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ABSTRACT
In this paper, we show how two classical sparse recovery al-
gorithms, Orthogonal Matching Pursuit and Basis Pursuit, can
be naturally extended to recover block-sparse solutions for
subspace-sparse signals. A subspace-sparse signal is sparse
with respect to a set of subspaces, instead of atoms. By gen-
eralizing the notion of mutual incoherence to the set of sub-
spaces, we show that all classical sufficient conditions remain
exactly the same for these algorithms to work for subspace-
sparse signals, in both noiseless and noisy cases. The suffi-
cient conditions provided are easy to verify for large systems.
We conduct simulations to compare the performance of the
proposed algorithms.

Index Terms— subspace sparse, subspace incoherence,
subspace matching pursuit, subspace base pursuit.

1. INTRODUCTION

Sparse signal recovery has received a lot of attention recently,
following the pioneering work of Donoho [1] and Candes [2].
The basic assumption is that the observed signal is a sparse
linear combination of vectors (also called atoms) in a given
dictionary. More generally, however, we may assume that the
observed signal is in the direct sum of a small number of sub-
spaces among a large set of possible subspaces. For example,
an audio signal could be mixed from multiple sources (say
speakers), where each source can be modeled by a linear sub-
space. We call such a signal subspace-sparse. More precisely,
the observation vector y is expressed as:

y =
m∑
i=1

Ai xi, (1)

where Ai’s are bases for the m subspaces in consideration
and xi’s are the corresponding coefficient vectors. For a
subspace-sparse y, at most k of the m xi’s are non-zero.
We are interested in the problem of separating these sparse
components yi = Aixi, or equivalently xi. One may
treat this as a sparse signal representation problem: recov-
ering x from y = Ax with A

.= [A1 A2 . . . Am ] and
x

.= [ xT1 xT2 . . . xTm ]T . However, the desired solution x
now has special structure, as the nonzero coefficients appear
in blocks and sparsity within each block (subspace) is no
longer important. This property has also been termed block
sparsity in the literature [3].

The separation of a subspace-sparse signal, particularly
by convex optimization methods, has been investigated in

[3] and [4]. They have provided certain sufficient conditions
under which the algorithms are guaranteed to find the cor-
rect block-sparse solution. However, the sufficient conditions
given are computationally intractable to verify for large linear
systems.

To alleviate some of that difficulty, in this paper, we gen-
eralize the notion of mutual incoherence to a set of subspaces,
which is easy to compute, and show how the two classical
sparse recovery algorithms, namely Orthogonal Matching
Pursuit [5, 6] and Basis Pursuit [7], can be naturally extended
to recover block-sparse solutions for subspace-sparse signals.
In terms of the new subspace incoherence, we show that all
classical sufficient conditions for these algorithms to work
[8] remain exactly the same for the subspace-sparse problem,
in both noiseless and noisy cases.

2. SUBSPACE INCOHERENCE

Given a set of subspaces S1, S2, . . . , Sm that do not intersect
with each other, we define mutual subspace incoherence µ as
a measure of the smallest angle between any two subspaces
from the given set.

µ
.= max
i,j∈[m]
i 6=j

max
x∈Si
y∈Sj

|〈x,y〉|
‖x‖2 ‖y‖2

 . (2)

We define the spark of the set of subspaces S1, . . . , Sm ⊆ Rd,
denoted spark(S1, . . . , Sm), as the smallest integer r such that

φλ1 + φλ2 + · · ·+ φλr = 0,

where φi 6= 0, φi ∈ Si and the λi’s are distinct indices from
[m] .= {1, . . . ,m}. This is a natural generalization to the
spark of a matrix, the smallest number of columns that are
linearly dependent [8].

Computing the spark of a set of subspaces is combinato-
rial, while the incoherence can be computed relatively easily.
Similar to Lemma 1 in [8], we can bound the spark by inco-
herence as follows:

Lemma 1. For any collection of subspaces S1, S2, . . . , Sm,
we have

spark(S1, . . . , Sm) ≥ 1 +
1

µ(S1, . . . , Sm)
.

Proof. The proof is similar to the proof of Lemma 1 in [8],
except for the definition of the matrix A. In our case, the
matrix A = [φ1 φ2 . . . φm], where φi is any vector from Si.
Thus, instead of a fixed matrix, we have a family of matrices.



Notation: We assume a signal y is k-subspace sparse w.r.t.
R(A1), . . . ,R(Am). Without loss of generality, y can be
written as y =

∑k
i=1 wizi, where zj ∈ Sj and ‖zj‖2 = 1

for j = 1, . . . , k, and |w1| ≥ |w2| ≥ · · · ≥ |wk| > 0. Let
xA

.= [ ‖A1x1‖2 ‖A2x2‖2 . . . ‖Amxm‖2 ]T . Since the Ai’s
are assumed to be full column rank matrices, ‖xA‖0 is the
number of nonzero xi’s. We use πi(·) to denote the projec-
tion operator onto subspace Si = R(Ai), i = 1, . . . ,m.

3. SUBSPACE MATCHING PURSUIT

Analogous to the Orthogonal Matching Pursuit (OMP) algo-
rithm [5, 6], we propose a greedy algorithm for recovering
block-sparse solutions that is guaranteed to recover the cor-
rect subspace components when the subspaces are sufficiently
incoherent.

Algorithm 1 Subspace Matching Pursuit (SMP).
Input: Bases A1, A2, . . . , Am, a vector y, and its sparsity k.

1: Initialize: r0 = y, t = 1,Λ0 = ∅, and Φ0 a null matrix.
2: while rt−1 6= 0 and t ≤ k do
3: Find the index λt as follows

λt = argmin
j=1,...,m

∥∥rt−1 − πj(rt−1)
∥∥

2
.

4: Λt ← Λt−1 ∪ {λt} and Φt ← [ Φt−1 Aλt ].
5: ẑt = arg minz ‖y − Φt z‖2,

xλj = ẑt |Aλj for j = 1, . . . , t and xi = 0 for i 6∈ Λt.
6: rt ← y − Φt ẑt and t← t+ 1.
7: end while

Output: Coefficients x1,x2, . . . ,xm.

Theorem 1. Suppose that a signal y is k-subspace sparse
w.r.t. R(A1), . . . ,R(Am), and

k <
1
2

(
1 +

1
µ

)
, (3)

where µ is the incoherence between the subspaces R(A1),
R(A2), . . . , R(Am). Then, SMP is guaranteed to find the k
subspaces exactly.

Proof. The proof is an extension of the proof of Theorem 3
in [8]. One of the first k subspaces is chosen at the first step
if ‖π1(y)‖2 > ‖πt(y)‖2, t > k. (4)

We now find a lower bound to the left hand side:

‖π1(y)‖2 =
∥∥w1z1 +

k∑
i=2

wiπ1(zi)
∥∥

2

≥ |w1| −
k∑
i=2

|wi| ‖π1(zi)‖2 ≥ |w1| −
k∑
i=2

|w1|µ

= |w1| (1− µ(k − 1)),

and an upper bound to the right hand side:

‖πt(y)‖2 =
∥∥ k∑
i=1

wi πt(zi)
∥∥

2
≤ |w1|µk.

Then, Equation (4) holds if |w1| (1 − µ(k − 1)) > |w1|µk,
which leads to equation (3).

From the above inequality, we infer that if equation (3) is
satisfied, the first iteration chooses a correct subspace. The
residual r1 is orthogonal to the range space of Aλ1 due to the
least squares step and can be expressed as

r1 = y −Aλ1 ẑ1 =
k∑
i=1

Aix̃i =
k∑
i=1

w̃iz̃i,

where z̃j ∈ Sj , ‖z̃j‖2 = 1∀j = 1, . . . , k, |w̃1| ≥ |w̃2| ≥
· · · ≥ |w̃k| > 0. Repeating the same arguments as above, we
are guaranteed to find a subspace from the true support set.
The orthogonality of rt to Φt at each iteration ensures that
a subspace is not chosen a second time. Thus, after at most
k iterations, the algorithm finds the smallest set of subspaces
whose direct sum contains y.

The above proof implicitly assumes that the sparsest sub-
space representation of a signal is necessarily unique. The
following theorem, along with Lemma 1, establishes that if
equation (3) holds, then uniqueness of representation is guar-
anteed.

Theorem 2. Given m subspaces, if y can be represented as
a linear sum of elements from k distinct subspaces such that
k < 1

2 spark(S1, . . . , Sm), then the sparse decomposition is
necessarily unique i.e., y cannot be represented as the linear
sum of elements from a different set of k subspaces.

Proof. Assume the contrary. Then, we have y =
∑k
i=1 zλi wi

=
∑l
j=1 zηj vj for some l ≤ k, where zi ∈ Si. Thus,∑k

i=1 zλi wi −
∑l
j=1 zηj vj = 0, a linear sum of at most

k + l < spark(S1, . . . , Sm) subspaces, which is a contradic-
tion to the definition of spark.

Now suppose we are given a noisy observation y = y0 +
n of a k-subspace sparse signal y0 =

∑k
i=1Ai xi. Assuming

that the noise n is bounded ‖n‖2 ≤ ε, we have:

Theorem 3. Let x̂ be the output of applying SMP to y, which
stops when the residual ‖rt‖ ≤ ε. If

k <
1 + µ

2µ
− 1
µ
· ε

|wk|
, (5)

then the support is correctly recovered: supp(x̂A) = supp(xA),
and the estimation error is bounded:

‖x̂A − xA‖22 ≤
ε2

1− µ(k − 1)
. (6)

Proof. We first show the support is correctly recovered,
which can be established by similar reasoning as the proof of
Theorem 1. The SMP operates by projecting y = y0 + n
onto each subspace Si in turn. Again, it will select one of the



first k subspaces at the first step if equation (4) is satisfied.
The left hand side of equation (4) can be bounded below by

‖π1(y)‖2 ≥ ‖π1(y0)‖2−‖π1(n)‖2 ≥ |w1| (1−µ(k−1))−ε,
and similarly a bound for the right hand side is

‖πt(y)‖2 ≤ |w1|µk + ε.

Together they lead to the following sufficient condition

k <
1 + µ

2µ
− 1
µ
· ε

|w1|
(7)

for (4) to hold. Repeating the argument above for each itera-
tion, we have the following conditions that guarantee SMP to
succeed after k itereations

k <
1 + µ

2µ
− 1
µ
· ε

|wi|
, i = 1, 2, . . . , k. (8)

Since |wi| is ordered |w1| ≥ |w2| ≥ · · · ≥ |wk| > 0, it is
sufficient to only require equation (5).

Now we turn to the claim about the estimation error. De-
fine e = x̂ − x. Let u = eA, ψi = Aiei

‖Aiei‖2 for i =
1, 2, . . . ,m. We use the triangle inequality to get

‖x̂A − xA‖22 =
m∑
i=1

(
‖Ai(xi + ei)‖2 − ‖Aixi‖2

)2
≤

m∑
i=1

‖Aiei‖22 = ‖eA‖22 = ‖u‖22.

Define Ψ .= [ψ1 ψ2 . . . ψm ]. Each column in Ψ is from a
different subspace and the subspaces have a mutual incoher-
ence factor of µ. It follows that the kth singular value of Ψ
is bounded from below by (1 − µ(k − 1))1/2 (Lemma 2.2 in
[9].) That is, ‖Ψu‖22 ≥ ‖u‖22(1− µ(k − 1)). Therefore

‖x̂A − xA‖22 ≤ ‖u‖22 ≤
‖Ψu‖22

1− µ(k − 1)
≤ ε2

1− µ(k − 1)
.

4. SUBSPACE BASE PURSUIT

Ultimately, the separation problem for a subspace-sparse sig-
nal is to solve the following problem:

(P0) min ‖xA‖0 subject to y =
m∑
i=1

Aixi. (9)

Since (P0) is in general an NP-hard problem, we seek to solve
its relaxed convex version, by replacing ‖xA‖0 with ‖xA‖1.
We call this approach Subspace Base Pursuit (SBP) 1, analo-
gous to Basis Pursuit (BP) for the vector case [7]:

(P1) min
m∑
i=1

‖Aixi‖2 subject to y =
m∑
i=1

Aixi. (10)

The following theorem states that under the same condition
as the SMP on the sparsity of the signal, the SBP finds the
correct sparse solution.

1This coincides with the scheme proposed in [3, 4] if A1, . . . , Am are
orthogonal matrices.

Theorem 4. Suppose that y is k-subspace sparse w.r.t.
R(A1), . . . ,R(Am), and

k <
1
2

(
1 +

1
µ

)
, (11)

where µ is the incoherence between the subspaces R(A1),
R(A2), . . . , R(Am). Then, SBP is guaranteed to find the k
subspaces exactly.

Proof. We have already proved that if equation (11) holds,
then the solution is necessarily unique. To prove that SBP
finds this solution, we prove that the set of alternative solu-
tions is empty.

Let Cs be the set of e such that x + e is an alternative
solution: Cs

.= {e|e 6= 0, ‖(e + x)A‖1 ≤ ‖xA‖1, Ae = 0}.
It can be shown that

Cs ⊆ C1
.=
{

e
∣∣ e 6= 0, ‖eA‖1 ≤ 2

k∑
i=1

‖Aiei‖2, Ae = 0
}
.

Let u = eA, ψi = Aiei
‖Aiei‖2 for i = 1, 2, . . . ,m. Define

Ψ .= [ψ1 . . . ψm ]. Then, C1 is empty iff C2 is empty, where

C2
.=
{

u
∣∣ u 6= 0, ‖u‖1 ≤ 2

k∑
i=1

ui,Ψu = 0
}
, (12)

and ui = ‖Aiei‖2. We now prove that C2 is empty.
Each column in Ψ is from a different subspace and the

subspaces have a mutual incoherence factor of µ. Therefore,

ui ≤
µ

1 + µ
‖u‖1, i = 1, 2, . . . ,m. (13)

We observe that

2
k∑
i=1

ui ≤
2kµ

1 + µ
‖u‖1 < ‖u‖1. (14)

Thus, by equation (12), we see that C2 is empty. Hence, SBP
finds the unique sparsest solution.

In Theorem 4, the observation y contains no noise. Con-
sider the following modified version of the SBP:

(P1,δ) min
m∑
i=1

‖Aixi‖2 subject to
∥∥y− m∑

i=1

Aixi
∥∥

2
≤ δ.

(15)
The following theorem shows that P1,δ is robust to small
noise in the observation.

Theorem 5. Suppose that we are given a noisy observation
y = y0 + n of a k-subspace sparse signal y0 =

∑k
i=1Ai xi,

and

k <
1
4

(
1 +

1
µ

)
, (16)

where µ is the incoherence between the subspaces R(A1),
R(A2), . . . , R(Am). Then, provided ε ≤ δ, the solution
x̂1, . . . , x̂m returned by P1,δ has the following property.

‖x̂A − xA‖22 ≤
(ε+ δ)2

1− µ(4k − 1)
. (17)



Proof. The proof follows along similar lines to the proof of
Theorem 3.1 in [9], and hence we borrow notation from there.
Let e = x̂ − x. Since x̂ is the optimal solution to P1,δ ,
we have that ‖x̂A‖1 ≤ ‖xA‖1. It follows that ‖eA‖1 ≤
2
∑k
i=1 ‖Aiei‖2.
Let u = eA, ψi = Aiei

‖Aiei‖2 , and Ψ = [ψ1 ψ2 . . . ψm].
Then, applying the triangle inequality, we have that ‖Ψu‖2 ≤
ε+ δ. Define ∆ = ε+ δ. Note that each off-diagonal entry in
the Gram matrix G = ΨTΨ has absolute value ≤ µ. There-
fore, we have

∆2 ≥ uTGu = ‖u‖22 + uT (G− I)u
≥ ‖u‖22 − |u|T |G− I||u| ≥ ‖u‖22 − µ|u|T |1− I||u|
= (1 + µ)‖u‖22 − µ‖u‖21.

Since ‖x̂A−xA‖2 ≤ ‖u‖2, instead of directly looking for
a bound of ‖x̂A−xA‖2, we try to find a bound for ‖u‖2. This
new problem can be posed as the solution to an optimization
problem of the form

max ‖u‖2 s.t.
{
‖u‖1 ≤ 2

k∑
i=1

ui, (1+µ)‖u‖22−µ‖u‖21 ≤ ∆2
}
.

Now we are in the exactly same situation as equation (3.11)
in [9]. Therefore by the same reasoning, one can show that if
k < (1/µ+ 1)/4,

‖u‖22 ≤
(ε+ δ)2

1− µ(4k − 1)
.

Hence equation (17) follows.

5. SIMULATIONS
We test the proposed algorithms with random Gaussian ma-
trices2 A1, . . . , Am and generate observation vectors y with
different levels of subspace sparsity. SMP and SBP are used
to separate the signal y. Instead of recovering xi’s, we fo-
cus on recovering their supports on the subspaces. We as-
sume that the subspace-sparsity level k is known a priori. For
the SBP, we choose the k subspaces corresponding to the k
largest values of {‖Aixi‖2}mi=1. The recovery is considered
a success if the k chosen subspaces match the ground truth.
We compare our results to BP [7], where subspace structure
is ignored while solving for the xi’s. The k subspaces cho-
sen correspond to the k largest values of {‖xi‖2}mi=1. The
simulations are done using the CVX package.

Figure 1 shows the percentage of successful recoveries as
a function of ambient dimension d. Among the two proposed
algorithms, SBP performs better than SMP at the expense of
increased computational cost – convex optimization v.s. a
greedy iterative algorithm.

6. CONCLUSION
We have extended classical sparse recovery algorithms to sep-
arate subspace-sparse signals, and provided easily verifiable

2For large linear systems, it can be shown that such matrices have low
mutual subspace incoherence µ with overwhelming probability.

(a) k = 5 (b) k = 20
Fig. 1: Support recovery rates (over 100 trials) vs ambient dimension d.
In each trial, m = 50, and each subspace was 5-dimensional. In general,
SBP (green) has a higher recovery rate than SMP (blue), which in turn is
higher than the original BP (red) algorithm, specifically when the signal is
less subspace-sparse.

sufficient conditions for correct separation. Simulations on
synthetic data show that the proposed subspace matching or
base pursuit algorithms perform better than the conventional
basis pursuit which ignores the subspace structures, partic-
ularly when the ambient dimension is small. The proposed
algorithms can potentially be used in speech recognition [10]
or other source separation problems.
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