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Robust Alignment and Illumination by Sparse

Representation
Andrew Wagner, Student Member, IEEE, John Wright, Member, IEEE,

Arvind Ganesh, Student Member, IEEE, Zihan Zhou, Student Member, IEEE, Hossein Mobahi,
and Yi Ma, Senior Member, IEEE

Abstract—Many classic and contemporary face recognition algorithms work well on public data sets, but degrade sharply when they
are used in a real recognition system. This is mostly due to the difficulty of simultaneously handling variations in illumination, image
misalignment, and occlusion in the test image. We consider a scenario where the training images are well controlled, and test images
are only loosely controlled. We propose a conceptually simple face recognition system that achieves a high degree of robustness and
stability to illumination variation, image misalignment, and partial occlusion. The system uses tools from sparse representation to align
a test face image to a set of frontal training images. The region of attraction of our alignment algorithm is computed empirically for
public face datasets such as Multi-PIE. We demonstrate how to capture a set of training images with enough illumination variation
that they span test images taken under uncontrolled illumination. In order to evaluate how our algorithms work under practical testing
conditions, we have implemented a complete face recognition system, including a projector-based training acquisition system. Our
system can efficiently and effectively recognize faces under a variety of realistic conditions, using only frontal images under the
proposed illuminations as training.

Index Terms—Face Recognition, Face Alignment, Illumination Variation, Occlusion and Corruption, Sparse Representation, Error
Correction, Validation and Outlier Rejection.
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1 INTRODUCTION

F ACE recognition applications to date have fallen into
roughly two categories. Face recognition has recently seen

a lot of success in a family of less-demanding applications
such as online image search and family photo album organiza-
tion (e.g. Google Picassa, Microsoft Photo Gallery, and Apple
iPhoto). At the other end of the tractability spectrum there are
the terrorist watchlist and mass surveillance applications that
have for the most part dominated the field of face recognition
research. However, there are many face recognition applica-
tions that fall roughly between these extremes, where very high
recognition performance is desired, but the users in the gallery
are still allies of the system rather than adversaries. These
applications include access control for secure facilities (e.g.,
prisons, office buildings), computer systems, automobiles, or
automatic teller machines, where controlled gallery images can
be obtained in advance. These applications are very interesting
due to their potential sociological impact. Since the gallery
subjects are allies, rather than opponents, of the recognition
system, this creates the possibility of carefully controlling the
acquisition of the training data. While the same can be said for
other biometrics such as fingerprints and iris recognition, face
recognition has the potential of working with test data that is
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much less controlled, allowing the access control system to
be made less intrusive to the users of the system. To some
extent, the goal of this paper is to show how a reliable face
recognition system can be built for this restricted, but still
important, scenario.

Very few recognition systems specifically target applications
where many well- controlled training images are available. Of
these, the classical holistic subspace-based face recognition
methods [1], [2] are well known for their speed and simplicity,
as well as for their natural extension to linear illumination
models. However, their performance has been shown to be
extremely brittle not only to alignment variation, but to even
minor occlusions caused by, say, a wisp of hair, a blinked eye,
or mouth that is slightly open. One promising recent direction,
set forth in [3], casts the recognition problem as one of finding
a sparse representation of the test image in terms of the training
set as a whole, up to some sparse error due to occlusion.
A sparse representation-based classification (SRC) method
is then proposed for recognition. The main idea is that the
sparse nonzero coefficients should concentrate on the training
samples with the same class label as the test sample. SRC has
demonstrated striking recognition performance despite severe
occlusion or corruption by solving a simple convex program.

Unfortunately, while the work [3] achieves impressive re-
sults, it does not deal with misalignment between the test and
training images, and it requires a rich set of illuminations in
the gallery images for good performance. We illustrate the
compounded effect of both alignment and illumination with
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Fig. 1. Effects of registration and illumination on Recognition. In this
example we identify the girl among 20 subjects, by computing the sparse
representation of her input face with respect to the entire training set.
The absolute sum of the coefficients associated with each subject is
plotted on the right. We also show the faces reconstructed with each
subject’s training images weighted by the associated sparse coefficients.
The red line (cross) corresponds to her true identity, subject 12. Top:
The input face is from Viola and Jones’ face detector (the black box)
and all 38 illuminations specified in Section 3 are used in the training.
Middle: The input face is well-aligned (the white box) with the training by
our algorithm specified in Section 2 but only 24 frontal illuminations are
used in the training for recognition (see Section 3). Bottom: The input
face is well aligned and a sufficient set (all 38) of illuminations are used
in the training. Both are necessary for correct recognition using SRC.

an example in Figure 1. The task is to identify the girl among
20 subjects. If the test face image, say obtained from an off-
the-shelf face detector, has even a small amount of registration
error against the training images (caused by mild pose, scale,
or misalignment), the sparse representation obtained using the
method of [3] is no longer informative, even if sufficient
illuminations are present in the training, as shown in Figure
1(top). Additionally, in order to span the illuminations of a
typical indoor (or outdoor) environment, illuminations from
behind the subject are needed in the training set. Otherwise,
even for perfectly aligned test images, the sparse represen-
tation obtained using [3] will not necessarily be sparse or
informative, as shown by the example in Figure 1(middle).
Clearly, both good alignment, as well as sufficient training
images are needed to ensure success of the sparsity-based
recognition method proposed by [3]. In this paper, we examine
how to handle alignment and illumination simultaneously in
the sparse representation framework, bringing the method
proposed in [3] closer to practical use.

1.1 Related Work
We briefly review existing techniques for recognition, image
registration, and handling of illumination variation. Our system
is based purely on 2D techniques. This fact immediately
distinguishes our approach from systems that either require a
3D data as an input, or attempt to estimate a 3D model from
2D input [4], [5]. While these techniques can achieve better

robustness to pose variation given a sufficiently accurate 3D
model, for access control applications where only moderate
pose variation is present, the proposed method will be more
than sufficient. Note that 2D images of faces under varying
illuminations already contain 3D shape-related information,1

and this information can be leveraged by 2D algorithms for
alignment and recognition even if shape is not reconstructed
explicitly.

In holistic recognition algorithms, correspondence between
points in the test image and in the training must be achieved.
A long line of research exists on using Active Appearance
Models [6], and the closely related Active Shape Models
[7] to register images against a relatively high-dimensional
model of plausible face appearances, often leveraging face-
specific contours. While these model-based techniques have
advantages in dealing with variations in expression and pose,
they may add unnecessary complexity to applications where
subjects normally present a neutral face or only have moderate
expression. We prefer to focus on deformations with far fewer
degrees of freedom, i.e. similarity transformations, and to
use the training images themselves as the appearance model.
Iterative registration in this spirit dates at least back to the
Lucas-Kanade algorithm [8].

Whereas much of the early work on image registration is
aimed at the problem of registering nearly identical images,
say by minimizing a sum of squared distances or maximizing
normalized correlation, here we must confront several physical
factors simultaneously: misalignment, illumination variations,
and corrupted pixels. As we discuss further below, illumination
variation can be dealt by expressing the test image as a
linear combination of an appropriate set of training images.
Similar representations have been exploited in illumination-
robust tracking (e.g., [9], [10]). For robustness to gross errors,
the `1-norm of the residual is a more appropriate objective
function than the classical `2-norm. Its use here is loosely
motivated by theoretical results due to Candès and Tao [11]
(see also [12]). These two observations lead us to pose the
registration problem as the search for a set of transformations
and illumination coefficients that minimize the `1-norm of the
representation error. We solve this problem using a generalized
Gauss-Newton method which solves a sequence of affine-
constrained `1-norm minimization problems [13], [14]. Each
of these problems can also be solved efficiently using recently
developed first-order techniques for `1-minimization, which
are reviewed in [15].

Researchers have tried various techniques to deal with
illumination variation. In almost all recognition algorithms
where only a single gallery image is available per individual,
illumination effects are regarded as a nuisance that must be
removed before the algorithm can continue. This is typically
done by making statistical assumptions about how illumination
affects the image, and using those assumptions to extract a
new representation that is claimed to be illumination invariant.
Recent examples include [16] and [17]. However, despite
these efforts, truly illumination-invariant features are difficult

1. In principle, one can recover the 3D shape of the face from multiple
illuminations using photometric stereo.
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to obtain from a single input image. We argue that if one
has the luxury of designing the acquisition system and the
application demands a high recognition rate, it is then unwise
to limit the gallery to a single image per person. We therefore
take the strategy of sampling many gallery images of each
individual under varying illuminations. These images are used
as the basis for either a convex cone model [18], [19], or a
subspace model [20]. Images are captured using a simple-to-
construct projector based light stage. While similar systems
have been used for other applications, to our knowledge, we
are the first to use projectors to indirectly illuminate a subject’s
face for the purpose of face recognition.

1.2 Contributions
In this paper, we show how registration and illumination can be
simultaneously addressed within a robust sparse representation
framework. We show that face registration, a challenging
nonlinear problem, can be solved by a series of linear programs
that iteratively minimize the sparsity of the registration error.
This leads to an efficient and effective alignment algorithm
for face images that works for a large range of variation
in translation, rotation, and scale, even when the face is
only partially visible due to eyeglasses, closed eyes and open
mouth, sensor saturation, etc. We also propose a sufficient set
of training illuminations that is capable of linearly representing
typical indoor and outdoor lighting, along with a practical
hardware system for capturing them.

We then demonstrate the effectiveness of the proposed new
methods with a complete face recognition system that is
simple, stable, and scalable. The proposed system performs ro-
bust automatic recognition of subjects from loosely controlled
probe images taken both indoors and outdoors, using a gallery
of frontal views of the subjects’ faces under the proposed
illuminations. An off-the-shelf face detector2 is used to detect
faces in the test images.

We conduct extensive experiments on the proposed system
with both public databases and a face database that is collected
by our own acquisition system. Our experimental results on
large-scale public face databases show that our algorithm
indeed achieves very good performance on these databases,
exceeding or competing with the state-of-the-art algorithms.
Additionally, our experimental results on our own database
clearly demonstrate that our system not only works well with
images taken under controlled laboratory conditions, but is
capable of handling practical indoor and outdoor illuminations
as well.
Organization of this paper: In Section 2, we derive our robust
registration and recognition algorithm within the sparse repre-
sentation framework. We elaborate on algorithmic implemen-
tation issues, conduct region of attraction experiments with
respect to both 2D in-plane deformation and 3D pose variation,
and discuss its relationship to existing work. Section 3 is
dedicated to our training acquisition system. Using this system,
we investigate empirically how many training illuminations
are required to handle practical illumination variations, and

2. We use the OpenCV implementation of the Viola and Jones’ face detector
[21].

suggest a sufficient set of 38 training illuminations. Extensive
experiments on a large-scale public database and on our own
database are conducted in Section 4 and Section 5, respec-
tively, to verify the proposed system. Section 6 concludes our
work with discussion of promising future directions.

2 ROBUST ALIGNMENT

As demonstrated in Figure 1(top), the main limitation of the
sparse representation and classification (SRC) algorithm of [3]
is the assumption of pixel-accurate alignment between the test
image and the training set. This leads to brittleness under pose
and misalignment, making it inappropriate for deployment
outside a laboratory setting. In this section, we show how this
weakness can be rectified while still preserving the conceptual
simplicity and good recognition performance of SRC.

SRC assumes access to a database of multiple registered
training images per subject, taken under varying illuminations.
The images of subject i, stacked as vectors, form a matrix
Ai ∈ Rm×ni . Taken together, all of the images form a large
matrix A = [A1 | A2 | · · · | AK ] ∈ Rm×n. As argued in [3],
a well-aligned test image y0 can be represented as a sparse
linear combination Ax0 of all of the images in the database,3

plus a sparse error e0 due to corrupted pixels. The sparse
representation can be recovered by minimizing the `1-norm4

of x and e:

min
x,e
‖x‖1 + ‖e‖1 subj to y0 = Ax + e. (1)

Now suppose that y0 is subject to some pose or misalignment,
so that instead of observing y0, we observe the warped image
y = y0 ◦ τ−1, for some transformation τ ∈ T where T is
a finite-dimensional group of transformations acting on the
image domain. The transformed image y no longer has a
sparse representation of the form y = Ax0 + e0, and naively
applying the algorithm of [3] is no longer appropriate, as seen
in Figure 1(top).

2.1 Batch and Individual Alignment
If the true deformation τ−1 can be found, then we can apply
its inverse τ to the test image and it again becomes possible to
find a sparse representation of the resulting image, as y ◦ τ =
Ax0 +e0.5 This sparsity provides a strong cue for finding the
correct deformation τ : conceptually, one would like to seek a
transformation τ that allows the sparsest representation, via

τ̂ = argmin
x,e,τ∈T

‖x‖1 + ‖e‖1 subj to y ◦ τ = Ax + e. (2)

For fixed τ , this problem is jointly convex in x and e.
However, as a simultaneous optimization over the coefficients
x, error representation e, and transformation τ , it is a difficult,
nonconvex optimization problem. One source of difficulty is
the presence of multiple faces in the matrix A: (2) has many lo-
cal minima that correspond to aligning y to different subjects.

3. We assume the training illuminations are sufficient. We will address how
to ensure illumination sufficiency in the next section.

4. The `1-norm of a vector, denoted by ‖·‖1, is the sum of absolute values
of its entries.

5. In the terminology of [22], this formulation is “Forward Additive”.



4

In this sense, the misaligned recognition problem differs from
the well-aligned version studied in [3]. For the well-aligned
case, it is possible to directly solve for a global representation,
with no concern for local minima. With possible misalignment,
it is more appropriate to seek the best alignment of the test
face with each subject i:

τ̂i = arg min
x,e,τi∈T

‖e‖1 subj to y ◦ τi = Aix + e. (3)

We no longer penalize ‖x‖1, since Ai consists of only images
of subject i and so x is no longer expected to be sparse.

2.2 Alignment via Sequential `1-Minimization

While the problem (3) is still nonconvex, for cases of practical
interest in face recognition, a good initial guess for the
transformation is available, e.g., from the output of a face
detector. We can refine this initialization to an estimate of the
true transformation by repeatedly linearizing about the current
estimate of τ , and seeking representations of the form:

y ◦ τ + J∆τ = Aix + e. (4)

Here, J = ∂
∂τ y ◦ τ is the Jacobian of y ◦ τ with respect to

the transformation parameters τ , and ∆τ is the step in τ . The
above equation is underdetermined if we allow the registration
error e to be arbitrary. At the correct alignment we expect the
test image to differ from Aix only for the minority of the
pixels corrupted by occlusions. Thus, we seek a deformation
step ∆τ that best sparsifies the registration error e, in terms
of its `1-norm:

∆τ̂1 = arg min
x,e,∆τ∈T

‖e‖1 subj to y ◦ τ + J∆τ = Aix + e.

(5)
This is different from the popular choice that minimizes the
`2-norm of the registration error:

∆τ̂2 = arg min
x,e,∆τ∈T

‖e‖2 subj to y ◦ τ + J∆τ = Aix + e,

(6)
which is also equivalent to finding the deformation step
∆τ by solving the least-square problem: minx,∆τ ‖y ◦ τ +
J∆τ −Aix‖2. Empirically, we find that if there is only small
noise between y0 and Aix, both (5) and (6) have similar
performance. However, if there are occlusions in y0, sequential
`1-minimization (5) is significantly better than sequential `2-
minimization (6). Figure 2 shows an example.

The scheme (5) can be viewed as a generalized Gauss-
Newton method for minimizing the composition of a nons-
mooth objective function (the `1-norm) with a differentiable
mapping from transformation parameters to transformed im-
ages. Such algorithms date at least back to the 1970’s [23],
[14], and continue to attract attention today [24]. While space
precludes a detailed discussion of their properties, we should
mention that the scheme (5) is known to converge quadratically
in the neighborhood of any local optimum of the `1-norm. In
practice, this means that ≈ 10 to 15 iterations suffice to reach
the desired solution. We refer the interested reader to [14],
[13] and the references therein.

(a) (b) (c) (d)

Fig. 2. Comparing alignment of a subject wearing sunglasses by `1

and `2 minimization. Top: alignment result of minimizing ‖e‖1; Bottom:
result of minimizing ‖e‖2. (a) Green (dotted): Initial face boundary given
by the face detector, Red (solid): Alignment result shown on the same
face; (b) warped testing image using the estimated transformation y0;
(c) reconstructed face Aix using the training; (d) image of error e.

In addition to normalizing the training images (which is
done once), it is important to normalize the warped testing
image y ◦ τ as the algorithm runs. Without normalization, the
algorithm may fall into a degenerate global minimum corre-
sponding to zooming in on a dark region of the test image.
Normalization is done by replacing the linearization of y ◦ τ
with a linearization of the normalized version ỹ(τ) = y◦τ

‖y◦τ‖2 .
The proposed alignment algorithm can be easily extended to
work in a multiscale fashion, with benefits both in convergence
behavior and computational cost. The alignment algorithm is
simply run to completion on progressively less downsampled
versions of the training and testing images, using the result of
one level to initialize the next.

2.3 Robust Recognition by Sparse Representation

Once the best transformation τi has been computed for each
subject i, the training sets Ai can be aligned to y, and a
global sparse representation problem of the form (1) can be
solved to obtain a discriminative representation in terms of
the entire training set. Moreover, the per-subject alignment
residuals ‖e‖1 can be used to prune unpromising candidates
from the global optimization, leaving a much smaller and
more efficiently solvable problem. The complete optimization
procedure is summarized as Algorithm 1. The parameter S in
our algorithm is the number of subjects considered together to
provide a sparse representation for the test image. If S = 1,
the algorithm reduces to classification by registration error;
but considering the test image might be an invalid subject, we
typically choose S = 10. Since valid images have a sparse
representation in terms of this larger set, we can reject invalid
test images using the sparsity concentration index proposed
in [3]. The function δi(x) in Algorithm 1 selects coefficients
from the vector x corresponding to subject i.

Another important free parameter in Algorithm 1 is the
class of deformations T . In our experiments, we typically
use 2D similarity transformations, T = SE(2) × R+

6, for
removing alignment error incurred by face detector, or 2D

6. Here, SE stands for Special Euclidean, i.e., 2D rigid transformations.
The R+ accounts for the scale.
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projective transformations, T = GL(3)7, for handling some
pose variation.

In Algorithm 1, we also implement a simple heuristic which
improves the performance of our system, based on the obser-
vation that the face detector output may be poorly centered
on the face, and may contain a significant amount of the
background. Therefore, before the recognition stage, instead
of aligning the training sets to the original y directly obtained
from the face detector, we compute an average transformation
τ̄ from τk1 , τk2 , . . . , τkS

of the top S classes, which is believed
to be better centered, and update y according to τ̄ . For the
2D similarity transformations, which are used in our system
when initialized by the face detector, a transformation τ can
be parameterized as τ = (τ1, τ2, τ3, τ4), where τ1 and τ2

represent the translations in x- and y-axis, τ3 represents the
rotation angle and τ4 represents the scale. Then the average
transformation is simply obtained by taking the component-
wise mean:

τ̄ i = (τ ik1 + τ ik2 + · · ·+ τ ikS
)/S, i = 1, 2, 3, 4.

Finally, the training sets are aligned to the new y.

Algorithm 1 (Deformable Sparse Recovery and Classifica-
tion for Face Recognition)

1: Input: Training images {Ai ∈ Rm×ni}Ki=1 for K subjects, a
test image y ∈ Rm and a deformation group T .

2: for each subject i,
3: τ (0) ← I .
4: while not converged (j = 1, 2, . . .) do
5: ỹ(τ)← y◦τ

‖y◦τ‖2
; J ← ∂

∂τ
ỹ(τ)

∣∣
τ(j) ;

6: ∆τ = arg min ‖e‖1 subj to ỹ + J∆τ = Aix + e.
7: τ (j+1) ← τ (j) + ∆τ ;
8: end while
9: end

10: Keep the top S candidates k1, . . . , kS with the smallest residuals
‖e‖1.

11: Compute an average transformation τ̄ from τk1 , τk2 , . . . , τkS .
12: Update y ← y ◦ τ̄ and τi ← τi · τ̄−1 for i = k1, . . . , kS .
13: Set A←

[
Ak1 ◦ τ

−1
k1
| Ak2 ◦ τ

−1
k2
| · · · | AkS ◦ τ

−1
kS

]
.

14: Solve the `1-minimization problem: x̂ = arg minx,e ‖x‖1 +
‖e‖1 subj to y = Ax + e.

15: Compute residuals ri(y) = ‖y−Ai δi(x̂)‖2 for i = k1, . . . , kS .
16: Output: identity(y) = arg mini ri(y).

The transformation τ defines a mapping between the co-
ordinates of pixels in the large original image and a smaller
(un)warped image. The pixels of the small image are stacked
into a vector. To prevent aliasing artifacts in the downsampled
image, one should apply a smoothing filter to the original
image. For a simple implementation, a rectangular window
with regular sampling can used, but in general, the small
image need not be regularly sampled in pixel coordinates. For
example, the sample locations could be arbitrarily selected
from within a “face shaped” area. We will discuss how
choosing different windows can affect the performance of our
algorithm in Section 4.

7. Here, GL stands for General Linear. This class of transformations is able
to represent distortion in a perspective image of a planar object.

2.4 System Implementation

The runtime of Algorithm 1 is dominated by the time spent
solving two qualitatively similar `1 minimization problems.
We have developed custom solvers for this purpose based on
Augmented Lagrange Multiplier (ALM) algorithm. We have
selected this algorithm because it strikes the best balance
between speed, accuracy, and scalability for our problem
out of many algorithms that we have tested. We refer the
reader to our supplementary materials for a more in-depth
discussion of our solvers. For a more detailed discussion of
competing approaches, we refer the interested reader to [15].
On a Mac Pro with Dual-Core 2.66GHz Xeon processors and
4GB memory, running on our database containing images size
80× 60 pixels from 109 subjects under 38 illuminations, our
C implementation of Algorithm 1 takes about 0.60 seconds
per subject for alignment and about 2.0 seconds for global
recognition. Compared to the highly customized interior point
method used in the conference version of this paper [25], this
new algorithm is only slightly faster for per subject alignment.
However, it is much simpler to implement and it achieves a
speedup of more than a factor of 10 for global recognition!

2.5 Experiments on Region of Attraction

We will now present three experimental results demonstrating
the effectiveness of the individual alignment procedure out-
lined in the previous section. They show the sufficiency of
the region of attraction, verify effectiveness of the multiscale
extension, and show stability to small pose variations. We
delay large-scale recognition experiments to Sections 4 and
5, after we have discussed the issue of illumination in the
next section.
1) 2D Deformation. We first verify the effectiveness of our
alignment algorithm with images from the CMU Multi-PIE
Database [26]. We select all the subjects in Session 1, use
7 illuminations per person from Session 1 for training, and
test on one new illumination from Session 2.8 We manually
select eye corners in both training and testing as the ground
truth for registration. We downsample the images to 80 × 60
pixels9 and the distance between the two outer eye corners
is normalized to be 50 pixels for each person. We introduce
artificial deformation to the testing image with a combina-
tion of translation, rotation and scaling. We further use the
alignment error ‖e‖1 as an indicator of success. Let r0 be
the alignment error obtained by aligning a test image to the
training images without any artificial perturbation. When the
test image is artificially perturbed and aligned, resulting in
an alignment error r, we consider the alignment successful if
|r−r0| ≤ 0.01r0. Figure 3 shows the percentage of successful
registrations for all subjects for each artificial deformation. The
results suggest that our algorithm works extremely well with
translation up to 20% of the eye distance (or 10 pixels) in all
directions and up to 30◦ in-plane rotation. We have also tested

8. The training are illuminations {0, 1, 7, 13, 14, 16, 18} of [26], and the
testing is the illumination 10.

9. Unless otherwise stated, this will be the default resolution at which we
prepare all our training and testing datasets.
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(a) (b) (c)

(d) (e) (f) (g)

Fig. 3. Region of attraction. Fraction of subjects for which the algorithm successfully aligns a synthetically perturbed test image. The amount of
translation is expressed as a fraction of the distance between the outer eye corners, and the amount of in-plane rotation in degrees. Top row: (a)
Simultaneous translation in x and y directions. (b) Simultaneous translation in y direction and in-plane rotation. (c) Simultaneous translation in y
direction and scale variation. Bottom row: (d) Translation in x direction only. (e) Translation in y direction only. (f) In-plane rotation only. (g) Scale
variation only.

our alignment algorithm with scale variation and it can handle
up to 15% change in scale.

We have gathered the statistics of the Viola and Jones’ face
detector on the Multi-PIE dataset. For 4,600 frontal images
of 230 subjects under 20 different illuminations, using manual
registration as the ground truth, the average misalignment error
of the detected faces is about 6 pixels and the average variation
in scale is 8%. This falls safely inside the region of attraction
for our alignment algorithm.
2) Multiscale Implementation. Performing alignment in a mul-
tiscale fashion has two benefits: first, it provides a larger region
of attraction, and second, it reduces overall computational
cost. Here, we further investigate the convergence behavior
of the algorithm as a function of the standard deviation σ
of the Gaussian smoothing filter and the number of scales
considered. We use the same 7 illuminations in Session 1
as training, and all 20 illuminations in the same session as
testing. We introduce artificial deformation in both x and y
directions up to 16 pixels in the 80 × 60 frame, with a step
size of 4 pixels, i.e., (∆x,∆y) ∈ {−16,−12, . . . , 12, 16} ×
{−16,−12, . . . , 12, 16}. We consider an alignment successful
if the estimated coordinates of the eye-corners are within 1
pixel from the ground truth in the original image. In Figure
4, we report the alignment success rate, averaged over the
artificially perturbed initial deformations, as a function of the
standard deviation of the Gaussian kernel σ, for three choices
of the number of scales. As one can see, using multiscale
indeed improves the performance, and when 3 scales are used,
a smaller convolution kernel can achieve a similar performance
compared to a much larger kernel when only 2 scales are used.

3) 3D Pose Variation. As densely sampled pose and illumi-
nation face images are not available in any of the public
databases, including Multi-PIE, we have collected our own
dataset using our own system (to be introduced in the next
section). We use frontal face images of a subject under the

Fig. 4. Multiscale alignment. This figure shows the average success rate
of alignment over all possible perturbations. A smaller blur kernel can be
applied to achieve certain level of performance when more scales are
used.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 5. 2D Alignment of test images with different poses to frontal
training images. (a) to (i): plausible alignment for pose from −45◦ to
+45◦. (j): a case when the algorithm fails for an extreme pose (> 45◦).

38 illuminations proposed in the next section as training. For
testing, we collect images of the subject under a typical indoor
lighting condition at pose ranging from −90◦ to +90◦ with
step size 5.625◦, a total of 33 poses. We use Viola and Jones’
face detector to initialize our alignment algorithm. Figure 5
shows that our algorithm works reasonably well with poses
up to ±45◦. Note that this level of out-of-plane pose variation
is beyond what we intend to handle with our formulation.

2.6 Comparison with Related Work
Our modification to SRC roots solidly in the tradition of
adding deformation-robustness to face recognition algorithms
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[6], [27], [28]. However, the only previous work to investigate
face alignment in the context of sparse signal representation
and SRC is the work of [29]. They consider the case where
the training images themselves are misaligned and allow one
deformation per training image. They linearize the training
rather than the test, which is computationally more costly as
it effectively triples the size of the training set. In addition,
as they align the test image to all subjects simultaneously, it
potentially is more prone to local minima when the number of
subjects increases, as we will see in the following experimental
comparisons.

1) Extended Yale B. In this experiment, we have used
the same experimental settings as in [29]. 20 subjects
are selected and each has 32 frontal images (selected
at random) as training and another 32 for testing. An
artificial translation of 10 pixels (in both x and y
directions) is introduced to the test image. For our
algorithm we downsample all the images to 88× 80 for
memory reasons, whereas the work of [29] uses random
projections. Note that the use of cropped images in
this experiment introduces image boundary effects. Our
algorithm achieves the recognition rate 93.7%, compared
to 89.1% recognition rate reported in [29].

2) CMU Multi-PIE. In this experiment, we choose all
subjects from the CMU Multi-PIE database, 7 training
images from Session 1 and 1 test image from Session
2 per person. The setting is exactly the same as the
previous experiment on 2D deformation. We again work
with downsampled images of size 80 × 60 pixels. An
artificial translation of 5 pixels (in both x and y direc-
tions) was induced in the test image. The algorithm of
[29] achieves a recognition rate of 67.5%,10 while ours
achieves 92.2%.

3 HANDLING ILLUMINATION VARIATION

In the above section, we have made the assumption that the
test image, although taken under some arbitrary illumination,
can be linearly represented by a finite number of training
illuminations. Under what conditions is this a reasonable
assumption to make? What can we say from first principles
about how the training images should be chosen?

3.1 The Illumination Model

The strongest theoretical results so far regarding the relation-
ship between illumination and the resulting sets of images is
due to Basri and Jacobs [20]. The main result of this paper is
that for convex Lambertian objects, distant illuminations, and
fixed pose, all images of the object can be well approximated
by linear combinations of nine (properly chosen) basis images.
The basis images have mixed sign, and their illuminations
consist of the lowest frequency spherical harmonics. While
this is a very important result for understanding the image
formation process, the direct application of this result in most

10. That algorithm has two free parameters - l and d, which govern the
tradeoff between accuracy and run-time. For this experiment we chose l = 1
and d = 514.

practical systems is misguided for several reasons. Specu-
larities, self-shadowing, and inter-reflections all dramatically
affect the appearance of face images, and they all do so in
a way that violates the modeling assumptions of the Basri
analysis.

Fortunately, even with these effects, for most materials the
relationship between illumination and image is still linear,11

provided the sensor has a linear response curve.12 For a more
in-depth study of the relationship between illumination and
images, we refer the reader to [19]. While the relationship
between illuminations and images is linear, only positive
weights are allowed; the space of all images of an object with
fixed pose and varying illumination is a convex cone lying in
the positive orthant. The question becomes, how many images
does it take to do a good job of representing images sampled
from this cone?

It has been observed in various empirical studies that one
can get away with using a small number of frontal illumina-
tions to linearly represent a wide range of new frontal illu-
minations, when they are all taken under the same laboratory
conditions [18]. This is the case for many public face datasets,
including AR, ORL, PIE, and Multi-PIE. Unfortunately, we
have found that in practice, a training database consisting
purely of frontal illuminations is not sufficient to linearly
represent images of a faces taken under typical indoor or
outdoor conditions (see the experiment conducted in Section
5). As illustrated by the example in Figure 1, an insufficient
number of training illuminations can result in recognition
failure. To ensure our algorithm works in practice, we need
to find a set of training illuminations that are indeed sufficient
to linearly represent a wide variety of practical indoor and
outdoor illuminations.

3.2 Projector-based Illumination System

We have designed a system that can acquire frontal images of a
subject while simultaneously illuminating the subject from all
directions above horizontal. A sketch of the system is shown in
Figure 6: The illumination system consists of four projectors
that display various bright patterns onto the three white walls
in the corner of a dark room. The light reflects off of the
walls and illuminates the user’s head indirectly. After taking
the frontal illuminations we rotate the chair by 180 degrees and
take pictures from the opposite direction. Having two cameras
speeds the process since only the chair needs to be moved
in between frontal and rear illuminations. Our projector-based
system has several advantages over flash-based illumination
systems for face recognition:
• The illuminations can be modified in software, rather than

hardware.

11. Materials that break this assumption include fluorescent materials and
the photochromic (“Transition”) lenses in some eyeglasses. Most materials
emit light in proportion to their incident light.

12. Proper handling of gamma encoding is an important consideration
for practitioners. Most cameras apply a non-linear and often undocumented
response curve to captured images. A slight degradation of performance will
occur if gamma compressed images are treated as if they were linear. We
recommend the use of cameras with well documented response curves that
can be inverted when the image file is loaded.
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Fig. 6. Training acquisition system: Four projectors and two cameras
controlled by one computer.

• It is easy to capture many different illuminations quickly.
• Good coverage and distant illumination can be achieved

simultaneously.
• There is no need to mount anything on the walls or

construct a large dome.
• The system can be assembled from off-the-shelf hard-

ware.
With our projector system, our choice of illuminations is
constrained only by the need to achieve a good SNR,13 avoid
saturation, and achieve a reasonably short acquisition time.
Two simplifying assumptions that we make are that every pixel
is either turned fully on or off in every illumination, and that
the illuminated regions do not overlap.

Assuming that each pixel is fully on or off enables us to
guarantee that each illumination image has the same overall
intensity, merely by guaranteeing that we illuminate the same
number of pixels in each image.14 Since our algorithm depends
only on the linearity between the illuminations and the images,
and not on the relative intensities of the illuminations, the
designer has the freedom to choose the overall intensity of the
illuminations to prevent saturation or low SNR, in a sort of
offline exposure control.

Assuming that the sequentially illuminated regions do not
overlap results in a set of training images that span a larger
cone than a similar number of overlapping regions. This results
in training images that require fewer negative coefficients in x
to represent test images under natural illuminations. The effect
of negative coefficients in x appears to depend partly on how
the test images are taken and is still under study.

Relationship to existing work: Most light stages used for
face recognition have been constructed for the purpose of
creating public data sets to study illumination invariance [18],
[26]. Many other light stages have been used for computer
graphics purposes [30], [31]. The light source can be moved
around manually [32], but this may result in poor consistency
of illuminations between users. Structured light applications
use projectors to directly illuminate the face (or other object)

13. Since illuminations with more pixels illuminated will have a better SNR
(provided they don’t saturate), there is an engineering tradeoff between the
SNR and the number of training images.

14. Since DLP projectors may have dramatically different response curves
depending on the mode they are in, it is not advisable to simply normalize
each illumination image by its mean.

(a) Coverage Experiment (b) Chosen Illumination Patterns

Fig. 7. Illumination Patterns. The cells are illuminated in sequence.
For rear illuminations the sequence is reversed. In the chosen pattern’s
rear illumination, the cells 1-5 and 7-11 are omitted for a total of
38 illuminations. The four rectangular regions correspond to the four
projectors.
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(a) Coverage (b) Granularity

Fig. 8. Study of sufficient illuminations. The average `1 registration
residual versus different illumination training sets.

[33] for 3D reconstruction, but this is very disturbing to the
user. Y. Schechner [34] studies techniques for multiplexing
illumination that can dramatically reduce the noise of the de-
multiplexed images for certain classes of objects and cameras.
While these techniques have not been incorporated into the
current system, they fit elegantly into our framework and will
likely be used in future implementations. We stress that use
of this multiplexing technique is independent from the choice
of original (directional) illuminations.

3.3 Choice of Illumination Patterns
We ran two experiments to guide our choice of illuminations
for our large-scale experiments:

1) Coverage Experiment. In the first experiment we attempt
to determine what coverage of the sphere is required to
achieve good interpolation for test images. The subject
was illuminated by 100 (50 front, 50 back) illuminations
arranged in concentric rings centered at the front camera.
Subsets of the training images were chosen, starting at
the front camera and adding a ring at a time. Each time
a ring was added to the training illumination set, the
average `1 registration error (residual) for a set of test
images taken under sunlight was computed and plotted
in Figure 7(a). The more rings of training illuminations
are added, the lower the representation error becomes,
with diminishing returns.

2) Granularity Experiment. In the second experiment we
attempt to determine how finely divided the illumination
sphere should be. At the first granularity level, the
projectors illuminate the covered area uniformly. At each
subsequent granularity level each illuminated cell is di-
vided in two along its longer side but intensity doubled.
For each granularity level the average `1 registration
error is computed as in the coverage experiment and
shown in Figure 8(b). Again, diminishing returns are
observed as more illuminations are added.
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In the plot for the coverage experiment, Figure 8(a), we
clearly see two plateau regions: one is after 4 rings and one is
after 10 rings. The first four rings represent the typical frontal
illuminations, which are present in most public face datasets;
however, we see that the residual stabilizes after 10 rings
which include some illuminations from the back of the subject.
This suggests that although the frontal illuminations account
for most of the illumination on the face, some illuminations
from the back are needed in the training set to represent images
with illumination coming from all directions. In the plot for
the granularity experiment, Figure 8(b), we observe that the
residual reaches a plateau after four divisions, corresponding
to a total of 32 illuminations. Based on the results from both
experiments, we decide to partition the area covered by the first
10 rings into a total of 38 cells, whose layout is explained in
Figure 7(b). For our large-scale experiments, we have collected
those illuminations for all our subjects.15

See below for the 38 training images of one subject:

4 TESTS ON PUBLIC DATABASES

In this section and the next section, we conduct comprehen-
sive experiments on large-scale face databases to verify the
performance of our algorithm and system. We first test on the
largest public face database available that is suitable for testing
our algorithm, the CMU Multi-PIE. One shortcoming of the
CMU Multi-PIE database for our purposes is that there is no
separate set of test images taken under natural illuminations;
we are left to choose which sets of images to use for testing
and training. To challenge our algorithm, we choose only a
small set of illuminations for the training set, yet we include
all illuminations in the testing set. In the following section, we
will test our algorithm on a face dataset that is collected by our
own system. The goal for that experiment will be to show that
with a sufficient set of training illuminations for each subject,
our algorithm indeed works stably and robustly with practical
illumination, misalignment, pose, and occlusion, as already
indicated by our experiment shown in Figure 1(bottom).

CMU Multi-PIE provides the most extensive test set among
public datasets. This database contains images of 337 sub-
jects across simultaneous variation in pose, expression, and
illumination. Of these 337 subjects, we use all of the 249
subjects present in Session 1 as the training set. The remaining
88 subjects are treated as “impostors”, or invalid images. For
each of the 249 training subjects, we include frontal images
of 7 frontal illuminations,16 taken with neutral expression. As
suggested by the work of [18], we choose these extreme frontal
illuminations in the hope that they would linearly represent
other frontal illuminations well. For the test set, we use all
20 illuminations from Sessions 2-4, which were recorded

15. It is possible that with further experimentation a reduced set of
illuminations can be found that performs as well or better.

16. They are illuminations {0, 1, 7, 13, 14, 16, 18} of [26]. For each direc-
tional illumination, we subtract the ambient-illuminated image 0.

TABLE 1
Recognition rates on the Multi-PIE database for

Algorithm 1 and [35]

Recognition rate Session 2 Session 3 Session 4
Alg. 1, S = 1 90.7% 89.6% 87.5%

Alg. 1 93.9% 93.8% 92.3%
Alg. 1 with improved window 95.0% 96.3% 97.3%

[35] 95.2% 93.4% 95.1%

(a) (b) (c) (d) (e) (f)

Fig. 9. Representative failures from Multi-PIE. Top: training from
Session 1; Bottom: test images from Session 2. Due to changes in hair,
glasses, beard, or pose, our alignment fails on these subjects regardless
of test image illumination.

over a period of several months. The dataset is challenging
due to the large number of subjects, and due to natural
variation in subject appearance over time. Table 1 shows the
result of our algorithm on each of the 3 testing sessions.
Our algorithm achieves recognition rates above 90% for all
three sessions. For the test images, our iterative alignment
was initialized automatically via the Viola and Jones’ face
detector. To demonstrate that the sparse representation based
recognition step is indeed beneficial even when there are no
impostors, we include results for recognition based only on
the alignment error residuals (i.e. S = 1), shown in row 1.

4.1 Improving the Sampling Window

Our algorithm’s errors are mostly caused by a few subjects
who significantly change their appearances between sessions
(such as hair, facial hair, and eyeglasses). Some representative
examples are shown in Figure 9. For those subjects, align-
ment and recognition fail on almost all test illuminations.
Meanwhile, this observation also suggests that we might be
able to improve the performance of our method by carefully
choosing a face region which is less affected by the above
factors for recognition. In particular, since the forehead region
is likely to be affected by the change of hair style, we
try replacing the previous 80 × 60 canonical frame with a
new window that better excludes the forehead. We adjust the
resolution of the window to keep m approximately constant. In
addition, we cut off two lower corners of the 80×60 canonical
frame, motivated by the observation that in many cases the

Default window. Proposed window.

Fig. 10. Choosing different sampling windows.
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TABLE 2
Recognition rates on the Multi-PIE database for different pairings of alignment and recognition stages.

Rec.
Align. Face Detector Manual Iterative Alignment

Session → 2 3 4 2 3 4 2 3 4
NS 30.8% 29.4% 24.6% 77.6% 74.3% 73.4% 84.5% 82.3% 81.4%
NN 26.4% 24.7% 21.9% 67.3% 66.2% 62.8% 73.5% 69.6% 69.3%

LDA 5.1% 5.9% 4.3% 49.4% 44.3% 47.9% 91.0% 89.9% 88.1%
LBP 39.9% 38.1% 33.9% 93.3% 91.2% 92.9% 95.2% 94.7% 93.5%
SRC – – – – – – 93.9% 93.8% 92.3%

corners actually contain background. An example of the new
window is shown in Figure 10.

Table 1 shows that the recognition rates on Multi-PIE indeed
increase with this new window. In addition, Figure 9(a), (b),
and (c) illustrate three representative subjects for which the
recognition rates of our algorithm are significantly boosted
with the new window. However, we should mention that the
best choice of the window is problem-specific and there is
not a simple guideline to follow. For example, although the
new window performs better on Multi-PIE, the same window
does not help at all on our own database, which will be
introduced in the next section. This is because most of the
training and testing images in our database are taken on the
same day so the variation in hair style is very small. Hence,
excluding the forehead part may actually result in loss of
useful discriminative information.

4.2 Comparison to Existing Work
We first compare our result to the recent work [35]. Notice
that in [35], the initial registration is obtained from manually
selected outer eye corners. Then, a supervised hierarchical
sparse coding model based on local image descriptors is
trained, which enjoys certain translation invariant properties.
With the same training and testing sets, [35] is able to han-
dle the remaining misalignment and achieves state-of-the-art
performance on the CMU Multi-PIE database. Table 1 shows
that our algorithm achieves similar or better performance on
different sessions of Multi-PIE.

To better examine the effectiveness of our iterative align-
ment algorithm, we next compare our result to baseline linear-
projection-based algorithms, such as Nearest Neighbor (NN),
Nearest Subspace (NS) [36], and Linear Discriminant Analysis
(LDA) [2].17 Since these algorithms assume pixel-accurate
alignment, they are not expected to work well if the test
image is not well aligned with the training. In Table 2, we
report the results of these classical algorithms with three
types of testing image alignment: 1. alignment from the Viola
and Jones’ detector, 2. alignment via manually selected outer
eye corners,18 and 3. the output of our iterative alignment
algorithm. The performance drop of the LDA algorithm on
Multi-PIE reported here seems to agree with that reported
already in [26]. All of the classical algorithms benefit greatly
from being paired with our iterative alignment algorithm.

17. We do not list results on PCA [1] as its performance is always below
that of Nearest Subspace.

18. Two manually clicked points are sufficient to define a similarity
transformation. All of the experiments in this section are carried out with
similarity transformations.

We also compare our result to Local Binary Patterns (LBP)
[37], a local appearance descriptor which is able to capture fine
details of facial appearance and texture. Due to its robustness
to variations in illumination, facial expression, aging and other
changes, LBP has achieved the state-of-the-art face recognition
performance in the scenario when only one sample per person
is used for training [38]. In this paper, we follow the same steps
as in [37] to construct an LBP descriptor for each training and
testing sample. The 80× 60 face region is first divided into a
regular 10× 10 grid of cells, each of size 8× 6 pixels. Within
each cell, the histogram of 59 uniform binary patterns is then
computed, where the patterns are generated by thresholding
8 neighboring pixels in a circle of radius 2 using the central
pixel value. Finally, the local histograms are concatenated to
produce the global descriptor vector. As suggested in [37], the
recognition is performed using a nearest neighbor classifier
with Chi square distance as the distance measure and we report
the recognition rates with the same three types of input as
before.

As shown in Table 2, although LBP achieves competi-
tive recognition rates given manually aligned training and
testing samples, demonstrating its robustness to moderate
misalignment, it still benefits from using the output of our
iterative alignment algorithm as the input. In addition, like the
other classical algorithms, the performance of LBP degrades
dramatically if it is applied directly to the output of a face
detector. This is notable given that LBP is often applied
without any special alignment in practice. Finally, we attribute
the improvement in performance of LBP over SRC in this
experiment to its robustness to illumination components that
cannot be linearly interpolated by the training set.

In addition, although our algorithm is not designed for
recognition when there is only a single gallery image per user,
we compare its performance with LBP within this setting for
completeness. For this experiment, we use the FERET dataset
[39], which contains five standard partitions: ‘fa’ is the gallery
containing 1196 frontal images of 1196 subjects, and ‘fb’, ‘fc’,
‘dup1’ and ‘dup2’ are four sets of probe images. The testing
sets differ from the training in facial expression (‘fb’), illumi-
nation (‘fc’), aging (‘dup1’ ) and long aging (‘dup2’). In fact,
except for ‘fb’, we notice significant changes of illumination
in all the other three test sets. For the training, we again crop
and normalize the face region from each original image to an
80×60 window using manually marked eye coordinates [40].
In Table 3, we report the performance of our algorithm on the
four test sets, with input directly obtained from the Viola and
Jones’ detector. We also report the performance of LBP with
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TABLE 3
Performance on single gallery image FERET dataset

Recognition rate % fb fc dup1 dup2
LBPd 54.8 10.3 29.8 19.8
LBPm 96.6 58.8 71.6 61.5
LBPi 94.5 42.8 46.5 21.1
Alg. 1 95.2 28.4 46.1 20.3

the same three types of input as before: we use letters “d”,
“m”, and “i” to indicate face detector, manual alignment, and
our iterative alignment algorithm, respectively.

As expected, our algorithm does not perform well except for
‘fb’, in which the illumination is similar to the training and
the mere variation in facial expression is handled well by the
sparse error model. For the other three test sets, our algorithm
fails because the illumination changes and other variations
seriously violate the assumptions of our method. This also
explains why LBP performs worse with our iterative alignment
algorithm, compared to manual alignment. On the other hand,
while LBP achieves the best recognition rates given manually
aligned training and testing samples, its performance degrades
drastically when the input is obtained directly from the face
detector. It is also worth noting that similar poor performance
of LBP, as well as other descriptors, has been observed on the
Labeled Face in the Wild (LFW) database, where the training
is uncontrolled and limited and the input is directly obtained
from the face detector [41].

All of these experimental results confirm that both illumi-
nation and alignment need to be simultaneously handled well
in order to achieve accurate face recognition, even when there
is no obvious occlusion or corruption in the test.

4.3 Subject Validation
We test the algorithms’ ability to reject invalid images of the
88 subjects not appearing in the training database. As men-
tioned before, the sparsity concentration index (SCI) is used
as the outlier rejection rule. Given the sparse representation
x of a test image with respect to K training classes, the SCI
measures how concentrated the coefficients are on a single
class in the dataset and is defined as in [3]:

SCI(x) .=
K ·maxi ‖δi(x)‖1/‖x‖1 − 1

K − 1
∈ [0, 1].

It is easy to see that if SCI(x) = 1, the test image is
represented using images from one single subject class; if
SCI(x) = 0, the coefficients are spread evenly over all classes.
Thus, we can choose a threshold t ∈ [0, 1] for the proposed
method and accept a test image as valid if SCI(x) ≥ t, and
otherwise reject it as invalid. We compare this classifier to
classifiers based on thresholding the error residuals of NN,
NS, LDA, and LBP.

Figure 11 plots the receiver operating characteristic (ROC)
curves, which are generated by sweeping the threshold t
through the entire range of possible values for each algo-
rithm.19 On the left we can see that the SCI based recognition

19. Rejecting invalid images not in the entire database is much more
difficult than deciding if two face images are the same subject. Figure 11
should not be confused with typical ROC curves for face similarity, e.g.,
[42].

(a) (b)
Fig. 11. ROC curves for subject validation on Multi-PIE database, (a) for
all algorithms with iterative alignment, and (b) for the classical algorithms
with manual alignment (indicated by a subscript “m”).

Fig. 12. Recognition under varying level of random block occlusion. The
above row shows examples of occluded test images with occlusion level
from 10% to 50%. Our method maintains high recognition rates up to
30% occlusion:

Percent occluded 10% 20% 30% 40% 50%
Recognition rate 99.6% 94.9% 79.6% 46.5% 19.8%

approach significantly outperforms the other algorithms, in-
cluding LBP, even when all algorithms are coupled with our
proposed iterative alignment. In the right plot we again see
that classical algorithms, and even LBP, are very sensitive
to alignment. Similar contrasts between our algorithm and
baseline algorithms were also observed for SRC in [3], though
on much smaller datasets.

4.4 Recognition with Synthetic Random Block Oc-
clusion

We further test the robustness of our `1-norm based algorithm
to synthetic occlusion. We simulate various levels of occlusion
from 10% to 50% by replacing a randomly located block
of the face image with an image of a baboon, as shown in
Figure 12. In this experiment, to avoid any other factors that
may contribute to extra occlusion of the face (such as the
change of hair style), we choose illumination 10 from Session
120 as testing. The rest of the experimental setting remains
unchanged. The table in Figure 12 shows that our algorithm is
indeed capable of handling a moderate amount of occlusion.
For example, at 20% occlusion, our algorithm still achieves
94.9% recognition rate.

4.5 Recognition with Pose and Expression

We now run tests of our algorithm on a subset of the images
from Multi-PIE with pose and expression variation in the
test set, although we do not model these variations explicitly.
Using the same training set as above, we test our algorithm on
images in Session 2 with 15◦ pose, for all 20 illuminations.
As expected, the recognition rate drops to 78.0%. We also test
our algorithm on images in Session 3 with smile, again for all

20. This is the same session as the training set.
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Fig. 13. Representative examples of categories C1-C3. One row for each
category.

Fig. 14. Representative examples of category C4. Top row: successful ex-
amples with our method using overlapping blocks. Bottom row: failures
with our method using overlapping blocks.

20 illuminations. The recognition rate is 64.8%. Of course, it
is reasonable to expect that the performance of our method
will be significantly improved if pose and expression data are
available in the training.

5 TESTS ON OUR OWN DATABASE
Using the training acquisition system we described in Section
3, and shown in Figure 6, we have collected the frontal view of
109 subjects without eyeglasses under 38 illuminations shown
in Figure 7. For testing our algorithm, we have also taken
935 images of these subjects with a different camera under a
variety of practical conditions.

5.1 Necessity of Rear Illuminations
To see how training illuminations affect the performance of
our algorithm in practice, we now compare how well a few
frontal illuminations can linearly represent: 1. other frontal
illuminations taken under the same laboratory conditions, and
2. typical indoor and outdoor illuminations. To this end, we
use the face database acquired by our system and use 7
illuminations per subject as training. The illuminations are
chosen to be similar to the 7 illuminations used in the previous
experiment on Multi-PIE.21 We then test our algorithm on
the remaining 24 − 7 = 17 frontal illuminations for all the
subjects. The recognition rate is 99.8%, nearly perfect. We
also test our algorithm on 310 indoor images and 168 outdoor
images of these subjects taken under a variety of lighting
conditions (category 1 and 2 specified below), similar to the
one shown in Figure 1, and the recognition rates for indoor and
outdoor images drop down to 94.2% and 89.2%, respectively.
This is a strong indication that frontal illuminations taken
under laboratory conditions are insufficient for representing
test images under typical indoor and outdoor illuminations.

5.2 Large-Scale Test with Sufficient Training Illumi-
nations
Now we use all 109 subjects and 38 illuminations in the
training and test on 935 images taken under a variety of

21. We use the illuminations {6, 9, 12, 13, 18, 21, 22} shown in Figure 7(b)
to mimic the illuminations {0, 1, 6, 7, 13, 14, 18} in Multi-PIE.

practical illuminations and conditions. We have manually
partitioned the test images into four main categories:

C1: 310 indoor images of 72 subjects without eyeglasses,
frontal view (Fig. 13, row 1).

C2: 168 outdoor images of 48 subjects without eye-
glasses, frontal view (Fig. 13, row 2).

C3: 211 images of 32 subjects with eyeglasses (Fig. 13,
row 3).

C4: 246 images of 56 subjects with sunglasses (Fig. 14).
We apply Viola and Jones’ face detector on these images and
directly use the detected faces as the input to our algorithm.
Table 4 reports the performance of our algorithm on each
category. Since our focus is on face recognition, the errors
do not include failures of the face detector on some of the
more challenging images. As one can see, our algorithm
achieves higher than 95% recognition rates on categories 1-
3. Furthermore, using the full set of 38 illuminations indeed
improves the performance of our system under practical illu-
mination conditions compared to only using a small subset of
7 illuminations. However, the performance dramatically drops
when the faces are occluded by various types of sunglasses,
which could cover up to 40% of the entire face. Given the
previous experimental results on synthetic random block oc-
clusions, and given that the illuminations are more challenging,
the result is not surprising. In the next subsection, we will
show how additional assumptions can be used to improve the
recognition performance.

TABLE 4
Recognition rates on our own database.

Test Category C1 C2 C3 C4
Recognition Rate 98.4% 95.8% 95.1% 40.9%

5.3 Improving the Performance with Occlusion us-
ing Overlapping Blocks
A traditional approach to improve the performance of face
recognition under severe occlusion is to use subregions instead
the entire face as a whole. This idea has been explored in
many earlier works; see [43], [3] for examples. Since in most
real world cases the occlusion is contiguous, it is reasonable
to argue that a minority of the subregions are likely to be
affected by the occlusion. In this paper, we adopt the same idea
and partition the face into four overlapping blocks to better
handle sunglasses. This scheme is illustrated in Figure 15.
Notice that in this example three out of the four blocks are
partially or almost completely occluded. In our experiment,
each block is of size 90 × 48 and covers about two-fifths of
the entire face. The testing and training sets are partitioned
in the same way. We then independently apply Algorithm 1
and compute a sparse representation after registration for each
block independently with respect to the training set. The
recognition results for individual blocks are then aggregated
by voting.

In this experiment, we found that the using the sparsity
concentration index (SCI) scores for voting achieves higher



13

Fig. 15. Using overlapping blocks to tackle contiguous occlusion. (a) The
test image, occluded by sunglasses. (b) The four overlapping blocks. (c)
The sparse representation is calculated after alignment for each block
independently. The red lines correspond to his true identity. (d) The true
identity is successfully recovered by voting based on the SCI scores.

recognition rate than the residual measure used in Algorithm 1,
on category 4 (sunglasses) of our database. The recognition
rate is increased to 78.3%, compared to 40.9% obtained
without this partition scheme. This is another evidence of the
superior ability of SCI on subject validation, since a heavily
occluded block can be regarded as an outlier for recognition
and should be rejected while voting.

However, we should point out that a major problem with
this approach is that occlusion cannot always be expected to
fall within any fixed partition of the face image. Therefore,
the proposed scheme should only be viewed as an example
which shows that the performance under occlusion can be
boosted by leveraging local information of a face as well
as global information. We leave the investigation of more
general models (e.g., MRF [44]) for face recognition with both
misalignment and occlusion as an interesting future work.

6 CONCLUSION

Using a well-though-out combination of existing ideas (itera-
tive image alignment, `1-error function, SRC, using projectors
for illumination), we have proposed a system for recognizing
human faces from images taken under practical conditions
that is conceptually simple, well motivated, and competitive
with state-of-the-art recognition systems for access control
scenarios.

The system achieves extremely stable performance under a
wide range of variations in illumination, misalignment, and
even under small amounts of pose and occlusion. We achieve
very good recognition performance on large-scale tests with
public datasets as well as our practical face images, while
using only frontal 2D images in the gallery and no explicit 3D
face model. Our system could potentially be extended to better
handle large pose and expression, either by incorporating train-
ing images with different poses or expressions or by explicitly
modeling and compensating the associated deformations in the
alignment stage.

Another important direction for future investigation is to ex-
tend the alignment algorithm to better tackle contiguous occlu-
sion. We have demonstrated that misalignment can be naturally
handled within the sparse representation framework. More
complicated models for spatial continuity, such as Markov
random fields, have also been successfully integrated into the
computation of a sparse representation of well-aligned test
images [45], [44]. A unified approach for face alignment and

recognition in the presence of contiguous occlusion remains
an open problem.
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APPENDIX
L1 MINIMIZATION VIA AUGMENTED LAGRANGE
MULTIPLIER

In this Appendix we discuss the computational issues related
to the implementation of Algorithm 1, which is repeated here
for convenience. It is not hard to see that its computational
complexity is dominated by the two steps where the `1-norm
minimization problems are solved; namely Step 6 for iterative
registration, and Step 14 for global sparse representation.
Fortunately, many fast algorithms for solving these problems
have been proposed over the past ten years. We refer the
interested reader to [1] for a more comprehensive survey
of the developments in this area. That work suggests that
Augmented Lagrange Multiplier (ALM) algorithms [2] strike
a good balance between scalability and accuracy: as first order
methods, they require only lightweight vector operations and
matrix-vector multiplications at each iteration, making them
preferable to more classical solutions such as interior point
methods. However, compared to other first-order methods, they
achieve higher accuracy with a fixed computational budget.

We use Step 14 as an example to illustrate the ALM method,
since solving Step 6 is very similar. Recall that in Step 14 the
problem we are interested in is:

min
x,e
‖x‖1 + ‖e‖1 subj to y = Ax+ e. (1)

Its corresponding augmented Lagrangian function is

Lµ(x, e,λ) = ‖x‖1+‖e‖1+〈λ,y−Ax−e〉+
µ

2
‖y−Ax−e‖22,

(2)
where λ is the Lagrange multiplier and µ > 0 is a penalty pa-
rameter. The ALM method seeks a saddlepoint of Lµ(x, e,λ)
by alternating between optimizing with respect to the primal
variables x, e and updating the dual variable λ, with the other
fixed, as follows:{

(xk+1, ek+1) = arg min(x,e) Lµ(x, e,λk),
λk+1 = λk + µ(y −Axk+1 − ek+1).

(3)

Although updating λ is trivial, minimizing Lµ(x, e,λk) with
respect to both x and e could still be costly. To further reduce
the complexity of the problem, we adopt an approach used in
[3], called alternating direction method of multipliers (ADM)
[4], which alternates between minimizing Lµ(x, e,λk) over
x (with e fixed) and over e (with x fixed). After solving
these two subproblems, the Lagrange multiplier λ is updated,
yielding an iteration of the form: ek+1 = arg mine Lµ(xk, e,λk),

xk+1 = arg minx Lµ(x, ek+1,λk),
λk+1 = λk + µ(y −Axk+1 − ek+1).

(4)

As the objective function is convex and alternation is between
two terms, this procedure is guaranteed to converge to a global
optimum (see [3] and references therein).

In order to discuss the solution to the above subproblems,
we need to define the following soft-thresholding operator for
a vector x and a scalar α ≥ 0:

T (x, α) = sign(x) ·max{|x| − α, 0}, (5)

Algorithm 1 (Augmented Lagrange Multiplier Method for
Global Recognition)

1: Input: y ∈ Rm, A ∈ Rm×n, x1 = 0, e1 = y, λ1 = 0.
2: while not converged (k = 1, 2, . . .) do
3: ek+1 = T

(
y −Axk + 1

µ
λk,

1
µ

)
;

4: t1 ← 1, z1 ← xk, w1 ← xk;
5: while not converged (l = 1, 2, . . .) do
6: wl+1 ← T

(
zl +

1
γ
AT
(
y −Azl − ek+1 + 1

µ
λk
)
, 1
µγ

)
;

7: tl+1 ← 1
2

(
1 +

√
1 + 4t2l

)
;

8: zl+1 ← wl+1 + tl−1
tl+1

(wl+1 −wl);
9: end while

10: xk+1 ← wl, λk+1 ← λk + µ(y −Axk+1 − ek+1);
11: end while
12: Output: x∗ ← xk, e

∗ ← ek.

where all the operations are performed component-wise. It is
easy to show that the subproblem with respect to e has a
closed-form solution given by the soft-thresholding operator:

ek+1 = T (y −Axk + µ−1λk, µ
−1). (6)

To solve the subproblem associated with x, we apply a first-
order `1-minimization method, called fast iterative shrinkage-
threshold algorithm (FISTA) [5]. The main idea of FISTA is
to iteratively minimize a quadratic approximation Q(x, z) to
Lµ(x, ek+1,λk) around a point z, which is carefully chosen
in order to achieve a good convergence rate. We summarize
the entire ALM algorithm as Algorithm 1, where γ denotes
the largest eigenvalue of the matrix ATA. For the choice of
parameter µ, we take the same strategy as in [3] and set µ =
2m/‖y‖1.

We have selected this algorithm because it strikes the
best balance between speed, accuracy, and scalability for our
problem out of many algorithms that we have tested. We refer
the interested reader to [1] for a more detailed discussion
of competing approaches. On a Mac Pro with Dual-Core
2.66GHz Xeon processors and 4GB memory, running on our
database containing images size 80 × 60 pixels from 109
subjects under 38 illuminations, our C implementation of
Algorithm 1 takes about 0.60 seconds per subject for alignment
and about 2.0 seconds for global recognition. Compared to the
highly customized interior point method used in the conference
version of this paper [6], this new algorithm is only slightly
faster for per subject alignment. However, it is much simpler
to implement and it achieves a speedup of more than a factor
of 10 for global recognition!
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