
DATA-DRIVEN IMAGE COMPLETION BY IMAGE PATCH SUBSPACES

Hossein Mobahi, Shankar R. Rao, Yi Ma

Coordinated Science Laboratory
University of Illinois at Urbana Champaign Urbana, IL 61801

ABSTRACT

We develop a new method for image completion on images
with large missing regions. We assume that similar patches
form low dimensional clusters in the image space where each
cluster can be approximated by a (degenerate) Gaussian. We
use sparse representation for subspace detection and then
compute the most probable completion. Our results show
almost no blurring or blocking effects. In addition, both the
texture and structure of the missing regions look realistic to
the human eye.

Index Terms— Inpainting, Image Subspaces, Sparse
Representation, Degenerate Gaussians

1. INTRODUCTION

Image completion (also called image inpainting) is the task of
filling in or replacing an image region with new data such that
the modified image looks natural and real to human eyes. This
problem has a number of applications such as removing un-
wanted items off a picture, fixing cracks or corrupted portions
of old photographs, and filling holes caused by occlusion in
3D image reconstruction.

Early approaches to image completion focused on texture
synthesis [1]. This trend alone could not be scaled to natu-
ral images due to presence of geometrical structures that are
different from texture information. One way of completing
structure is evolving a missing region from its boundary in-
wards using partial differential equations (PDE) [2]. Other
lines of work seek to transform images to a domain where
their representations are sparse, having few nonzero entries
[3]. The image is filled in such a way that the representation
of the image as a whole is as sparse as possible. In practice,
these methods uses generic pre-defined transformations such
as curvelets and cosines.

All of the above methods are strongly model-driven and
have little adaption to the data. The reported results are ei-
ther on very small missing regions or, when applied to larger
regions, exhibit blur and blocking effects. Exemplar-based
methods take a completely different approach. Rather than
building mathematical models from scratch, these methods
synthesize the missing parts of an image from a collection of

This work is partially supported by grants NSF CRS-EHS-0509151,
NSF CCF-TF-0514955, and ONR YIP N00014-05-1-0633.

pieces of real images, known as a patch dictionary. These
methods bypasses the inevitable modeling error and gross
simplifications with model-based approaches, and have been
successfully applied to larger missing regions.

The majority of exemplar methods replace the missing re-
gion with patches exactly as they arise in the training data
[4, 5]. Since these methods cannot produce novel patches, the
patch dictionary must contain at least one suitable candidate
for (a portion of) the missing region. This is a very strong
assumption even with access to millions of image patches.
Successful examples in these works are images where repeat-
ing a single patch can approximate a large region of the im-
age [4] or when the missing region cuts exactly a whole ob-
ject [5]. While the latter situation is reasonable for semi-
supervised applications, such as image editing, in more gen-
eral image restoration tasks, missing regions can often cross
object boundaries. This is much more difficult, because both
the object and its boundary must be completed in a perceptu-
ally meaningful way.

In this work, we relax the aforementioned assumption by
allowing missing regions to be filled using novel patches syn-
thesized from a limited dictionary of real patches. In par-
ticular, the novel patches are linear combinations of the real
image patches in the dictionary. Thus, even if no patch in the
dictionary matches a given missing region, it is still possible
to fill in the region with an appropriate linear interpolation of
patches. To avoid the problem of over fitting, we seek novel
patches that have sparse representations w.r.t. to the dictio-
nary. Finally, we assume that a set of patches having similar
texture and structure have a distribution that can be well ap-
proximated by a degenerate Gaussian. This assumption pro-
vides some probabilistic justification for our approach, and
works well with the notion of sparsity.1

2. IMAGE COMPLETION BY PATCH SUBSPACES

2.1. Problem Formulation

To provide some motivation for our assumptions, we first con-
sider the example given in Figure 1 (a). We select a random

1Our strategy is similar in spirit to [6], as both approaches use sparse
representation as a tool for filling in missing regions. However, as we will
show in the next section, our degenerate Gaussian assumption results in more
accurate and robust completion, allowing our approach to be applied to larger
missing regions in an image.

(a) Two groups of similar patches

(b) Top 5 rows are red and the rest are blue patches

(c) Patches projected onto 2D by PCA

Fig. 1. Distribution of two categories of patches

5 × 5 patch in the image, and then find the 49 other patches
in the image that are most similar to the given patch. Here,
the measure of similarity is the normalized inner product be-
tween patches. In this fashion, we obtain two groups of 50
similar patches, as seen in Figure 1 (b). Though the ambi-
ent dimensionality of each patch is 75 (25 pixels per RGB
channel), for each set of patches, 95% of the total variation is
contained in the top 10 eigenvectors (see Figure 1 (c)). This
indicates that each set lies approximately on a 10-dimensional
subspace. The first two principal components of each patch
are shown in Figure 1 (c).

Based on these observations, we assume that the set of
patches with similar appearance form a cluster in the image
space. We further assume that the intrinsic dimensionality of
such clusters is much lower than ambient dimension. The lat-
ter assumption stems from high correlation among pixel val-
ues in natural images. We approximate each of such clusters
with a multivariate normal distribution whose covariance has
a very low rank. Note that the rank of each Gaussian cluster
(or equivalently the dimensionality of the subspace where the
samples live in) might be different, depending on the com-

plexity of the patches in the cluster. For example, the set
of patches from a plain white wall should lie on a lower-
dimensional subspace than patches from carpet.

Based on the above assumptions, we formally state the
problem of filling a single patch with missing pixels. We rep-
resent each patch as a vector by stacking up pixel values of
each patch.

Problem 1 (Data-Driven Completion of a Gaussian Vector)
Suppose we have a set of training vectors {z i}n

i=1, where
each zi ∈ �d is an i.i.d. sample from one of K degenerate
normal distributions {Nk(µk, Σk)}K

k=1. We do not know
from which of the K distributions each z i is drawn, and
K is also unknown. We associate to each Nk a subspace
Sk spanned by the eigenvectors of Σk that correspond to its
nonzero eigenvalues. Given a test observation with m missing
entries

z̃ = [x̃T ỹT]T , (1)

where x̃ ∈ �d−m denotes the visible components and ỹ ∈
�

m denotes the missing components, estimate ỹ from x̃ and
{zi}n

i=1.

2.2. Our Approach

Our first task is to identify the subspace S ∗ ∈ {S1, ...,SK}
for which z̃ ∈ S∗. Though z̃ can be represented by any d
vectors that span the ambient space, it can only be represented
sparsely by vectors from S∗. However, we can only observe
x̃, a portion of the vector z̃. If the number of missing entries
m is small, then we can recover the sparse representation for
z̃ without observing ỹ. Later, we will show that we can design
our algorithm so that m is guaranteed to be small.

The observed portion x̃ is related to z̃ by x̃ = Πz̃, where
Π ∈ �(d−m)×d is the linear projection that removes the en-
tries in ỹ from z̃. As long as the dimension dk of each sub-
space Sk is strictly less than d − m, an arbitrary (d − m)-
dimensional projection preserves the structural relationships
between the subspaces with probability one. In particular, if
z̃ ∈ S∗ can be linearly represented as

z̃ =
d∗∑

j=1

a∗
jz

∗
j , for {z∗

j ∈ S∗}d∗
j=1, (2)

then, with probability one, x̃ has a representation x̃ =∑d∗

j=1 a∗
jx

∗
j , where x∗

j = Πz∗
j , j = 1...d∗, and {a∗

j}d∗
j=1

are the same coefficients used in (2). Thus, when m is small,
we can determine S∗ by constructing x̃ from a sparse linear
combination of x1, ..., xn.

In principle, the sparse representation of x̃ can be ob-
tained by solving the following problem.

min
a

‖a‖0 subj. x̃ =
n∑

i

aixi (3)

where a = [a1, a2, ..., an]T and ‖a‖0 is equal to the num-
ber of non-zero coefficients in a. Solving (3) is in general
NP-Hard, and is thus computationally intractable, but it can
be relaxed by replacing ‖a‖0 with ‖a‖1. The latter is a con-
vex problem and can be solved efficiently via linear program-
ming. It is known that if the problem indeed has a sparse
enough solution, then this relaxation will recover the solu-
tion of the original problem [7]. In practice, using normalized
xi’s provides better scaling for the coefficients a i, so we use
xi/‖xi‖2 instead.

Another issue with this formulation is the hard equality
constraint x =

∑n
i aixi/‖xi‖2. Real data, like the patches

in Figure 1, are often noisy, and thus do not perfectly satisfy
the equality constraint. Therefore, we allow some error in the
constraint, but penalize it in the objective function. We use
�1-norm penalty of the error so that the optimization remains
a linear program.2

(a∗, e∗) = argmin
a,e

‖a‖1 + ‖e‖1 (4)

subj. x̃ + e =
n∑

i

aixi/‖xi‖2

Denoting the support set by supp(z̃) = ∪a∗
i �=0{zi}, S∗

will be span(supp(z̃)). We could estimate (µ∗, Σ∗) from
supp(z̃). However, supp(z̃) only contains d∗ vectors, and
though those vectors are all drawn from the same Gaussian
N ∗, they are not independent; these vectors were chosen
precisely because they produce the sparsest representation.
In order to obtain a reliable estimate of (µ∗, Σ∗), we need to
find more vectors that lie on or near S ∗ .

We denote the set of all training points whose x part falls
into this subspace by Z∗. Again we should consider noise
and let points be considered on the subspace upto a tolerance
distance ε. 3

Z∗ = {zi : d(zi,S∗) < ε} (5)

Given Z∗, we obtain sample estimates (µ̂, Σ̂) for the
mean and covariance of N ∗. The most probable estimate for
ỹ, denoted by y∗ can be obtained as follows.

y∗ = argmax
ỹ

Pr(ỹ | x̃ ; µ̂, Σ̂)

= argmax
ỹ

Pr(x̃ , ỹ ; µ̂, Σ̂)/ Pr(x̃ ; µ̂, Σ̂)

= argmax
ỹ

Pr(x̃ , ỹ ; µ̂, Σ̂)

= argmin
ỹ

(
[

x̃
ỹ

] − µ̂)T (Σ̂ + λI)
−1

(
[

x̃
ỹ

] − µ̂) (6)

2Given a∗, one can, in principle, recover an estimate ỹ�1 =∑n
i=1 a∗

i yi. However this �1-based estimate is sensitive to outliers in the
following sense. Suppose there is an outlier patch zo in the training data
whose xo component agrees with x̃. Since zo is not drawn from N∗, it can
potentially corrupt the estimate ỹ�1 so that it bears little resemblance to the
true ỹ.

3d(zi,S∗) is the Euclidean distance between zi and the subspace S∗.

We regularize Σ̂ by adding the scaled identity to facilitate in-
version (λ is a small positive number). Because Σ̂+λI is pos-
itive definite, the problem of computing y ∗ becomes a convex
quadratic program.

To complete a large missing region, we iteratively apply
the single patch filling procedure. At every step, we find an
incomplete patch window in the image that contains the least
number of missing pixels. This ensures that the coefficients
found by solving (4) indeed recover a basis for S ∗. We then
solve (6) to obtain the estimate y∗ for that patch. We only
allow one pixel to be filled at a time (the one that is closest
to the center of the patch), even if we have recovered more
than one pixel by y∗. This way the boundary is filled layer by
layer and the filling gradually moves inwards. The complete
algorithm is summarized in Algorithm 1.

Algorithm 1 Data-Driven Completion by Patch Subspaces
1: Input: Image I, training patches z1, ..., zn, error toler-

ance ε, and regularization parameter λ
2: while # missing pixels in I > 0 do
3: Choose an incomplete patch z̃ from I with the least

number of missing pixels
4: Solve min

a,e
‖a‖1+‖e‖1 subj. x̃+e =

∑n
i aixi/‖xi‖2

5: Compute S∗ = span(supp(z̃)), where supp(z̃) =
∪a∗

i �=0{zi}
6: Estimate (µ̂, Σ̂) from Z∗ = {zi : d(zi,S∗) < ε}
7: Find y∗ = argmin

ỹ
(
[

x̃
ỹ

] − µ̂)T (Σ̂ + λI)
−1

(
[

x̃
ỹ

] − µ̂)

8: Pick the pixel in y∗ that is closest to the center of the
patch and use it for filling in the missing pixel values.

9: end while
10: Output: Completed Image I

3. RESULTS

We evaluated our method on the flower dataset provided by
[8]. This set contains 17 different flower categories with
80 images per category. We only used the first category
for our experiment (some examples are given in Figure 2).
We cropped the images so that the flower part dominates
the image (this could also done automatically, e.g. using
color histogram matching). This way, we can accommodate
a larger set of relevant patches in a smaller dictionary. We
also reduced the resolution to a half of the original for the
computational efficiency.

We encoded color information by simply using RGB val-
ues of each pixel. The patches are 5 × 5 windows, so each
patch becomes a 75 dimensional vector. When testing on a
partially erased flower image, the non-erased regions of that
image plus the whole region of the other 79 images were used
for extracting training patches.

We sampled 100 patches from each image to construct
the dictionary. We experimented with two ways of sampling,
random and selective. In the selective case, when filling each

Fig. 2. Some Examples from a Flower Dataset

patch, a dictionary tailored to that patch is created on the fly.
This was achieved by searching all 5 × 5 patches within each
image and choosing top 100 patches that best match the patch
to be filled. The similarity was measured by normalized dot
product. In random sampling, 100 patches were extracted
from each image at random locations. Therefore, with either
sampling, the dictionary consists of 8000 vectors.

Surprisingly, the filling results from random and selective
sampling were not much different. This indicates that an ef-
fective dictionary for image completion can be constructed in
an extremely cheap way.

Our results on some of the images are shown in Figure 3
(The original images on the left are provided only as a refer-
ence). Observe that while the missing regions are relatively
large, the completed images look very realistic; there is no
blurring or blocking effect. In addition, both the texture and
structure are filled in a perceptually pleasant way.

4. CONCLUSION

We proposed a new idea for image completion with large
missing region. Our method relies on the assumption that
similar patches form low dimensional clusters in the image
space where each cluster can be approximated by a degener-
ate Gaussian distribution. We supported this claim by an il-
lustrative example. We then proposed subspace identification
followed by parameter estimation to obtain the most likely
assignment to the missing pixel values.

The results are impressive. No blurring or blocking effects
are observed, which is beyond the performance of model-
driven methods [3, 2]. Both texture and structure of the miss-
ing regions were filled in a perceptually pleasant way. Note
that the appearance variation among patches of the flower im-
ages does not allow repeated use of a patch for filling. In
addition, the missing regions are not whole object so that the
whole region could be replaced with another object. Exem-
plar based methods cannot cope with these problems [4, 5].

The algorithm is very simple to implement and involves
solving a linear program per missing pixel. We observed that

Fig. 3. Left : Original , Middle : Input , Right : Output

random patch sampling can perform as good as the selective
procedure, as long as the object category dominates the area
of the training images. This allows handling a large dictionary
without too much cost as in [6].

5. REFERENCES

[1] A. A. Efros and T. K. Leung, “Texture synthesis by non-
parametric sampling,” ICCV, 1999.

[2] M. Bertalmo, L. Vese, G. Sapiro, and S. Osher, “Simultaneous
Structure and Texture Image Inpainting,” IEEE Transactions on
Image Processing, vol. 12, no. 8, pp. 882–889, August 2003.

[3] M. Elad, J-L. Starck, P. Querre, and D. L. Donoho, “Simultane-
ous Cartoon and Texture Image Inpainting Using Morphlogical
Component Analysis (MCA),” Journal on Applied and Comp.
Harmonic Analysis, vol. 19, pp. 340–358, November 2005.

[4] N. Komodakis, “Image Completion Using Global Optimiza-
tion,” CVPR, pp. 442–452, 2006.

[5] J. Hays and A. A. Efros, “Scene Completion Using Millions of
Photographs,” SIGGRAPH, vol. 26, no. 3, August 2007.

[6] J. Mairal, M. Elad, and G. Sapiro, “Sparse Representation for
Color Image Restoration,” IEEE Transactions on Image Pro-
cessing, vol. 17, no. 1, pp. 53–69, January 2008.

[7] A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse
solutions of systems of equations to sparse modeling of signals
and images,” to appear in SIAM Review, 2009.

[8] M. E. Nilsback and A. Zisserman, “A visual vocabulary for
flower classification,” CVPR, 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

