
Pursuing the Nature of Intell igence

Professor Yi Ma

School of Computing and Data Science

The University of Hong Kong

Prologue

Seek a scientific and theoretical foundation for Intelligence:

• what to learn?

• how to learn?

• why correct?

“What I cannot create, I do not understand.”

-- Richard Feynman

Evolution of Life is Intelligence at work

Evolution of Life and Intelligence

“Just as the constant increase of entropy is the basic law of the universe, so it is the

basic law of life to be ever more highly structured and to struggle against entropy.”

-- Vaclav Havel

Evolution of the Universe is Physics at work

550M Years

First Brain

First life form with a brain

(Nematode)

The Cambrian period

500M Years

Cambrian Period

Explosion of Lives

A Brief History of Intelligence, Max Bennett, 2023

40B Years

First DNA

DNA appeared near

some volcano in the

ocean

3.5B Years

First Life Form

Common ancestor

of all lives: LUCA”

Emergence of Brain & Senses

Individual Models: Memory

Learn from Feedback

From the first DNA to the emergence of life with Brain: 3.6 Billion Years

From the first Brain to the explosion of lives in the Cambrian period: 50 Million Years

DNAs: Pretrained “Large Models”

Random Mutation & Natural Selection

Reinforcement Learning

Evolution of Life and Intelligence: From DNA to Brain

3.7B years ago

Life begins

500M years ago

Cambrian period
400M years ago

fish

360M years ago

amphibian
250M years ago

reptile

200M years ago

bird and mammal

310T years ago

neanderthal

Phylogenetic Intelligence: DNA inheritance,

random mutation, and natural selection

Ontogenetic Intelligence: Individual memory,

perception & feedback, and error correction.

Evolution of Life and Intelligence: From Species to Individuals

Life depends on intelligence to continuously acquire more knowledge to better predict the world.

Emergence and evolution of life are mechanisms of intelligence at work!

Evolution of Intelligence: From Societal to Artificial Intelligence

310T years ago

neanderthal

Tools and

group hunting

70T years ago

Societal intelligence

Languages

Information sharing

3500 BC

written language

Knowledge

accumulation

14-18th Century

Renaissance

Science

Hypothesis Testing

The 1940s

Machine Intelligence

Computing machines

600-300 BC

Artificial Intelligence

Abstraction, formal

logic, and mathematics

Emergence and evolution of life are mechanisms of intelligence at work!

Life depends on intelligence to continuously acquire more knowledge to better predict the world.

Societal Intelligence: Languages and texts,

empirical knowledge, trial and error

Artificial Intelligence: Scientific facts,

theorize, hypothesis testing & falsification.

The Origin of Machine Intelligence (the magic era!)

1940s, people started to make machines imitate intelligence (of animals).

• 1948, Cybernetics & System Theory, Nobert Wiener

• 1943, Artificial Neural Networks, Warren McCulloch and Walter Pitts

• 1948, Information Theory, Claude Shannon

• 1944, Game Theory, John von Neumann

• 1940’s, Turing Machine and Turing Test, Alan Turing

Perceive

(encode)

Predict

(decode)

Learn memory

Artificial Neurons and Neural Networks: Learn from Nature

Warren McCulloch & Walter Pitts 1948

Golgi and Cajal 1888 (1901 Nobel Prize) Hubel and Wiesel 1959 (1981 Nobel Prize)

Fukushima 1980 & LeCun 1989 (Turing Award)

History of Machine Intelligence (Artificial Neural Networks)

K. Fukushima

Figure courtesy of Professor Rene Vidal

Modern Evolution of Deep Neural Networks

Deep

Neural

Nets

?

(2024 Nobel Prize Chemistry)

Why Must Turn Blackbox to Whitebox?

• Modern AI systems all based on empirically designed deep networks (alchemy?)

• Blackbox is difficult to explain, impossible to guarantee, costly to improve, …

It is high time to develop a principled approach!

• Learn what is predictable

• Low-dim structures

• Information gain

• Unroll iterative optimization

• Iterative compressing

• Make DNN a whitebox

• Encoding & decoding

• Continuous learning

• Closed-loop feedback

What to Learn?

(Parsimony)

How to Learn?

(Compression)

Why Correct?

(Consistency)

Intelligence and Science learn what is predictable from sensed data of external

world (so every animal is Newton and has learned an accurate “world model.”)

What to Learn?

The fundamental reason why intelligence exists and evolves:

The world is not entirely random yet, and it is still largely predictable.

Mathematically, all predictable information is encoded as a distribution 𝑝(𝒙)

of low-dimensional supports in observed high-dimensional data space.

?

What to Learn?

The fundamental reason why intelligence exists and evolves:

The world is not entirely random yet, and it is still largely predictable.

High-dimensional Data Analysis with Low-Dimensional Models, Wright and Ma, 2022

This is the only “inductive bias” necessary!

What to Learn: Low-dimensionality

Important properties of low-dimensional structures: Completion

?

Text prediction (GPT)

Image completion

Bayes inference: 𝒚 = 𝒫Ω 𝒙 → ෝ𝒙 ∼ 𝑝(𝒙 ∣ 𝒚)

Conditional sampling

Partial observations

What to Learn: Low-dimensionality

Important properties of low-dimensional structures: Denoising

Empirical Bayes: 𝒚 = 𝒙 + 𝜎𝒏 ⟹ ෝ𝒙 ∼ 𝔼 𝒙 𝒚 = 𝒚 + 𝜎2∇ log 𝑝(𝒙)

Tweedie’s formula

Natural image denoising (or generation)
Noisy observations

What to Learn?

Important properties of low-dimensional structures: Error Correction

30% corruption

50%

70%

99.3% 90.7%

37.5%

Robust (face) recognition via sparsity [WY+Ma, TPAMI’09]

Robust Bayes inference: 𝒚 = 𝒙 + 𝒆 → ෝ𝒙 ∼ argmin ||𝒙||1 + ||𝒆||1

Exploiting sparsity prior

Corrupted observations

What to Learn: Seeking Parsimony

The main objective of learning:
Identify a distribution with low-dimensional structures from sensed data 𝒙
and transform them to a compact and structured representation 𝒛.

For distributions with low-dim structures, entropy (or “volume”) of the

underlying data distribution should be very small (or “zero”):

How to Learn: Measure of Parsimony

(Discrete) Entropy: 𝐻 𝑿 = σ𝒙∈𝑿−𝑝 𝒙 log 𝑝 𝒙

Differential Entropy: ℎ 𝒙 = 𝑝−׬ 𝒙 log 𝑝 𝒙 𝑑𝒙

A fundamental and unifying mechanism to learn low-dim structures:

compress to reduce entropy of the observed (noisy) data distribution.

How to Learn: Compress

minimize ℎ 𝒙 = 𝑝−׬ 𝒙 log 𝑝 𝒙 𝑑𝒙

𝑝(𝒙)

∇ log 𝑝(𝒙)

ℎ 𝒙 decreases!

Noisy observations

𝑝(𝒁)

∇ log 𝑝(𝒁)

𝑝(𝒙∗)

𝒙𝑙+1 = 𝒙𝑙 + 𝛽 ∇ log 𝑝(𝒙𝑙)

Converged law!

How to Learn: Compress via Denoising

Theorem [Diffusion] Consider the diffusion process:

Under natural technical assumptions, the entropy of the process increases:

𝑑

𝑑𝑡
ℎ 𝒙𝑡 > 0, ∀ 𝑡 > 0.

𝒙𝑡 = 𝒙𝑜 + 𝑡𝒏, 𝒏 ∼ 𝒩 𝟎, 𝐈 .

Learning Deep Representations of Data Distributions, Ma+PBWY, 2025

Theorem [Denoising] Consider the inverse denoising process:

Under natural technical assumptions, the entropy of the process decreases:

How to Learn: Compress via Denoising

ෝ𝒙𝑡−𝑠 = 𝔼 𝒙𝑡−𝑠 𝒙𝑡 = 𝒙𝑡 + 𝑠𝑡∇ log 𝑝(𝒙𝑡)

𝑑

𝑑𝑠
ℎ ෝ𝒙𝑡−𝑠 < 0, ∀ 𝑠 > 0.

෤𝒛𝑙+1 = ෤𝒛𝑙 + 𝛽 ∇ log 𝑝(෤𝒛𝑙)

Learning Deep Representations of Data Distributions, Ma+PBWY, 2025

How to Learn: Empirical Approaches

Compression via iterative denoising

෤𝒛𝑙+1 = ෤𝒛𝑙 + 𝛽 ∇ log 𝑝(෤𝒛𝑙)

How to Learn: Empirical Approaches

Multi-Head
Self-Attention

Layer Norm

Scale, Shift

MLP

Pointwise
Feedforward

Layer Norm

Scale, Shift

Scale

+

+

Scale

! ! ," !

#!

! " ," "

#"

Input Tokens Conditioning

DiT Block with adaLN-ZeroLatent Diffusion Transformer

Timestep #

Label $

DiT BlockN x

Patchify

Layer Norm

Linear and Reshape

Embed

Noise Σ
32 x 32 x 4 32 x 32 x 4

Noised

Latent
32 x 32 x 4

Multi-Head

Self-Attention

Layer Norm

Pointwise

Feedforward

Layer Norm

+

+

Input Tokens Conditioning

DiT Block with Cross-Attention

Multi-Head

Cross-Attention

Layer Norm

+

Multi-Head

Self-Attention

Layer Norm

Pointwise

Feedforward

+

+

Input Tokens Conditioning

DiT Block with In-Context Conditioning

Layer Norm

Concatenate

on Sequence

Dimension

Figure 3. The Diffusion Transformer (DiT) architecture. Left: We train conditional latent DiT models. The input latent is decomposed

into patches and processed by several DiT blocks. Right: Details of our DiT blocks. We experiment with variants of standard transformer

blocks that incorporate conditioning via adaptive layer norm, cross-attention and extra input tokens. Adaptive layer norm works best.

Denoising diffusion probabilistic models (DDPMs).

Diffusion [19, 54] and score-based generative models [22,

56] have been particularly successful as generative models

of images [35,46,48,50], in many casesoutperforming gen-

erative adversarial networks (GANs) [12] which had previ-

ously been state-of-the-art. Improvements in DDPMs over

the past two years have largely been driven by improved

sampling techniques [19, 27, 55], most notably classifier-

free guidance [21], reformulating diffusion models to pre-

dict noise instead of pixels [19] and using cascaded DDPM

pipelines where low-resolution base diffusion models are

trained in parallel with upsamplers [9, 20]. For all the dif-

fusion models listed above, convolutional U-Nets [49] are

the de-facto choice of backbone architecture. Concurrent

work [24] introduced a novel, efficient architecture based

on attention for DDPMs; we explore pure transformers.

Architectur e complexity. When evaluating architecture

complexity in the image generation literature, it is fairly

common practice to use parameter counts. In general, pa-

rameter counts can be poor proxies for the complexity of

imagemodelssince they do not account for, e.g., image res-

olution which significantly impacts performance [44, 45].

Instead, much of the model complexity analysis in this pa-

per is through the lens of theoretical Gflops. This brings us

in-line with the architecture design literature where Gflops

are widely-used to gauge complexity. In practice, the

golden complexity metric is still up for debate as it fre-

quently depends on particular application scenarios. Nichol

and Dhariwal’s seminal work improving diffusion mod-

els [9, 36] is most related to us—there, they analyzed the

scalability and Gflop properties of the U-Net architecture

class. In this paper, we focus on the transformer class.

3. Diffusion Transformers

3.1. Preliminar ies

Diffusion formulation. Before introducing our architec-

ture, we briefly review some basic concepts needed to

understand diffusion models (DDPMs) [19, 54]. Gaus-

sian diffusion models assume a forward noising process

which gradually applies noise to real data x0: q(x t |x0) =

N (x t ;
p
↵̄ t x0, (1 − ↵̄ t)I), where constants ↵̄ t are hyperpa-

rameters. By applying the reparameterization trick, we can

sample x t =
p
↵̄ t x0 +

p
1 − ↵̄ t✏t , where✏t ⇠N (0, I).

Diffusion models are trained to learn the reverse process

that inverts forward process corruptions: p✓(x t − 1|x t) =

N (µ✓(x t), ⌃ ✓(x t)), where neural networksareused to pre-

dict the statistics of p✓. The reverse process model is

trained with the variational lower bound [30] of the log-

likelihood of x0, which reduces to L (✓) = − p(x0|x1) +P
t DK L (q⇤(x t − 1|x t , x0)||p✓(x t − 1|x t)), excluding an ad-

ditional term irrelevant for training. Since both q⇤ and p✓
are Gaussian, DK L can be evaluated with the mean and co-

varianceof thetwo distributions. By reparameterizing µ✓as

a noise prediction network ✏✓, the model can be trained us-

ing simple mean-squared error between the predicted noise

✏✓(x t) and the ground truth sampled Gaussian noise ✏t :
L si m pl e(✓) = ||✏✓(x t) − ✏t ||

2
2. But, in order to train diffu-

sion models with a learned reverse process covariance ⌃ ✓,

the full DK L term needs to beoptimized. Wefollow Nichol

and Dhariwal’s approach [36]: train ✏✓ with L si m pl e, and

train ⌃ ✓with the full L . Oncep✓ is trained, new images can

be sampled by initializing x t max
⇠ N (0, I) and sampling

x t − 1 ⇠ p✓(x t − 1|x t) via the reparameterization trick.

3

Diffusion Transformer (DiT)

Empirically designed networks to realize the denoising operator:

Image or video generation

how to realize?෤𝒛𝑙+1 = ෤𝒛𝑙 + 𝛽 ∇ log 𝑝(෤𝒛𝑙)

෤𝒛𝑙+1 ∝
1

𝐾
෍

𝑘=1

𝐾

softmax 𝛼||𝑼𝑖
⊤෤𝒛𝑙||2

𝑘
𝑼𝑘𝑼𝑘

⊤෤𝒛𝑙 .

How to Learn: An Analytical Case

If we approximate a general distribution 𝑝 ෤𝒛 with a

mixture of subspaces or low-dim Gaussians, e.g.

PCA, ICA, GPCA, Sparse Coding [W+Ma, 2022],

෤𝒛𝑙 ∼
1

𝐾
෍

𝑘=1

𝐾

𝒩(𝟎,𝑼𝑘𝑼𝑘
⊤), 𝑼𝑘 ∈ 𝑂(𝐷, 𝑑),

how to realize?

then

෤𝒛𝑙+1 = ෤𝒛𝑙 + 𝛽 ∇ log 𝑝(෤𝒛𝑙)

Analytically derived operation to realize the denoising operator:

How to explicitly represent a distribution with a low-dimensional support?

A key idea: lossy encoding and decoding

How to Learn: Measure of Information Gain

construct a finite codebook by packing the support of the distribution with 𝜖-balls.

Segmentation of Mixed Data via Lossy Coding and Compression [Ma+DHW, TPAMI2007].

differential entropy
ℎ 𝒙 = −∞

rate distortion
𝑅 𝒙, 𝜖 = min

𝔼||ෝ𝒙−𝒙||≤𝜖
ℎ ෝ𝒙 − ℎ(ෝ𝒙 ∣ 𝒙)

“tokenizing”

2ϵ

Mathematically: maximize information gain or reduce coding rate:

max Δ𝑹 𝒛, 𝜖 = 𝑹 𝒛, 𝜖 − 𝑹𝑐(𝒛, 𝜖)

How to make the resulting representation the most informative?

compress what is similar; contrast what is dissimilar.

How to Learn: Organize Information

ReduNet: A White-box Deep Network from the Principle of MCR^2 [YCY+Ma, JMLR2022].

𝒙 ⟹ 𝒛(𝜽)𝑓 𝒙; 𝜽 :

contrastcompress

𝑹 𝒛, 𝜖 𝑹𝑐(𝒛, 𝜖)

How to Learn: Maximal Coding Rate Reduction (ReduNet)

ReduNet: A White-box Deep Network from the Principle of MCR^2 [YCY+Ma, JMLR2022].

When 𝒁 = 𝑓(𝑿: 𝜽) is a mixture of 𝐾 Gaussians with 𝚷𝑘 encodes membership of samples in the 𝑘th class.

How to Learn: Maximal Coding Rate Reduction (ReduNet)

Benign local and global optimization landscape of 𝐌𝐂𝐑𝟐

How to Learn: Sparse Rate Reduction (SRR)

−𝜆||𝒁||1 : measure how sparse all features are.

CRATE: White-box Transformer via Sparse Rate Reduction [YBP+Ma, JMLR2024].

transform sparsify

Optimize Sparse Rate Reduction via gradient descent (GD)

How to Learn: DNN to Realize Iterative Optimization

𝑓ℓ

min 𝐿𝑆𝑅𝑅 𝒁 = −SRR(𝒁 ∣ 𝑼 𝐾)

CRATE: White-box Transformer via Sparse Rate Reduction [YBP+Ma, JMLR2024].

Gradient Descent (GD) operator:

How to Learn: Interpretation of Each Layer

Compression Step:

Sparsification Step:

CRATE: White-box Transformer via Sparse Rate Reduction [YBP+Ma, JMLR2024].

Optimize Sparse Rate Reduction via iterative gradient descent (GD)

Each layer of a deep network (e.g., Transformer) realizes a GD operator.

How to Learn: DNN to Realize Iterative Optimization

𝑿

𝒁

min 𝐿𝑆𝑅𝑅 𝒁 = −SRR(𝒁 ∣ 𝑼 𝐾)

𝑓ℓ

How to Learn: Interpretation of the Whole Network

CRATE: White-box Transformer via Sparse Rate Reduction [YBP+Ma, JMLR2024].

Not only mathematically fully explainable, but also semantically more interpretable!

For real data (ImageNet), CRATE learns

semantically meaningful structures.
Transformer CRATE [NeurIPS 2023]

How to Learn: Better Semantic Interpretability

How to Learn: Better Networks from First Principles

No more trial and error to design better network architectures:

• Explainable [NeurIPS 2023]

• Scalable [NeurIPS 2024]

• More efficient [ICLR 2025]

• More compact [CPAL 2025]

Scalable，NeurIPS 2024

More Compact

(Attention Only，ICML2025)

More Efficient

(Linear-Time Complexity，ICLR2025)

NeurIPS 2023

How to Learn: Better Networks from First Principles

No more trial and error to design better network architectures:

SimDINO: Simplifying DINO via Coding Rate Regularization [ICML2025]
275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

Simplifying DINO by Coding Rate Regular ization

sibleto theoriginal method for fair comparison. Specifically,

for all inputs we set patch size to be 16; we use the small,

base, and largemodels of theViT (Dosovitskiy, 2020) archi-

tecture as the backbone, which is connected to a projector

composed of three MLP layers with ahidden size of 2048

and an output dimension of 256. The output features after

the projector areω2 normalized. Specifically for original

(i.e., unsimplified) DINO models, these normalized features

are then fed to aweight-normalized linear layer that outputs

a high-dimensional (e.g., 65536) vector, before computing

the softmax and then the cross-entropy loss.

Datasets and optimization. For pretraining, we use the

ImageNet-1K dataset across all methods. For fair compari-

son, weclosely follow theoriginal works(Caron et al., 2021;

Oquab et al., 2023). Wechoose AdamW (Loshchilov, 2017)

as the optimizer and adopt the same optimization strategies

(e.g., learning rates, warm-up schedules). For multicrop

augmentation, we use 10 local views of resolution 96→96

and 2 global views of resolution 224→224 for all experi-

ments. We provide more details on hyperparameter choices

in Appendix E. Wealso consider several downstream tasks.

Specifically, we evaluate our pretrained models on 1) un-

supervised object detection and segmentation on COCO

val2017 (Lin et al., 2014), 2) semantic segmentation on

ADE20K (Zhou et al., 2017), and 3) video object segmenta-

tion on DAVIS-2017 (Pont-Tuset et al., 2017).

3.2. Exper imental Results

ImageNet Classification. We report the classification ac-

curacies on ImageNet-1k in Table 1. Following (Caron

et al., 2021), we evaluate both k-NN and linear accuracy

on theViT backbones pretrained by the DINO model fam-

ilies and our simplified variants. We observe that under

both DINO and DINOv2 paradigms, our simplified methods

are able to outperform theoriginal pipelines. Furthermore,

we observe that applying identical hyperparameter settings

from ViT-B to ViT-L results in instability and divergence in

DINO, whilethesamesetup yieldsasteady improvement for

SimDINO. To better understand the optimization dynamics

of SimDINO, we visualize the evolution of accuracy during

training in Figure 2. It can be observed that performance of

SimDINO steadily improves as training progresses, while

optimization of DINO noticeably slows down, with even a

slight performance drop near the end of training. Together,

these results demonstrate our simplified pipelines’ stability

and ease of optimization compared to the originals.

Object Detection and Segmentation. To better under-

stand the learned representation, we evaluate the pretrained

models on segmentation and object detection tasks. Specif-

ically, we adopt MaskCut (Wang et al., 2023), an effec-

tive unsupervised approach of extracting features from a

frozen vision backbone for object detection and instance

Figure 2. Evolution of k-NN accuracy of ViT-B trained for 100

epochs using DINO and SimDINO paradigms on ImageNet-1K.

We omit earlier epochs of similar metrics for better visual clarity.

Table 1. Per formance compar ison on ImageNet-1K . SimDINO

and SimDINOv2 consistently outperform the original DINO and

DINOv2 model families. They are also more stable, while training

of DINO on ViT-L diverged (row 3).

Method Model Epochs k-NN Linear

DINO ViT-B 100 72.9 76.3

SimDINO ViT-B 100 74.9 77.3

DINO ViT-L 100 – –

SimDINO ViT-L 100 75.6 77.4

DINOv2 ViT-B 100 76.0 77.2

SimDINOv2 ViT-B 100 78.1 79.7

DINOv2 ViT-L 100 80.8 82.0

SimDINOv2 ViT-L 100 81.1 82.4

SwAV ViT-S 800 66.3 73.5

MoCov3 ViT-B 300 – 76.7

segmentation. In Figure 3, we present qualitative segmen-

tation results by applying MaskCut on models trained with

both DINO and SimDINO. Both methods are observed to

produce meaningful segmentation results, confirming the

emerging properties similar to the original DINO when us-

ing our simplified algorithm. More qualitative results are

available in Appendix F.5. To quantitatively evaluate these

representation, we perform MaskCut on the COCO val2017

dataset and report our results in Table 2. These results show

SimDINO achieves much stronger performance on segmen-

tation and detection tasks than DINO when trained on the

same network (row 2 vs 3), and overall even outperforms

DINO trained on a smaller patch size4 (row 2 vs 4).

Semantic Segmentation on ADE20K. Weevaluate our

proposed methods on the ADE20K semantic segmentation

task and report theresults in Table3 (column 3 & 4). Specif-

ically, we follow the linear evaluation protocol of (Zhou

et al., 2021), where we fix the pretrained backbone and

4When trained using DINO, ViT models with smaller patch
sizes tend to outperform those with larger ones on various tasks
including segmentation (Wang et al., 2023; Caron et al., 2021).

6

Classification (ImageNet)

Segmentation (Microsoft COCO)

Deep

How to Learn: Summary with a Comparison

No more trial and error to design better network architectures:

Why Correct? (Consistency)

Bi-directional encoding and decoding (e.g., compression and generation)

ෝ𝒙

𝒙

Autoencoding

(2024 Nobel Prize Physics)

𝑝 ෝ𝒙 ≈ 𝑝 𝒙 ? ෡𝑿 ≈ 𝑿?or

Why Correct? (Consistency)

Figure 3: Diagram of each encoder layer (top) and decoder layer (bottom) in - . Notice that the two layers

arehighly anti-parallel — each isconstructed to do theoperations of theother in reverseorder. That is, in thedecoder

layer g¸ , theISTAblock of f L ≠ ¸ ispartially inverted first using a linear layer, then theMSSAblock of f L ≠ ¸ is reversed;

this order unravels the transformation done in f L ≠ ¸ . SB: more substantial caption—maybe emphasize something

about parallelism? DP: done

in the sense that the Y (T ≠ t) generated by (2.15) has the same law as the Z (t) generated by (2.11), assuming

compatible initial conditions. A first-order discretization of (2.15) obtains the iteration:

Y ¸ + 1 = Y ¸ + 1/ 2 ≠ MSSA(Y ¸ + 1/ 2 | V ¸
[K]) ¥ Y ¸ + 1/ 2 + ŸÒRc(Y ¸ + 1/ 2 | V ¸

[K]), (2.16)

where V ¸
[K] = (V ¸

1 , . . . ,V ¸
K) and each V ¸

k œRd◊ p are the bases of the subspaces to “anti-compress” against. In

our work, we treat them as different from the corresponding U L ≠ ¸
k , because the discretization of (2.11) and (2.15) is

imperfect, and thusweshould not expect a1-1 correspondencebetween local signal models in theencoder and decoder.

To invert theeffect of asparsifying ISTA step, we instantiate a learnablesynthesisdictionary E ¸ œRd◊ d and multiply

by it, obtaining the iteration:

Y ¸ + 1/ 2 = E ¸Y ¸ , Y ¸ + 1 = Y ¸ + 1/ 2 ≠ MSSA(Y ¸ + 1/ 2 | V ¸
[K]). (2.17)

This constructs the (¸ + 1)st layer g¸ of our decoder. A graphical depiction of the encoder and decoder layers, with

layer normalization added to match the implementation, is found in Figure 3.

2.5 A CompleteWhite-Box Transformer-LikeArchitecture for Autoencoding

Addingpre- and post-processinglayers, and obtaininga full architecture. Theoverall encoder isthecomposition

of apreprocessing map f pre : RD ◊ N æ Rd◊ N , which isa learnable linear projectionW pre œRd◊ D plusa learnable

positional embedding E pos œRd◊ N :

f pre(X)
.
= W preX + E pos, (2.18)

together with L transformer-like layers f ¸ : Rd◊ N æ Rd◊ N given by

f ¸ (Z ¸)
.
= ISTA(Z ¸ + MSSA(Z ¸ | U ¸

[K]) | D ¸), ’ ¸ œ[L], (2.19)

omitting layer-norm operations (as in Figure 3) for simplicity. The decoder is the concatenation of L transformer-like

layers g¸ : Rd◊ N æ Rd◊ N given by

g¸ (Y ¸)
.
= E ¸Y ¸ ≠ MSSA(E ¸Y ¸ | V ¸

[K]), ’ ¸ œ[L] ≠ 1, (2.20)

with apostprocessing map gpost : Rd◊ N æ RD ◊ N which is a learnable linear mapW post œRD ◊ d:

gpost (Y L)
.
= W postY L . (2.21)

A full diagram of the autoencoding procedure is given in Figure 1. SB: maybe cut the rest of thissentence? or put

thisin thecaption of thefigure? DP: done It remains to discuss themasked autoencoding training procedure that we

employ to learn the parameters of f and g from unlabeled data.

7

Under review asaconference paper at ICLR 2024

Figure 1: Diagram of the overall white-box CRATE-MAE pipeline, illustrating the end-to-end
(masked) autoencoding process, along with the conceptual role of each encoder layer f ` to com-
press and sparsify the representations, and each decoder layer gL − ` to invert f ` .

White-box models and structured representation learning. Another method for representation
learning, this time built to produce explicit and structured representations, is that of white-box mod-
els. Such models attempt to produce representations of the data distribution with some desired
structure, e.g., sparsity (Gregor & LeCun, 2010; Zhai et al., 2020) or (piecewise) linearity (Chan
et al., 2022), etc. Recent work (Yu et al., 2023a;b) has built white-box deep networks via unrolled
optimization: namely, to obtain representationswith adesired set of properties, onecomposesan ob-
jectivefunction which encouragesthesedesiderata, then constructsadeep network whereeach layer
is designed to iteratively optimize the objective. This builds deep networks as a chain of operators,
representing well-understood optimization primitives, which iteratively transform the representa-
tions to the desired structure. However, such-obtained deep networks have yet to be constructed for
unsupervised contexts (Yu et al., 2023a;b).

Our contr ibutions. In this work, we demonstrate that these two paradigms have more in common
thanpreviously known. Wemaketwoconceptual observations. First, weshow quantitatively that un-
der certain natural regimes, denoising and compression are highly similar primitive data processing
operations: when the target distribution has low-dimensional structure, both operations implement
a projection operation onto this structure. Second, using this insight, we demonstrate a quantitative
connection between unrolled discretized diffusion models and unrolled optimization-constructed
deep networks. This leads to a significant expansion of the existing conceptual toolkit for devel-
oping white-box neural network architectures, which we use to derive white-box transformer-like
encoder and decoder architectures that together form an autoencoding model that we call CRATE-
MAE, illustrated in Fig.1. We evaluate CRATE-MAE on the challenging masked autoencoding task
(He et al., 2022) and demonstrate promising performance with large parameter savings over tradi-
tional masked autoencoders, along with many sidebenefits such asemergenceof semantic meaning
in the representations.

2 APPROACH

2.1 SETUP AND NOTATION

We use the same notation and basic problem setup as in Yu et al. (2023a). Namely, we have some
matrix-valued random variable X = [x 1, . . . , x N] 2 RD⇥N representing the data, where the x i 2

RD arecalled “ tokens” and may bearbitrarily correlated. To obtain representations of the input, we
learn an encoder f : RD⇥N ! Rd⇥N ; our representations aredenoted by the random variable Z =
f (X) = [z1, . . . , zN] 2 Rd⇥N , where the token representations are z i 2 Rd. In the autoencoding

setup, we also learn adecoder g: Rd⇥N ! RD⇥N , such that X ⇡ cX = [bx 1, . . . , bx N]
.
= g(Z).

Our encoder and decoder will be deep neural networks, and as such they will be composed of sev-
eral, say L , layers each. Write f = f L ◦ · · · ◦ f 1 ◦ f pre and g = gpost ◦ gL − 1 ◦ · · · ◦ g0, where
f ` : Rd⇥N ! Rd⇥N and g` : Rd⇥N ! Rd⇥N are the ` t h layer of the encoder and decoder respec-
tively, and f pre : RD⇥N ! Rd⇥N and gpost : Rd⇥N ! RD⇥N arethepre- and post-processing lay-
ers respectively. The input to the ` t h layer of the encoder is denoted Z ` .

=
⇥
z `

1, . . . , z `
N

⇤
2 Rd⇥N ,

and the input to the ` t h layer of the decoder is denoted Y ` .
=
⇥
y `

1, . . . , y `
N

⇤
2 Rd⇥N .

2.2 DESIDERATA , OBJECTIVE, AND OPTIMIZATION

Our goal is to use the encoder f and decoder g to learn representations Z which are parsimonious
(Maet al., 2022) and invertible; namely, they have low-dimensional, sparse, (piecewise) linear geo-

2

Masked autoencoding with a whitebox architecture
[PBWY+Ma, ICLR2024]

Bi-directional encoding and decoding (e.g., compression and generation)

𝒫Ω 𝒙 → ෝ𝒙 ≈ 𝒙

How to self-learn a more consistent representation, continuously?

Towards Autonomous Intelligence (AI 2.0)

In nature, all intelligent systems learn from closed-loop feedback! (Cybernetics)

Self-Consistency: Closed-Loop Feedback and Self-Crit iquing Game

Self-Consistency: Closed-Loop Feedback and Game

f is both an encoder and sensor; and g is both a decoder and controller.

They form a closed-loop system for feedback and game:

A closed-loop notion of “ self-consistency” between Z and Ẑ is achieved

by a self-crit iquing game between the sensor f and the generator g:

D(X , X̂)
.
= max

✓
min
⌘

kX

j = 1

∆ R f (X j ,✓)
| {z }

Z j (✓)

, f (g(f (X j ,✓),⌘),✓)
| {z }

Ẑ j (✓,⌘)

. (29)

Ma (EECS, UCB & IDS, HKU) Closed-Loop Transcript ion February 16, 2023 22 / 59

𝒆 = ෝ𝒙(𝒛) − 𝒙

𝑝 𝒙 𝑝 𝒛

ෝ𝒙 ∼ 𝑝(𝒙 ∣ 𝒛)

𝒆 = ො𝒛 − 𝒛

𝑝𝑡+1 𝒙𝑝𝑡 𝒙
Improve?

Towards AI 2.0: Close the Loop via Minimax Game

Closed-loop systems learnt via minimax game do not forget catastrophically!
Empirical Verificat ion

Unsupervised Learning via Closed-Loop Transcription

Unsupervised Learning of Structured Memory: one sample at a time11

max
✓

min
⌘

R(Z) + ∆ R(Z , Ẑ) (33)

subject to
X

i 2 N

∆ R(z i , ẑ i) = 0, and
X

i 2 N

∆ R(z i , z i
a) = 0.

11Unsupervised Learning of Structured Representations via Closed-Loop Transcript ion,

S. Tong, Yann LeCun, and Yi Ma, arXiv:2210.16782, 2022.
Ma (EECS, UCB & IDS, HKU) Closed-Loop Transcript ion February 16, 2023 42 / 59

Incremental Learning via Closed-Loop [TDWLY+Ma, ICLR 2023]

Towards AI 2.0: Time to Learn from Nature Again?

Similar characteristics and mechanisms are ubiquitous in nature!

Empirical Verificat ion

Structured Memory in Nature

• Sparse coding in visual cortex (Olshausen, Nature 1996) 12.

• Subspace embedding (Tsao, Cell 2017, Nature 2020).13

• Predictive coding in visual cortex (Rao, Nature Neuroscience 1999).

sparse coding in visual cortex

2.5− 5.0

1.2− 2.5

0− 1.2

 y

 x

sp
a
ti

a
l

fr
e
q

u
e
n

c
y

 (
c
y
c
le

s/
w

in
d

o
w

)

− 4 − 3 − 2 − 1 0 1 2 3 4
10

− 6

10
− 5

10
− 4

10
− 3

10
− 2

10
− 1

10
0

ai

 P
(a

i)

a.

b.

c.
d.

12Figure from Bruno Olshausen of Neuroscience Dept., UC Berkeley.
13Figures from Doris Tsao of Neuroscience Dept., UC Berkeley

Ma (EECS, UCB & IDS, HKU) Closed-Loop Transcript ion February 16, 2023 44 / 59

Ma+TS, FITEE 2022

A position paper about Intelligence in 2022:

Towards AI 2.0 (Neural Science)

● Parsimony: what’s in neuroscience to verify this principle?

● Self-consistency: what’s in neuroscience to verify this principle?

● Forward optimization versus backward propagat ion?

● Closed-loop versus open-loop?

● Self-correcting or self-improving mechanisms?

Towards AI 2.0 (Neural Science)

To understand intelligence, one must understand computational complexity:

Incomputable ⟹ computable ⟹ tractable ⟹ scallable ⟹ natural

Kolmogorov

complexity

Turing & Shannon NP vs P Closed-loop

& feedback?
DNN & BP

A massive parallel, distributed, hierarchical system of autoencoders (cortical columns in cortex)

Perception:

vision-centric multi-modal senses

Memory:

language-centric knowledge representation

Towards AI 2.0: How to Implement (Computer Science)

Towards AI 2.0: Time to Learn from Nature Again?

Parallel, distributed, hierarchical

autoencoders efficiently learn

knowledge of the external world.

Closed-loop Transcription

Closed-loop transcription

is a basic unit for autonomously

learn consistent knowledge.

Neural networks are nature’s

optimization algorithms that

maximize information gain.

A unified purpose of intelligence: maximize “information gain” with every unit, at every stage!

What is Intelligence?

Definition [Intelligence]: an intelligent system is one that has the mechanisms

for self-correcting and self-improving its existing knowledge (or information).

Who has intelligence,

who has knowledge?
vs

Any system without such mechanisms, however large, does not have any intelligence!

Evolution of Intelligence in Nature: Four Stages

Intelligence is all about how to encode and improve information for better prediction of the world!

Phylogenetic Ontogenetic Societal Artificial

A quote from the 1956 Dartmouth proposal: “An attempt will be made to find

how to make machines use language, form abstractions and concepts, solve

kinds of problems now reserved for humans, and improve themselves”.

Today’s “Artificial Intelligence” is not that Artificial Intelligence!

• Signal processing

• Information Rep.

• Prediction

• Error correction

• Optimal control

• Game theory

• Abstraction

• Logic deduction

• Causality

• Hypothesis

forming & testing

• Problem solving

• Denoising

• Compression

• Object recognition

• Image generation

• Text generation

• Reinforce learning

1940s

(animal intelligence)

1956

(unique to human)

Today’s AI

(animal or human?)

An Open Question: Scientific Tests for Intelligence?

• Memorize: simply having memorized a large amount of knowledge-carrying data and regenerating them;

• Self-Learn: being able to autonomously and continuously develop better knowledge from new observations;

• Understand: having truly understood existing knowledge and knowing how to deduce and apply it correctly;

• Theorize: being able to generate new scientific hypotheses and mathematical theories and verify them.

How to scientifically certify different types of ability of an “intelligent” system:

humanmachine

Turing Test

Self-learn?

animalmachine

Wiener Test

scientistmachine

Theorize?

Popper Test

Understand?

Epilogue

Seek a scientific and theoretical foundation for Intelligence:

• what to learn? parsimony

• how to learn? compression

• why correct? consistency

“Everything should be made as simple as possible,

but not any simpler.”

-- Albert Einstein

Epilogue

Coming soon: A new textbook in 2025

Acknowledgement

A Truly Multi-University and Multi-Disciplinary Effort from Academia!

Pursuing the Nature of Intell igence

Thanks

	Slide 1: Pursuing the Nature of Intelligence
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

