
Pursuing the Nature of Intell igence

Professor Yi Ma

School of Computing and Data Science

The University of Hong Kong

Prologue

Seek a scientific and theoretical foundation for Intelligence :

Å what to learn?

Å how to learn?

Å why correct?

ñWhat I cannot create, I do not understand.ò

-- Richard Feynman

Evolution of Life is Intelligence at work

Evolution of Life and Intelligence

ñJust as the constant increase of entropy is the basic law of the universe, so it is the

basic law of life to be ever more highly structured and to struggle against entropy.ò

-- Vaclav Havel

Evolution of the Universe is Physics at work

550M Years

First Brain

First life form with a brain

(Nematode)

The Cambrian period

500M Years

Cambrian Period

Explosion of Lives

A Brief History of Intelligence, Max Bennett, 2023

40B Years

First DNA

DNA appeared near

some volcano in the

ocean

3.5B Years

First Life Form

Common ancestor

of all lives: LUCAò

Emergence of Brain & Senses

Individual Models: Memory

Learn from Feedback

From the first DNA to the emergence of life with Brain: 3.6 Billion Years

From the first Brain to the explosion of lives in the Cambrian period: 50 Million Years

DNAs: Pretrained ñLarge Modelsò

Random Mutation & Natural Selection

Reinforcement Learning

Evolution of Life and Intelligence: From DNA to Brain

3.7B years ago

Life begins

500M years ago

Cambrian period
400M years ago

fish

360M years ago

amphibian
250M years ago

reptile

200M years ago

bird and mammal

310T years ago

neanderthal

Phylogenetic Intelligence: DNA inheritance,

random mutation, and natural selection

Ontogenetic Intelligence: Individual memory,

perception & feedback, and error correction.

Evolution of Life and Intelligence: From Species to Individuals

Life depends on intelligence to continuously acquire more knowledge to better predict the world.

Emergence and evolution of life are mechanisms of intelligence at work!

Evolution of Intelligence: From Societal to Artificial Intelligence

310T years ago

neanderthal

Tools and

group hunting

70T years ago

Societal intelligence

Languages

Information sharing

3500 BC

written language

Knowledge

accumulation

14-18th Century

Renaissance

Science

Hypothesis Testing

The 1940s

Machine Intelligence

Computing machines

600-300 BC

Artificial Intelligence

Abstraction, formal

logic, and mathematics

Emergence and evolution of life are mechanisms of intelligence at work!

Life depends on intelligence to continuously acquire more knowledge to better predict the world.

Societal Intelligence: Languages and texts,

empirical knowledge, trial and error

Artificial Intelligence: Scientific facts,

theorize, hypothesis testing & falsification.

The Origin of Machine Intelligence (the magic era!)

1940s, people started to make machines imitate intelligence (of animals).

Å1948, Cybernetics & System Theory , Nobert Wiener

Å1943, Artificial Neural Networks , Warren McCulloch and Walter Pitts

Å1948, Information Theory , Claude Shannon

Å1944, Game Theory , John von Neumann

Å1940ôs, Turing Machine and Turing Test , Alan Turing

Perceive

(encode)

Predict

(decode)

Learn memory

Artificial Neurons and Neural Networks: Learn from Nature

Warren McCulloch & Walter Pitts 1948

Golgi and Cajal 1888 (1901 Nobel Prize) Hubel and Wiesel 1959 (1981 Nobel Prize)

Fukushima 1980 & LeCun 1989 (Turing Award)

History of Machine Intelligence (Artificial Neural Networks)

K. Fukushima

Figure courtesy of Professor Rene Vidal

Modern Evolution of Deep Neural Networks

Deep

Neural

Nets

?

(2024 Nobel Prize Chemistry)

Why Must Turn Blackbox to Whitebox?

ÅModern AI systems all based on empirically designed deep networks (alchemy?)

ÅBlackbox is difficult to explain, impossible to guarantee, costly to improve, é

It is high time to develop a principled approach!

Å Learn what is predictable

Å Low-dim structures

Å Information gain

Å Unroll iterative optimization

Å Iterative compressing

Å Make DNN a whitebox

Å Encoding & decoding

Å Continuous learning

Å Closed-loop feedback

What to Learn?

(Parsimony)

How to Learn?

(Compression)

Why Correct?

(Consistency)

Intelligence and Science learn what is predictable from sensed data of external

world (so every animal is Newton and has learned an accurate ñworld model.ò)

What to Learn?

The fundamental reason why intelligence exists and evolves:

The world is not entirely random yet, and it is still largely predictable.

Mathematically , all predictable information is encoded as a distribution ὴ●

of low -dimensional supports in observed high -dimensional data space.

?

What to Learn?

The fundamental reason why intelligence exists and evolves:

The world is not entirely random yet, and it is still largely predictable.

High-dimensional Data Analysis with Low-Dimensional Models, Wright and Ma, 2022

This is the only ñinductive biasò necessary!

What to Learn: Low -dimensionality

Important properties of low-dimensional structures: Completion

?

Text prediction (GPT)

Image completion

Bayes inference :◐ ע ● ᴼ ●Ḑὴ● ◐᷄

Conditional sampling

Partial observations

What to Learn: Low -dimensionality

Important properties of low-dimensional structures: Denoising

Empirical Bayes :◐ ● „▪ ●Ḑ ● ◐ ◐ „ ÌɳÏÇὴ●

Tweedieôs formula

Natural image denoising (or generation)
Noisy observations

What to Learn?

Important properties of low-dimensional structures: Error Correction

30% corruption

50%

70%

99.3% 90.7%

37.5%

Robust (face) recognition via sparsity [WY+Ma,TPAMIô09]

Robust Bayes inference :◐ ● ▄ᴼ ●ḐÁÒÇÍÉÎȿȿ●ȿȿ ȿȿ▄ȿȿ

Exploiting sparsity prior

Corrupted observations

What to Learn: Seeking Parsimony

The main objective of learning :
Identify a distribution with low-dimensional structures from sensed data ●
and transform them to a compact and structured representation ◑.

For distributions with low -dim structures, entropy (or ñvolumeò) of the

underlying data distribution should be very small (or ñzeroò):

How to Learn: Measure of Parsimony

(Discrete) Entropy: Ὄ╧ В●ɴ╧ ὴ●ÌÏÇὴ●

Differential Entropy: Ὤ● ᷿ ὴ●ÌÏÇὴ●Ὠ●

A fundamental and unifying mechanism to learn low-dim structures:

compress to reduce entropy of the observed (noisy) data distribution.

How to Learn: Compress

minimize Ὤ● ᷿ ὴ●ÌÏÇὴ●Ὠ●

ὴ●

ÌɳÏÇὴ●

Ὤ● ÄÅÃÒÅÁÓÅÓȦ

Noisy observations

ὴ╩

ÌɳÏÇὴ╩

ὴ●ᶻ

● ● ÌɳÏÇὴ●

Converged law!

How to Learn: Compress via Denoising

Theorem [Diffusion] Consider the diffusion process:

Under natural technical assumptions, the entropy of the process increases :

Ὠ

Ὠὸ
Ὤ● πȟ ᶪὸ πȢ

● ● ὸ▪ȟ ▪Ḑﬞ ȟἓȢ

Learning Deep Representations of Data Distributions, Ma+PBWY, 2025

Theorem [Denoising] Consider the inverse denoising process:

Under natural technical assumptions, the entropy of the process decreases :

How to Learn: Compress via Denoising

● ● ● ● ίὸɳÌÏÇὴ●

Ὠ

Ὠί
Ὤ● πȟ ᶪί πȢ

◑ ◑ ÌɳÏÇὴ◑

Learning Deep Representations of Data Distributions, Ma+PBWY, 2025

How to Learn: Empirical Approaches

Compression via iterative denoising

◑ ◑ ÌɳÏÇὴ◑

How to Learn: Empirical Approaches

Multi-Head
Self-Attention

Layer Norm

Scale, Shift

MLP

Pointwise
Feedforward

Layer Norm

Scale, Shift

Scale

+

+

Scale

! ! ," !

#!

! " ," "

#"

Input Tokens Conditioning

DiT Block with adaLN-ZeroLatent Diffusion Transformer

Timestep #

Label $

DiT BlockN x

Patchify

Layer Norm

Linear and Reshape

Embed

Noise ɫ
32 x 32 x 4 32 x 32 x 4

Noised

Latent
32 x 32 x 4

Multi-Head

Self-Attention

Layer Norm

Pointwise

Feedforward

Layer Norm

+

+

Input Tokens Conditioning

DiT Block with Cross-Attention

Multi-Head

Cross-Attention

Layer Norm

+

Multi-Head

Self-Attention

Layer Norm

Pointwise

Feedforward

+

+

Input Tokens Conditioning

DiT Block with In-Context Conditioning

Layer Norm

Concatenate

on Sequence

Dimension

Figure 3. The Diffusion Transformer (DiT) architecture. Left: We train conditional latent DiT models. The input latent is decomposed

into patches and processed by several DiT blocks. Right: Details of our DiT blocks. We experiment with variants of standard transformer

blocks that incorporate conditioning via adaptive layer norm, cross-attention and extra input tokens. Adaptive layer norm works best.

Denoising diffusion probabilistic models (DDPMs).

Diffusion [19, 54] and score-based generative models [22,

56] have been particularly successful as generative models

of images [35,46,48,50], in many casesoutperforming gen-

erative adversarial networks (GANs) [12] which had previ-

ously been state-of-the-art. Improvements in DDPMs over

the past two years have largely been driven by improved

sampling techniques [19, 27, 55], most notably classiýer-

free guidance [21], reformulating diffusion models to pre-

dict noise instead of pixels [19] and using cascaded DDPM

pipelines where low-resolution base diffusion models are

trained in parallel with upsamplers [9, 20]. For all the dif-

fusion models listed above, convolutional U-Nets [49] are

the de-facto choice of backbone architecture. Concurrent

work [24] introduced a novel, efýcientarchitecture based

on attention for DDPMs; we explore pure transformers.

Architectur e complexity. When evaluating architecture

complexity in the image generation literature, it is fairly

common practice to use parameter counts. In general, pa-

rameter counts can be poor proxies for the complexity of

imagemodelssince they do not account for, e.g., image res-

olution which signiýcantly impacts performance [44, 45].

Instead, much of the model complexity analysis in this pa-

per is through the lens of theoretical Gþops.This brings us

in-line with the architecture design literature whereGþops

are widely-used to gauge complexity. In practice, the

golden complexity metric is still up for debate as it fre-

quently depends on particular application scenarios. Nichol

and Dhariwalôs seminal work improving diffusion mod-

els [9, 36] is most related to usðthere,they analyzed the

scalability and Gþopproperties of the U-Net architecture

class. In this paper, we focus on the transformer class.

3. Diffusion Transformers

3.1. Preliminar ies

Diffusion formulation. Before introducing our architec-

ture, we brieþyreview some basic concepts needed to

understand diffusion models (DDPMs) [19, 54]. Gaus-

sian diffusion models assume a forward noising process

which gradually applies noise to real data x0: q(x t |x0) =

N (x t ;
p

¯δt x0, (1ī ¯δt)I), where constants ¯δt are hyperpa-

rameters. By applying the reparameterization trick, we can

sample x t =
p

¯δt x0 +
p

1ī ¯δtṅt , whereṅt ᶊN (0, I).

Diffusion models are trained to learn the reverse process

that inverts forward process corruptions: pṉ(x tī1|x t) =

N (µṉ(x t), ṉ(x t)), where neural networksareused to pre-

dict the statistics of pṉ. The reverse process model is

trained with the variational lower bound [30] of the log-

likelihood of x0, which reduces to L (ṉ) = īp(x0|x1) +P
t DK L (qᶎ(x tī1|x t , x0)||pṉ(x tī1|x t)), excluding an ad-

ditional term irrelevant for training. Since both qᶎand pṉ
are Gaussian, DK L can be evaluated with the mean and co-

varianceof thetwo distributions. By reparameterizing µṉas

a noise prediction networkṅṉ, the model can be trained us-

ing simple mean-squared error between the predicted noise

ṅṉ(x t) and the ground truth sampled Gaussian noise ṅt :
L si m pl e(ṉ) = ||ṅṉ(x t) īṅt ||

2
2. But, in order to train diffu-

sion models with a learned reverse process covariance ṉ,

the full DK L term needs to beoptimized. Wefollow Nichol

and Dhariwalôs approach [36]: train ṅṉwith L si m pl e, and

train ṉwith the full L . Oncepṉis trained, new images can

be sampled by initializing x t max
ᶊ N (0, I) and sampling

x tī1 ᶊpṉ(x tī1|x t) via the reparameterization trick.

3

Diffusion Transformer (DiT)

Empirically designed networks to realize the denoising operator:

Image or video generation

how to realize?◑ ◑ ÌɳÏÇὴ◑

◑ ᶿ
ρ

ὑ
ÓÏÆÔÍÁØȿȿ╤◑ȿȿ ╤╤◑Ȣ

How to Learn: An Analytical Case

If we approximate a general distribution ὴ◑ with a

mixture of subspaces or low -dim Gaussians, e.g.

PCA, ICA, GPCA, Sparse Coding [W+Ma, 2022],

◑Ḑ
ρ

ὑ
ﬞ ȟ╤╤ ȟ ╤ ᶰὕὈȟὨȟ

how to realize?

then

◑ ◑ ÌɳÏÇὴ◑

Analytically derived operation to realize the denoising operator:

How to explicitly represent a distribution with a low-dimensional support?

A key idea: lossy encoding and decoding

How to Learn: Measure of Information Gain

construct a finite codebook by packing the support of the distribution with -balls.

Segmentation of Mixed Data via Lossy Coding and Compression [Ma+DHW, TPAMI2007].

differential entropy
Ὤ● Њ

rate distortion
Ὑ●ȟ ÍÉÎ

ȿȿ● ●ȿȿ
Ὤ● Ὤ● ●᷄

ñtokenizingò

ςצ

Mathematically: maximize information gain or reduce coding rate:

maxɝ╡◑ȟ ╡◑ȟ ╡ ◑ȟ

How to make the resulting representation the most informative?

compress what is similar; contrast what is dissimilar.

How to Learn: Organize Information

ReduNet: A White-box Deep Network from the Principle of MCR^2 [YCY+Ma, JMLR2022].

● ◑ⱣὪ●ȠⱣȡ

contrastcompress

╡◑ȟ ╡ ◑ȟ

How to Learn: Maximal Coding Rate Reduction (ReduNet)

ReduNet: A White-box Deep Network from the Principle of MCR^2 [YCY+Ma, JMLR2022].

When╩ Ὢ╧ȡⱣ is a mixture ofὑGaussians with encodes membership of samples in the Ὧth class.

How to Learn: Maximal Coding Rate Reduction (ReduNet)

Benign local and global optimization landscape of ἙἍἠ

How to Learn: Sparse Rate Reduction (SRR)

‗ȿȿ╩ȿȿ: measure how sparse all features are.

CRATE: White-box Transformer via Sparse Rate Reduction [YBP+Ma, JMLR2024].

transform sparsify

Optimize Sparse Rate Reduction via gradient descent (GD)

How to Learn: DNN to Realize Iterative Optimization

ὪЉ

minὒ ╩ 322╩ ╤᷄

CRATE: White-box Transformer via Sparse Rate Reduction [YBP+Ma, JMLR2024].

Gradient Descent (GD) operator:

How to Learn: Interpretation of Each Layer

Compression Step:

Sparsification Step:

CRATE: White-box Transformer via Sparse Rate Reduction [YBP+Ma, JMLR2024].

Optimize Sparse Rate Reduction via iterative gradient descent (GD)

Each layer of a deep network (e.g., Transformer) realizes a GD operator.

How to Learn: DNN to Realize Iterative Optimization

╧

╩

minὒ ╩ 322╩ ╤᷄

ὪЉ

How to Learn: Interpretation of the Whole Network

CRATE: White-box Transformer via Sparse Rate Reduction [YBP+Ma, JMLR2024].

Not only mathematically fully explainable, but also semantically more interpretable!

For real data (ImageNet), CRATE learns

semantically meaningful structures.
Transformer CRATE [NeurIPS 2023]

How to Learn: Better Semantic Interpretability

How to Learn: Better Networks from First Principles

No more trial and error to design better network architectures:

Å Explainable [NeurIPS 2023]

Å Scalable [NeurIPS 2024]

Å More efficient [ICLR 2025]

Å More compact [CPAL 2025]

Scalable NeurIPS 2024

More Compact

(Attention Only ICML2025)

More Efficient

(Linear -Time Complexity ICLR2025)

NeurIPS 2023

