step: Z72 = f{(Z) » Z° —n- VRY(Z%; U ;

e Sparsification Step: Z“+! = f(Z7*12) ~ Proxy .y, [2771* — 5 - grad(Z7+12)).

CRATE: White-box Transformer via Sparse Rate Reduction [YBP+Ma, JMLR2024].



How to Learn: Interpretation of Each Layer

Gradient Descent (GD) operator:

_ zf+1
Sparsification Step: D
ISTA ; I ISTEE
Z+1 — PI"OXM|.||] [Zf+1/2 —n- grad(zt’+1/2)] J - TN "y = :
ayerNorm| - :
= RelU (zf+1/2 +n-DV(ZH2 _DZIH2y _y. ). 1) A
- . zf+lf2
|STA(ZL’+1/2) - I
Zi1/2 ER AttentionHead (-, ,-)
_ - S (e - >
Compression Step: o5} —{ Aeontint )
Zf+1/2 — Zf —n- VRC(ZL”; U[K]) - MSTSE
~ (L=n+B) 2% +n- B - MSSAZ’| Uy) gt
I

Subspace-AttentionHead
CRATE: White-box Transformer via Sparse Rate Reduction [YBP+Ma, JMLR2024].



How to Learn: DNN to Realize Iterative Optimization

Optimize Sparse Rate Reduction via iterative gradient descent (GD)

min O (L) 32%JT[] fX=ZO_fl>21_2>22_>_L>2L=Z
t 00000000004
s | R R
= i Transformer block - L
Z:f Z:f_,_l > Transfo.rrr.\e;“ block - (£ + 1) > Zf+1
- N Transfo.rrr.\ei“ block - 7 1->7 4
Z°+ =(Z7 - n-VI(Z) ‘Z=Z > Transformer block - 1
‘ — ’ £ O N A O A
"GP 0000000000 <

Each layer of a deep network (e.g., Transformer) realizes a GD operator.



How to Learn: Interpretation of the Whole Network

e Forward encoding: given fixed subspaces and dictionaries (Ufy, D%) ¢z
each layer performs compression and sparsification on representations.

* Backward learning the “codebook’: backpropagation to learn subspaces
and dictionaries (Uy,, D?);c;;; from data.

UO0000000QO0Q0 2zt—| Ssupervision/Task
L R Y R A A A N O |

Transformer block - L Params: [(U,, DY)

Transformer block - (£ + 1) | Params [(U%!, D?*)) é/—\[

Transformer block - # Params: |(Uf,, D7)] ~

Z7+1 — GD(ZK)]

Transformer block - 1 r Params: (U, D")]

K O Y A A A
0000000000 2

CRATE: White-box Transformer via Sparse Rate Reduction [YBP+Ma, JMLR2024].




low to Learn: Better Semantic Interpretability

Not only mathematically fully explainable, but also semantically more interpretable!

Transformer ‘ ) CRATE [NeurlPS 2023] For real data (ImageNet), CRATE learns
semantically meaningful structures.
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How to Learn: Better Networks from First Principles
No more trial and error to design better network architectures:

A Explainable [NeurlPS 2023]
A Scalable [NeurlPS 2024]

A More efficient [ICLR 2025]
A More compact [CPAL 2025]

Scalable NeurlPS 2024
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NeurlPS 2023

More Compact
(Attention Only  ICML2025)

Z(Hl)

More Efficient

(Linear -Time Complexity ICLR2025)
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