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Abstract— We consider the problem of automatically recog-
nizing human faces from frontal views with varying expression
and illumination, as well as occlusion and disguise. We cast
the recognition problem as one of classifying among multiple
linear regression models, and argue that new theory from sparse
signal representation offers the key to addressing this problem.
Based on a sparse representation computed by `1-minimization,
we propose a general classification algorithm for (image-based)
object recognition. This new framework provides new insights
into two crucial issues in face recognition: feature extraction and
robustness to occlusion. For feature extraction, we show that if
sparsity in the recognition problem is properly harnessed, the
choice of features is no longer critical. What is critical, however, is
whether the number of features is sufficiently large and whether
the sparse representation is correctly computed. Unconventional
features such as downsampled images and random projections
perform just as well as conventional features such as Eigenfaces
and Laplacianfaces, as long as the dimension of the feature
space surpasses certain threshold, predicted by the theory of
sparse representation. This framework can handle errors due to
occlusion and corruption uniformly, by exploiting the fact that
these errors are often sparse w.r.t. to the standard (pixel) basis.
The theory of sparse representation helps predict how much
occlusion the recognition algorithm can handle and how to choose
the training images to maximize robustness to occlusion. We
conduct extensive experiments on publicly available databases
to verify the efficacy of the proposed algorithm, and corroborate
the above claims.

Index Terms— Face Recognition, Feature Extraction, Occlusion
and Corruption, Sparse Representation, Compressed Sensing, `1-
Minimization, Validation and Outlier Rejection.

I. INTRODUCTION

PArsimony has a rich history as a guiding principle for
inference. One of its most celebrated instantiations, the

principle of minimum description length in model selection [1],
[2], stipulates that within a hierarchy of model classes, the model
that yields the most compact representation should be preferred
for decision-making tasks such as classification. A related, but
simpler, measure of parsimony in high-dimensional data process-
ing seeks models that depend on only a few of the observations,
selecting a small subset of features for classification or visual-
ization (e.g., Sparse PCA [3], [4] amongst others). Such sparse
feature selection methods are, in a sense, dual to the support
vector machine (SVM) approach of [5], [6], which instead selects
a small subset of relevant training examples to characterize the
decision boundary between classes. While these works comprise
only a small fraction of the literature on parsimony for inference,
they do serve to illustrate a common theme: all of them use
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parsimony as a principle for choosing a limited subset of features
or models from the training data, rather than directly using the
data for representing or classifying an input (test) signal.

The role of parsimony in human perception has also been
strongly supported by studies of human vision. Investigators have
recently revealed that in both low-level and mid-level human
vision [7], [8], many neurons in the visual pathway are selective
for a variety of specific stimuli, such as color, texture, orientation,
scale, and even view-tuned object images. Considering these neu-
rons to form an overcomplete dictionary of base signal elements
at each visual stage, the firing of the neurons w.r.t. to a given
input image is typically highly sparse.

In the statistical signal processing community, the algorithmic
problem of computing sparse linear representations w.r.t. to an
overcomplete dictionary of base elements or signal atoms has seen
a recent surge of interest [9]–[12].1 Much of this excitement cen-
ters around the discovery that whenever the optimal representation
is sufficiently sparse, it can be efficiently computed by convex
optimization [9], even though this problem can be extremely
difficult in the general case [13]. The resulting optimization
problem, similar to the Lasso in statistics [12], [14] penalizes
the `1-norm of the coefficients in the linear combination, rather
than the directly penalizing the number of nonzero coefficients
(i.e., the `0-norm).

The original goal of these works was not inference or classifica-
tion per se, but rather representation and compression of signals,
potentially using lower sampling rates than the Shannon-Nyquist
bound [15]. Algorithm performance was therefore measured in
terms of sparsity of the representation and fidelity to the original
signals. Furthermore, individual base elements in the dictionary
were not assumed to have any particular semantic meaning – they
are typically chosen from standard bases (e.g., Fourier, Wavelet,
Curvelet, Gabor), or even generated from random matrices [11],
[15]. Nevertheless, the sparsest representation is naturally discrim-
inative: amongst all subsets of base vectors, it selects the subset
which most compactly expresses the input signal and rejects all
other possible but less compact representations.

In this paper, we exploit the discriminative nature of sparse rep-
resentation to perform classification. Instead of using the generic
dictionaries discussed above, we represent the test sample in an
overcomplete dictionary whose base elements are the training
samples themselves. If sufficient training samples are available

1In the literature, the terms “sparse” and “representation” have been used
to refer to a number of similar concepts. Throughout this paper, we will use
the term “sparse representation” to refer specifically to an expression of the
input signal as a linear combination of base elements in which many of the
coefficients are zero. In most cases considered, the percentage of nonzero
coefficients will vary between zero and ≈ 30%. However, in characterizing
the breakdown point of our algorithms, we will encounter cases with up to
70% nonzeros.
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Fig. 1. Overview of our approach. Our method represents a test image (left), which is potentially occluded (top) or corrupted (bottom), as a sparse linear
combination of all the training images (middle) plus sparse errors (right) due to occlusion or corruption. Red (darker) coefficients correspond to training
images of the correct individual. Our algorithm determines the true identity (indicated with a red box at second row and third column) from 700 training
images of 100 individuals (7 each) in the standard AR face database.

from each class,2 it will be possible to represent the test samples
as a linear combination of just those training samples from the
same class. This representation is naturally sparse, involving only
a small fraction of the overall training database. We argue that in
many problems of interest, it is actually the sparsest linear rep-
resentation of the test sample in terms of this dictionary, and can
be recovered efficiently via `1-minimization. Seeking the sparsest
representation therefore automatically discriminates between the
various classes present in the training set. Figure 1 illustrates
this simple idea using face recognition as an example. Sparse
representation also provides a simple and surprisingly effective
means of rejecting invalid test samples not arising from any class
in the training database: these samples’ sparsest representations
tend to involve many dictionary elements, spanning multiple
classes.

Our use of sparsity for classification differs significantly from
the various parsimony principles discussed above. Instead of
using sparsity to identify a relevant model or relevant features
that can later be used for classifying all test samples, it uses
the sparse representation of each individual test sample directly
for classification, adaptively selecting the training samples that
give the most compact representation. The proposed classifier
can be considered a generalization of popular classifiers such
as nearest neighbor (NN) [18] and nearest subspace (NS) [19]
(i.e., minimum distance to the subspace spanned all training
samples from each object class). Nearest neighbor classifies the
test sample based on the best representation in terms of a single
training sample, whereas nearest subspace classifies based on the
best linear representation in terms of all the training samples
in each class. The nearest feature line (NFL) algorithm [20]
strikes a balance between these two extremes, classifying based
on the best affine representation in terms of a pair of training
samples. Our method strikes a similar balance, but considers all
possible supports (within each class or across multiple classes)
and adaptively chooses the minimal number of training samples
needed to represent each test sample.3

We will motivate and study this new approach to classification

2In contrast, methods such as [16], [17] that utilize only a single training
sample per class face a more difficult problem and generally incorporate more
explicit prior knowledge about the types of variation that could occur in the
test sample.

3The relationship between our method and NN, NS, and NFL is explored
more thoroughly in the supplementary appendix.

within the context of automatic face recognition. Human faces
are arguably the most extensively studied object in image-based
recognition. This is partly due to the remarkable face recognition
capability of the human visual system [21], and partly due to
numerous important applications for face recognition technology
[22]. In addition, technical issues associated with face recognition
are representative of object recognition and even data classifica-
tion in general. Conversely, the theory of sparse representation and
compressed sensing yields new insights into two crucial issues in
automatic face recognition: the role of feature extraction and the
difficulty due to occlusion.

a) The Role of Feature Extraction: The question of which
low-dimensional features of an object image are the most relevant
or informative for classification is a central issue in face recogni-
tion, and in object recognition in general. An enormous volume of
literature has been devoted to investigate various data-dependent
feature transformations for projecting the high-dimensional test
image into lower dimensional feature spaces: examples include
Eigenfaces [23], Fisherfaces [24], Laplacianfaces [25], and a host
of variants [26], [27]. With so many proposed features and so
little consensus about which are better or worse, practitioners lack
guidelines to decide which features to use. However, within our
proposed framework, the theory of compressed sensing implies
that the precise choice of feature space is no longer critical: even
random features contain enough information to recover the sparse
representation and hence correctly classify any test image. What
is critical is that the dimension of the feature space is sufficiently
large, and that the sparse representation is correctly computed.

b) Robustness to Occlusion: Occlusion poses a significant
obstacle to robust, real-world face recognition [16], [28], [29].
This difficulty is mainly due to the unpredictable nature of the
error incurred by occlusion: it may affect any part of the image,
and may be arbitrarily large in magnitude. Nevertheless, this error
typically corrupts only a fraction of the image pixels, and is
therefore sparse in the standard basis given by individual pixels.
When the error has such a sparse representation, it can be handled
uniformly within our framework: the basis in which the error
is sparse can be treated as a special class of training samples.
The subsequent sparse representation of an occluded test image
w.r.t. this expanded dictionary (training images plus error basis)
naturally separates the component of the test image arising due to
occlusion from the component arising from the identity of the test
subject (see Figure 1 for an example). In this context, the theory of
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sparse representation and compressed sensing characterizes when
such source-and-error separation can take place, and therefore
how much occlusion the resulting recognition algorithm can
tolerate.

c) Organization of this Paper: In Section II, we introduce a
basic, general framework for classification using sparse represen-
tation, applicable to a wide variety of problems in image-based
object recognition. We will discuss why the sparse representation
can be computed by `1-minimization, and how it can be used
for classifying and validating any given test sample. Section
III shows how to apply this general classification framework
to study two important issues in image-based face recognition:
feature extraction and robustness to occlusion. In Section IV,
we verify the proposed method with extensive experiments on
popular face datasets, and comparisons with many other state-of-
the-art face recognition techniques. Further connections between
our method, nearest neighbor, and nearest subspace are discussed
in the supplementary appendix.

While the proposed method is of broad interest to object
recognition in general, the studies and experimental results in
this paper are confined to human frontal face recognition. We will
deal with illumination and expressions but we do not explicitly
account for object pose, nor rely on any 3-D model of the face.
The proposed algorithm is robust to small variations in pose and
displacement, for example, due to registration errors. However,
we do assume that detection, cropping, and normalization of the
face have been performed prior to applying our algorithm.

II. CLASSIFICATION BASED ON SPARSE REPRESENTATION

A basic problem in object recognition is to use labeled training
samples from k distinct object classes to correctly determine the
class to which a new test sample belongs. We arrange the given ni
training samples from the i-th class as columns of a matrix Ai

.
=

[vi,1,vi,2, . . . ,vi,ni
] ∈ Rm×ni . In the context of face recognition,

we will identify a w×h grayscale image with the vector v ∈ Rm

(m = wh) given by stacking its columns; the columns of Ai are
then the training face images of the i-th subject.

A. Test Sample as a Sparse Linear Combination of Training
Samples

An immense variety of statistical, generative or discriminative,
models have been proposed for exploiting the structure of the Ai
for recognition. One particularly simple and effective approach
models the samples from a single class as lying on a linear
subspace. Subspace models are flexible enough to capture much
of the variation in real datasets, and are especially well-motivated
in the context of face recognition, where it has been observed
that the images of faces under varying lighting and expression lie
on a special low-dimensional subspace [24], [30], often called a
face subspace. Although the proposed framework and algorithm
can also apply to multimodal or nonlinear distributions (see the
supplementary appendix for more detail), for ease of presentation,
we shall first assume that the training samples from a single class
do lie on a subspace. This is the only prior knowledge about the
training samples we will be using in our solution.4

4In face recognition, we actually do not need to know whether the linear
structure is due to varying illumination or expression, since we do not rely on
domain-specific knowledge such as an illumination model [31] to eliminate
the variability in the training and testing images.

Given sufficient training samples of the i-th object class, Ai =

[vi,1,vi,2, . . . ,vi,ni
] ∈ Rm×ni , any new (test) sample y ∈ Rm

from the same class will approximately lie in the linear span of
the training samples5 associated with object i:

y = αi,1vi,1 + αi,2vi,2 + · · ·+ αi,ni
vi,ni

, (1)

for some scalars αi,j ∈ R, j = 1, 2, . . . , ni.
Since the membership i of the test sample is initially unknown,

we define a new matrix A for the entire training set as the
concatenation of the n training samples of all k object classes:

A
.
= [A1, A2, . . . , Ak] = [v1,1,v1,2, . . . ,vk,nk

]. (2)

Then the linear representation of y can be rewritten in terms of
all training samples as

y = Ax0 ∈ Rm, (3)

where x0 = [0, · · · , 0, αi,1, αi,2, . . . , αi,ni
, 0, . . . , 0]T ∈ Rn is a

coefficient vector whose entries are zero except those associated
with the i-th class.

As the entries of the vector x0 encode the identity of the test
sample y, it is tempting to attempt to obtain it by solving the
linear system of equations y = Ax. Notice, though, that using the
entire training set to solve for x represents a significant departure
from one sample or one class at a time methods such as nearest
neighbor (NN) and nearest subspace (NS). We will later argue
that one can obtain a more discriminative classifier from such a
global representation. We will demonstrate its superiority over
these local methods (NN or NS) both for identifying objects
represented in the training set and for rejecting outlying samples
that do not arise from any of the classes present in the training
set. These advantages can come without an increase in the order
of growth of the computation: as we will see, the complexity
remains linear in the size of training set.

Obviously, if m > n, the system of equations y = Ax is
overdetermined and the correct x0 can usually be found as its
unique solution. We will see in Section III, however, that in robust
face recognition, the system y = Ax is typically underdeter-
mined, and so its solution is not unique.6 Conventionally, this
difficulty is resolved by choosing the minimum `2-norm solution,

(`2) : x̂2 = arg min ‖x‖2 subject to Ax = y. (4)

While this optimization problem can be easily solved (via the
pseudoinverse of A), the solution x̂2 is not especially informative
for recognizing the test sample y. As shown in Example 1, x̂2

is generally dense, with large nonzero entries corresponding to
training samples from many different classes. To resolve this
difficulty, we instead exploit the following simple observation:
A valid test sample y can be sufficiently represented using only
the training samples from the same class. This representation is
naturally sparse if the number of object classes k is reasonably
large. For instance, if k = 20, only 5% of the entries of the desired
x0 should be nonzero. The more sparse the recovered x0 is, the
easier will it be to accurately determine the identity of the test

5One may refer to [32] for how to choose the training images to ensure this
property for face recognition. Here, we assume such a training set is given.

6Furthermore, even in the overdetermined case, such a linear equation may
not be perfectly satisfied in the presence of data noise (see Section II-B.2).
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Fig. 2. Geometry of sparse representation via `1-minimization. The
`1-minimization determines which facet (of the lowest-dimension) of the
polytope A(Pα) the point y/‖y‖1 lies in. The test sample vector y is
represented as a linear combination of just the vertices of that facet, with
coefficients x0.

sample y.7

This motivates us to seek the sparsest solution to y = Ax,
solving the following optimization problem:

(`0) : x̂0 = arg min ‖x‖0 subject to Ax = y, (5)

where ‖ · ‖0 denotes the `0-norm, which counts the number of
nonzero entries in a vector. In fact, if the columns of A are in
general position, then whenever y = Ax for some x with less
than m/2 nonzeros, x is the unique sparsest solution: x̂0 = x

[33]. However, the problem of finding the sparsest solution of
an underdetermined system of linear equations is NP-hard, and
difficult even to approximate [13]: That is, in the general case, no
known procedure for finding the sparsest solution is significantly
more efficient than exhausting all subsets of the entries for x.

B. Sparse Solution via `1-Minimization

Recent development in the emerging theory of sparse repre-
sentation and compressed sensing [9]–[11] reveals that if the
solution x0 sought is sparse enough, the solution of the `0-
minimization problem (5) is equal to the solution to the following
`1-minimization problem:

(`1) : x̂1 = arg min ‖x‖1 subject to Ax = y. (6)

This problem can be solved in polynomial time by standard
linear programming methods [34]. Even more efficient methods
are available when the solution is known to be very sparse. For
example, homotopy algorithms recover solutions with t nonzeros
in O(t3 + n) time, linear in the size of the training set [35].

1) Geometric Interpretation: Figure 2 gives a geometric inter-
pretation (essentially due to [36]) of why minimizing the `1-norm
correctly recovers sufficiently sparse solutions. Let Pα denote the
`1-ball (or crosspolytope) of radius α:

Pα
.
= {x : ‖x‖1 ≤ α} ⊂ Rn. (7)

In Figure 2, the unit `1-ball P1 is mapped to the polytope P .
=

A(P1) ⊂ Rm consisting of all y that satisfy y = Ax for some x

whose `1-norm is ≤ 1.
The geometric relationship between Pα and the polytope

A(Pα) is invariant to scaling. That is, if we scale Pα, its image
under multiplication by A is also scaled by the same amount.

7This intuition holds only when the size of the database is fixed. For
example, if we are allowed to append additional irrelevant columns to A,
we can make the solution x0 have a smaller fraction of nonzeros, but this
does not make x0 more informative for recognition.

Geometrically, finding the minimum `1-norm solution x̂1 to (6) is
equivalent to expanding the `1-ball Pα until the polytope A(Pα)

first touches y. The value of α at which this occurs is exactly
‖x̂1‖1.

Now suppose that y = Ax0 for some sparse x0. We wish
to know when solving (6) correctly recovers x0. This question
is easily resolved from the geometry of Figure 2: Since x̂1 is
found by expanding both Pα and A(Pα) until a point of A(Pα)

touches y, the `1-minimizer x̂1 must generate a point Ax̂1 on
the boundary of P .

Thus x̂1 = x0 if and only if the point A(x0/‖x0‖1) lies on
the boundary of the polytope P . For the example shown in Figure
2, it is easy to see that the `1-minimization recovers all x0 with
only one nonzero entry. This equivalence holds because all of the
vertices of P1 map to points on the boundary of P .

In general, if A maps all t-dimensional facets of P1 to facets of
P , the polytope P is referred to as (centrally) t-neighborly [36].
From the above, we see that the `1-minimization (6) correctly
recovers all x0 with ≤ t + 1 nonzeros iff P is t-neighborly,
in which case it is equivalent to the `0-minimization (5).8 This
condition is surprisingly common: even polytopes P given by
random matrices (e.g., uniform, Gaussian, and partial Fourier)
are highly neighborly [15], allowing correct recover of sparse x0

by `1-minimization.
Unfortunately, there is no known algorithm for efficiently

verifying the neighborliness of a given polytope P . The best
known algorithm is combinatorial and therefore only practical
when the dimension m is moderate [37]. When m is large, it is
known that with overwhelming probability, the neighborliness of
a randomly chosen polytope P is loosely bounded between:

c ·m < t < b(m+ 1)/3c (8)

for some small constant c > 0 (see [9], [36]). Loosely speaking,
as long as the number of nonzero entries of x0 is a small fraction
of the dimension m, `1-minimization will recover x0.

2) Dealing with Small, Dense Noise: So far, we have assumed
that equation (3) holds exactly. Since real data are noisy, it may
not be possible to express the test sample exactly as a sparse
superposition of the training samples. The model (3) can be
modified to explicitly account for small, possibly dense noise,
by writing

y = Ax0 + z, (9)

where z ∈ Rm is a noise term with bounded energy ‖z‖2 < ε.
The sparse solution x0 can still be approximately recovered by
solving the following stable `1-minimization problem:

(`1s) : x̂1 = arg min ‖x‖1 subject to ‖Ax− y‖2 ≤ ε. (10)

This convex optimization problem can be efficiently solved
via second-order cone programming [34] (see Section IV for
our algorithm of choice). The solution of (`1s) is guaranteed to
approximately recovery sparse solutions in ensembles of random
matrices A [38]: There are constants ρ and ζ such that with
overwhelming probability, if ‖x0‖0 < ρm and ‖z‖2 ≤ ε, then
the computed x̂1 satisfies

‖x̂1 − x0‖2 ≤ ζε. (11)

8Thus, neighborliness gives a necessary and sufficient condition for sparse
recovery. The restricted isometry properties often used in analyzing the
performance of `1-minimization in random matrix ensembles (e.g., [15]) give
sufficient, but not necessary, conditions.
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C. Classification Based on Sparse Representation

Given a new test sample y from one of the classes in the
training set, we first compute its sparse representation x̂1 via
(6) or (10). Ideally, the nonzero entries in the estimate x̂1 will
all be associated with the columns of A from a single object
class i, and we can easily assign the test sample y to that class.
However, noise and modeling error may lead to small nonzero
entries associated with multiple object classes (see Figure 3).
Based on the global, sparse representation, one can design many
possible classifiers to resolve this. For instance, we can simply
assign y to the object class with the single largest entry in x̂1.
However, such heuristics do not harness the subspace structure
associated with images in face recognition. To better harness such
linear structure, we instead classify y based on how well the
coefficients associated with all training samples of each object
reproduce y.

For each class i, let δi : Rn → Rn be the characteristic function
which selects the coefficients associated with the i-th class. For
x ∈ Rn, δi(x) ∈ Rn is a new vector whose only nonzero entries
are the entries in x that are associated with class i. Using only the
coefficients associated with the i-th class, one can approximate
the given test sample y as ŷi = Aδi(x̂1). We then classify y

based on these approximations by assigning it to the object class
that minimizes the residual between y and ŷi:

min
i

ri(y)
.
= ‖y −Aδi(x̂1)‖2. (12)

Algorithm 1 below summarizes the complete recognition proce-
dure. Our implementation minimizes the `1-norm via a primal-
dual algorithm for linear programming based on [39], [40].

Algorithm 1 : Sparse Representation-based Classification
(SRC)

1: Input: a matrix of training samples A = [A1, A2, . . . , Ak] ∈
Rm×n for k classes, a test sample y ∈ Rm, (and an optional
error tolerance ε > 0.)

2: Normalize the columns of A to have unit `2-norm.
3: Solve the `1-minimization problem:

x̂1 = arg min
x
‖x‖1 subject to Ax = y. (13)

(Or alternatively, solve

x̂1 = arg min
x
‖x‖1 subject to ‖Ax− y‖2 ≤ ε.)

4: Compute the residuals ri(y) = ‖y −Aδi(x̂1)‖2
for i = 1, . . . , k.

5: Output: identity(y) = arg mini ri(y).

Example 1 (`1-Minimization versus `2-Minimization): To
illustrate how Algorithm 1 works, we randomly select half of the
2, 414 images in the Extended Yale B database as the training set,
and the rest for testing. In this example, we subsample the images
from the original 192× 168 to size 12× 10. The pixel values of
the downsampled image are used as 120-D features – stacked as
columns of the matrix A in the algorithm. Hence matrix A has
size 120 × 1207, and the system y = Ax is underdetermined.
Figure 3 left illustrates the sparse coefficients recovered by
Algorithm 1 for a test image from the first subject. The figure
also shows the features and the original images that correspond
to the two largest coefficients. The two largest coefficients are
both associated with training samples from subject 1. Figure

3 right shows the residuals w.r.t. the 38 projected coefficients
δi(x̂1), i = 1, 2, . . . , 38. With 12 × 10 downsampled images
as features, Algorithm 1 achieves an overall recognition rate
of 92.1% across the Extended Yale B database. (See Section
IV for details and performance with other features such as
Eigenfaces and Fisherfaces, as well as comparison with other
methods.) Whereas the more conventional minimum `2-norm
solution to the underdetermined system y = Ax is typically
quite dense, minimizing the `1-norm favors sparse solutions,
and provably recovers the sparsest solution when this solution is
sufficiently sparse. To illustrate this contrast, Figure 4 left shows
the coefficients of the same test image given by the conventional
`2-minimization (4), and Figure 4 right shows the corresponding
residuals w.r.t. the 38 subjects. The coefficients are much less
sparse than those given by `1-minimization (in Figure 3), and
the dominant coefficients are not associated with subject 1. As a
result, the smallest residual in Figure 4 does not correspond to
the correct subject (subject 1).

D. Validation Based on Sparse Representation

Before classifying a given test sample, we must first decide if
it is a valid sample from one of the classes in the dataset. The
ability to detect and then reject invalid test samples, or “outliers,”
is crucial for recognition systems to work in real-world situations.
A face recognition system, for example, could be given a face
image of a subject that is not in the database, or an image that is
not a face at all.

Systems based on conventional classifiers such as nearest
neighbor (NN) or nearest subspace (NS), often use the residuals
ri(y) for validation, in addition to identification. That is, the
algorithm accepts or rejects a test sample based on how small the
smallest residual is. However, each residual ri(y) is computed
without any knowledge of images of other object classes in the
training dataset and only measures similarity between the test
sample and each individual class.

In the sparse representation paradigm, the coefficients x̂1 are
computed globally, in terms of images of all classes. In a sense, it
can harness the joint distribution of all classes for validation. We
contend that the coefficients x̂ are better statistics for validation
than the residuals. Let us first see this through an example.

Example 2 (Concentration of Sparse Coefficients): We
randomly select an irrelevant image from Google, and
downsample it to 12 × 10. We then compute the sparse
representation of the image against the same Extended Yale
B training data as in Example 1. Figure 5 left plots the
obtained coefficients, and right plots the corresponding residuals.
Compared to the coefficients of a valid test image in Figure 3,
notice that the coefficients x̂ here are not concentrated on any
one subject and instead spread widely across the entire training
set. Thus, the distribution of the estimated sparse coefficients
x̂ contains important information about the validity of the test
image: A valid test image should have a sparse representation
whose nonzero entries concentrate mostly on one subject,
whereas an invalid image has sparse coefficients spread widely
among multiple subjects.

To quantify this observation, we define the following measure
of how concentrated the coefficients are on a single class in the
dataset:

Definition 1 (Sparsity Concentration Index): The sparsity
concentration index (SCI) of a coefficient vector x ∈ Rn is
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Fig. 3. A valid test image. Left: Recognition with 12×10 downsampled images as features. The test image y belongs to subject 1. The values of the sparse
coefficients recovered from Algorithm 1 are plotted on the right together with the two training examples that correspond to the two largest sparse coefficients.
Right: The residuals ri(y) of a test image of subject 1 w.r.t. the projected sparse coefficients δi(x̂) by `1-minimization. The ratio between the two smallest
residuals is about 1:8.6.

Fig. 4. Non-sparsity of the `2-minimizer. Left: Coefficients from `2-minimization, using the same test image as Figure 3. The recovered solution is not
sparse and hence less informative for recognition (large coefficients do not correspond to training images of this test subject). Right: The residuals of the test
image from subject 1 w.r.t. the projection δi(x̂) of the coefficients obtained by `2-minimization. The ratio between the two smallest residuals is about 1:1.3.
The smallest residual is not associated with subject 1.

Fig. 5. Example of an invalid test image. Left: Sparse coefficients for the invalid test image w.r.t. the same training data set from Example 1. The test
image is a randomly selected irrelevant image. Right: The residuals of the invalid test image w.r.t. the projection δi(x̂) of the sparse representation computed
by `1-minimization. The ratio of the two smallest residuals is about 1:1.2.

defined as

SCI(x)
.
=
k ·maxi ‖δi(x)‖1/‖x‖1 − 1

k − 1
∈ [0, 1]. (14)

For a solution x̂ found by Algorithm 1, if SCI(x̂) = 1, the test
image is represented using only images from a single object, and
if SCI(x̂) = 0, the sparse coefficients are spread evenly over all
classes.9 We choose a threshold τ ∈ (0, 1) and accept a test image
as valid if

SCI(x̂) ≥ τ, (15)

and otherwise reject as invalid. In step 5 of Algorithm 1, one may
choose to output the identity of y only if it passes this criterion.

Unlike NN or NS, this new rule avoids the use of the residuals
ri(y) for validation. Notice that in Figure 5, even for a non-
face image, with a large training set, the smallest residual of
the invalid test image is not so large. Rather than relying on a
single statistic for both validation and identification, our approach
separates the information required for these tasks: the residuals

9Directly choosing x to minimize the SCI might produce more concen-
trated coefficients; however, the SCI is highly non-convex and difficult to
optimize. For valid test images, minimizing the `1-norm already produces
representations that are well-concentrated on the correct subject class.

for identification and the sparse coefficients for validation.10

In a sense, the residual measures how well the representation
approximates the test image; and the sparsity concentration index
measures how good the representation itself is, in terms of
localization.

One benefit to this approach to validation is improved per-
formance against generic objects that are similar to multiple
object classes. For example, in face recognition, a generic face
might be rather similar to some of the subjects in the dataset
and may have small residuals w.r.t. their training images. Using
residuals for validation more likely leads to a false positive. But
a generic face is unlikely to pass the new validation rule as
a good representation of it typically requires contribution from
images of multiple subjects in the dataset. Thus, the new rule
can better judge whether the test image is a generic face or the
face of one particular subject in the dataset. In Section IV-G
we will demonstrate that the new validation rule outperforms the

10We find empirically that this separation works well enough in our
experiments with face images. However, it is possible that better validation and
identification rules can be contrived from using the residual and the sparsity
together.



MANUSCRIPT ACCEPTED BY IEEE TRANS. PAMI, MARCH 2008. 7

NN and NS methods, with as much as 10–20% improvement in
verification rate for a given false accept rate (see Figure 14 in
Section IV or Figure 18 in the supplementary appendix).

III. TWO FUNDAMENTAL ISSUES IN FACE RECOGNITION

In this section, we study the implications of the above general
classification framework for two critical issues in face recognition:
1. The choice of feature transformation, and 2. Robustness to
corruption, occlusion, and disguise.

A. The Role of Feature Extraction

In the computer vision literature, numerous feature extraction
schemes have been investigated for finding projections that better
separate the classes in lower-dimensional spaces, which are often
referred to as feature spaces. One class of methods extracts
holistic face features, such as Eigenfaces [23], Fisherfaces [24],
and Laplacianfaces [25]. Another class of methods tries to extract
meaningful partial facial features (e.g., patches around eyes or
nose) [21], [41]. See Figure 6 for some examples. Traditionally,
when feature extraction is used in conjunction with simple classi-
fiers such as NN and NS, the choice of feature transformation is
considered critical to the success of the algorithm. This has led to
the development of a wide variety of increasingly complex feature
extraction methods, including nonlinear and kernel features [42],
[43]. In this section, we reexamine the role of feature extraction
within the new sparse representation framework for face recog-
nition.

One benefit of feature extraction, which carries over to the pro-
posed sparse representation framework, is reduced data dimension
and computational cost. For raw face images, the corresponding
linear system y = Ax is very large. For instance, if the face
images are given at the typical resolution, 640 × 480 pixels,
the dimension m is on the order of 105. Although Algorithm 1
relies on scalable methods such as linear programming, directly
applying it to such high-resolution images is still beyond the
capability of regular computers.

Since most feature transformations involve only linear opera-
tions (or approximately so), the projection from the image space
to the feature space can be represented as a matrix R ∈ Rd×m

with d� m. Applying R to both sides of equation (3) yields:

ỹ
.
= Ry = RAx0 ∈ Rd. (16)

In practice, the dimension d of the feature space is typically
chosen to be much smaller than n. In this case, the system of
equations ỹ = RAx ∈ Rd is underdetermined in the unknown
x ∈ Rn. Nevertheless, as the desired solution x0 is sparse,
we can hope to recover it by solving the following reduced `1-
minimization problem:

(`1r) : x̂1 = arg min ‖x‖1 subject to ‖RAx− ỹ‖2 ≤ ε, (17)

for a given error tolerance ε > 0. Thus, in Algorithm 1, the matrix
A of training images is now replaced by the matrix RA ∈ Rd×n

of d-dimensional features; the test image y is replaced by its
features ỹ.

For extant face recognition methods, empirical studies have
show that increasing the dimension d of the feature space gen-
erally improves the recognition rate, as long as the distribution
of features RAi does not become degenerate [42]. Degeneracy
is not an issue for `1-minimization, since it merely requires that

ỹ be in or near the range of RAi – it does not depend on the
covariance Σi = ATi R

TRAi being nonsingular as in classical
discriminant analysis. The stable version of `1-minimization (10)
or (17) is known in statistical literature as the Lasso [14].11 It
effectively regularizes highly underdetermined linear regression
when the desired solution is sparse, and has also been proven
consistent in some noisy, overdetermined settings [12].

For our sparse representation approach to recognition, we
would like to understand how the choice of the feature extraction
R affects the ability of the `1-minimization (17) to recover the
correct sparse solution x0. From the geometric interpretation
of `1-minimization given in Section II-B.1, the answer to this
depends on whether the associated new polytope P = RA(P1)

remains sufficiently neighborly. It is easy to show that the
neighborliness of the polytope P = RA(P1) increases with d [11],
[15]. In Section IV, our experimental results will verify the ability
of `1-minimization, in particular the stable version (17), to recover
sparse representations for face recognition using a variety of
features. This suggests that most data-dependent features popular
in face recognition (e.g., Eigenfaces, Laplacianfaces) may indeed
give highly neighborly polytopes P .

Further analysis of high-dimensional polytope geometry has
revealed a somewhat surprising phenomenon: if the solution x0

is sparse enough, then with overwhelming probability, it can
be correctly recovered via `1-minimization from any sufficiently
large number d of linear measurements ỹ = RAx0. More
precisely, if x0 has t � n nonzeros, then with overwhelming
probability,

d ≥ 2t log(n/d) (18)

random linear measurements are sufficient for `1-minimization
(17) to recover the correct sparse solution x0 [44].12 This surpris-
ing phenomenon has been dubbed the “blessing of dimensional-
ity” [15], [46]. Random features can be viewed as a less-structured
counterpart to classical face features, such as Eigenfaces or
Fisherfaces. Accordingly, we call the linear projection generated
by a Gaussian random matrix Randomfaces:13

Definition 2 (Randomfaces): Consider a transform matrix R ∈
Rd×m whose entries are independently sampled from a zero-mean
normal distribution and each row is normalized to unit length. The
row vectors of R can be viewed as d random faces in Rm.

One major advantage of Randomfaces is that they are extremely
efficient to generate, as the transformation R is independent
of the training dataset. This advantage can be important for a
face recognition system where we may not be able to acquire a
complete database of all subjects of interest to precompute data-

11Classically, the Lasso solution is defined as the minimizer of ‖y−Ax‖22+
λ‖x‖1. Here, λ can be viewed as inverse of the Lagrange multiplier associated
with a constraint ‖y − Ax‖22 ≤ ε. For every λ there is an ε such that the
two problems have the same solution. However, ε can be interpreted as a
pixel noise level, and fixed across various instances of the problem, whereas
λ cannot. One should distinguish the Lasso optimization problem from the
LARS algorithm, which provably solves some instances of Lasso with very
sparse optimizers [35].

12Strictly speaking, this threshold holds when random measurements are
computed directly from x0, i.e., ỹ = Rx0. Nevertheless, our experiments
roughly agree with the bound given by (18). The case where x0 is instead
sparse in some overcomplete basis A, and we observe random measurements
ỹ = RAx0 has also been studied in [45]. While conditions for correct
recovery have been given, the bounds are not yet as sharp as (18) above.

13Random projection has been previously studied as a general
dimensionality-reduction method for numerous clustering problems [47]–[49],
as well as for learning nonlinear manifolds [50], [51].
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(a) original y

R
=⇒

(b) 120-D features ỹ = Ry (c) eye feature ỹ

Fig. 6. Examples of feature extraction. (a). Original face image. (b). 120-D representations in terms of four different features (from left to right): Eigenfaces,
Laplacianfaces, downsampled (12× 10 pixel) image, and random projection. We will demonstrate that all these features contain almost the same information
about the identity of the subject and give similarly good recognition performance. (c). The eye is a popular choice of feature for face recognition. In this case,
the feature matrix R is simply a binary mask.

dependent transformations such as Eigenfaces, or the subjects in
the database may change over time. In such cases, there is no
need for recomputing the random transformation R.

As long as the correct sparse solution x0 can be recovered,
Algorithm 1 will always give the same classification result,
regardless of the feature actually used. Thus, when the dimension
of feature d exceeds the above bound (18), one should expect
that the recognition performance of Algorithm 1 with different
features quickly converges, and the choice of an “optimal” feature
transformation is no longer critical: Even random projections
or downsampled images should perform as well as any other
carefully engineered features. This will be corroborated by the
experimental results in Section IV.

B. Robustness to Occlusion or Corruption

In many practical face recognition scenarios, the test image y

could be partially corrupted or occluded. In this case, the above
linear model (3) should be modified as

y = y0 + e0 = Ax0 + e0, (19)

where e0 ∈ Rm is a vector of errors – a fraction, ρ, of its entries
are nonzero. The nonzero entries of e0 model which pixels in y

are corrupted or occluded. The locations of corruption can differ
for different test images and are not known to the computer.
The errors may have arbitrary magnitude and therefore cannot
be ignored or treated with techniques designed for small noise
such as the one given in Section II-B.2.

A fundamental principle of coding theory [52] is that redun-
dancy in the measurement is essential to detecting and correcting
gross errors. Redundancy arises in object recognition because the
number of image pixels is typically far greater than the number
of subjects that have generated the images. In this case, even if
a fraction of the pixels are completely corrupted by occlusion,
recognition may still be possible based on the remaining pixels.
On the other hand, feature extraction schemes discussed in the
previous section would discard useful information that could help
compensate for the occlusion. In this sense, no representation is
more redundant, robust, or informative than the original images.
Thus, when dealing with occlusion and corruption, we should
always work with the highest possible resolution, performing
downsampling or feature extraction only if the resolution of the
original images is too high to process.

Of course, redundancy would be of no use without efficient
computational tools for exploiting the information encoded in the
redundant data. The difficulty in directly harnessing the redun-
dancy in corrupted raw images has led researchers to instead focus
on spatial locality as a guiding principle for robust recognition.

Local features computed from only a small fraction of the image
pixels are clearly less likely to be corrupted by occlusion than
holistic features. In face recognition, methods such as ICA [53]
and LNMF [54] exploit this observation by adaptively choosing
filter bases that are locally concentrated. Local Binary Patterns
[55] and Gabor wavelets [56] exhibit similar properties, since
they are also computed from local image regions. A related
approach partitions the image into fixed regions and computes
features for each region [16], [57]. Notice, though, that projecting
onto locally concentrated bases transforms the domain of the
occlusion problem, rather than eliminating the occlusion. Errors
on the original pixels become errors in the transformed domain,
and may even become less local. The role of feature extraction
in achieving spatial locality is therefore questionable, since no
bases or features are more spatially localized than the original
image pixels themselves. In fact, the most popular approach
to robustifying feature-based methods is based on randomly
sampling individual pixels [28], sometimes in conjunction with
statistical techniques such as multivariate trimming [29].

Now, let us show how the proposed sparse representation
classification framework can be extended to deal with occlusion.
Let us assume that the corrupted pixels are a relatively small
portion of the image. The error vector e0, like the vector x0, then
has sparse14 nonzero entries. Since y0 = Ax0, we can rewrite
(19) as

y =
ˆ
A, I

˜ »x0

e0

–
.
= Bw0. (20)

Here, B = [A, I] ∈ Rm×(n+m), so the system y = Bw is
always underdetermined and does not have a unique solution for
w. However, from the above discussion about the sparsity of x0

and e0, the correct generating w0 = [x0, e0] has at most ni+ρm
nonzeros. We might therefore hope to recover w0 as the sparsest
solution to the system y = Bw. In fact, if the matrix B is in
general position, then as long as y = Bw̃ for some w̃ with less
than m/2 nonzeros, w̃ is the unique sparsest solution. Thus, if
the occlusion e covers less than m−ni

2 pixels, ≈ 50% of the
image, the sparsest solution w̃ to y = Bw is the true generator,
w0 = [x0, e0].

More generally, one can assume that the corrupting error e0 has
a sparse representation with respect to some basis Ae ∈ Rm×ne .
That is, e0 = Aeu0 for some sparse vector u0 ∈ Rm. Here, we
have chosen the special case Ae = I ∈ Rm×m as e0 is assumed
to be sparse with respect to the natural pixel coordinates. If the

14Here, “sparse” does not mean “very few.” In fact, as our experiments
will demonstrate, the portion of corrupted entries can be rather significant.
Depending on the type of corruption, our method can handle up to ρ = 40%
or ρ = 70% corrupted pixels.
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Fig. 7. Face recognition with occlusion. The columns of ±B = ±[A, I]
span a high-dimensional polytope P = B(P1) in Rm. Each vertex of this
polytope is either a training image or an image with just a single pixel
illuminated (corresponding to the identity submatrix I). Given a test image,
solving the `1-minimization problem essentially locates which facet of the
polytope the test image falls on. The `1-minimization finds the facet with
the fewest possible vertices. Only vertices of that facet contribute to the
representation; all other vertices have no contribution.

error e0 is instead more sparse with respect to another basis,
e.g., Fourier or Haar, we can simply redefine the matrix B by
appending Ae (instead of the identity I) to A and instead seek
the sparsest solution w0 to the equation:

y = Bw with B = [A, Ae] ∈ Rm×(n+ne). (21)

In this way, the same formulation can handle more general classes
of (sparse) corruption.

As before, we attempt to recover the sparsest solution w0 from
solving the following extended `1-minimization problem:

(`1e) : ŵ1 = arg min ‖w‖1 subject to Bw = y. (22)

That is, in Algorithm 1, we now replace the image matrix A with
the extended matrix B = [A, I] and x with w = [x, e].

Clearly, whether the sparse solution w0 can be recovered from
the above `1-minimization depends on the neighborliness of the
new polytope P = B(P1) = [A, I](P1). This polytope contains
vertices from both the training images A and the identify matrix
I, as illustrated in Figure 7. The bounds given in (8) imply that
if y is an image of subject i, the `1-minimization (22) cannot
guarantee to correctly recover w0 = [x0, e0] if

ni + |support(e0)| > d/3.

Generally, d � ni, so (8) implies that the largest fraction of
occlusion under which we can hope to still achieve perfect recon-
struction is 33%. This bound is corroborated by our experimental
results; see Figure 12.

To know exactly how much occlusion can be tolerated, we
need more accurate information about the neighborliness of the
polytope P than a loose upper bound given by (8). For instance,
we would like to know for a given set of training images,
what is the largest amount of (worst-possible) occlusion it can
handle. While the best known algorithms for exactly computing

the neighborliness of a polytope are combinatorial in nature,
tighter upper bounds can be obtained by restricting the search
for intersections between the nullspace of B and the `1-ball to a
random subset of the t-faces of the `1-ball (see [37] for details).
We will use this technique to estimate the neighborliness of all
the training datasets considered in our experiments.

Empirically, we found that the stable version (10) is only
necessary when we do not consider occlusion or corruption e0 in
the model (such as the case with feature extraction discussed in
the previous section). When we explicitly account for gross errors
by using B = [A, I] the extended `1-minimization (22) with the
exact constraint Bw = y is already stable under moderate noise.

Once the sparse solution ŵ1 = [x̂1, ê1] is computed, setting
yr

.
= y− ê1 recovers a clean image of the subject with occlusion

or corruption compensated for. To identify the subject, we slightly
modify the residual ri(y) in Algorithm 1, computing it against
the recovered image yr:

ri(y) = ‖yr −Aδi(x̂1)‖2 = ‖y − ê1 −Aδi(x̂1)‖2. (23)

IV. EXPERIMENTAL VERIFICATION

In this section, we present experiments on publicly available
databases for face recognition, which serve both to demonstrate
the efficacy of the proposed classification algorithm, and to
validate the claims of the previous sections. We will first examine
the role of feature extraction within our framework, comparing
performance across various feature spaces and feature dimensions,
and comparing to several popular classifiers. We will then demon-
strate the robustness of the proposed algorithm to corruption
and occlusion. Finally, we demonstrate (using ROC curves) the
effectiveness of sparsity as a means of validating test images, and
examine how to choose training sets to maximize robustness to
occlusion.

A. Feature Extraction and Classification Methods

We test our sparse representation-based classification (SRC) al-
gorithm using several conventional holistic face features, namely,
Eigenfaces, Laplacianfaces, and Fisherfaces, and compare their
performance with two unconventional features: Randomfaces and
downsampled images. We compare our algorithm with three
classical algorithms, namely, nearest neighbor (NN), and nearest
subspace (NS), discussed in the previous section, as well as
linear support vector machine (SVM).15 In this section, we use
the stable version of SRC in various lower-dimensional feature
spaces, solving the reduced optimization problem (17) with the
error tolerance ε = 0.05. The MATLAB implementation of the
reduced (feature space) version of Algorithm 1 takes only a few
seconds per test image on a typical 3GHz PC.

1) Extended Yale B Database: The Extended Yale B database
consists of 2,414 frontal-face images of 38 individuals [58]. The
cropped and normalized 192 × 168 face images were captured
under various laboratory-controlled lighting conditions [59]. For
each subject, we randomly select half of the images for training
(i.e., about 32 images per subject), and the other half for testing.

15Due to the subspace structure of face images, linear SVM is already
appropriate for separating features from different faces. The use of a linear
kernel (as opposed to more complicated, nonlinear transformations) also
makes it possible to directly compare between different algorithms working in
the same feature space. Nevertheless, better performance might be achieved
by using nonlinear kernels in addition to feature transformations.
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Randomly choosing the training set ensures that our results and
conclusions will not depend on any special choice of the training
data.

We compute the recognition rates with the feature space
dimensions 30, 56, 120, and 504. Those numbers correspond to
downsampling ratios of 1/32, 1/24, 1/16, and 1/8, respectively.16

Notice that Fisherfaces are different from the other features
because the maximal number of valid Fisherfaces is one less than
the number of classes k [24], 38 in this case. As a result, the
recognition result for Fisherfaces is only available at dimension
30 in our experiment.

The subspace dimension for the NS algorithm is 9, which
has been mostly agreed upon in the literature for processing
facial images with only illumination change.17 Figure 8 shows the
recognition performance for the various features, in conjunction
with four different classifiers: SRC, NN, NS, and SVM.

SRC achieves recognition rates between 92.1% and 95.6% for
all 120 dimensional feature spaces, and a maximum rate of 98.1%

with 504 dimensional randomfaces.18 The maximum recognition
rates for NN, NS, and SVM are 90.7%, 94.1%, and 97.7%,
respectively. Tables with all the recognition rates are available
in the supplementary appendix. The recognition rates shown in
Figure 8 are consistent with those that have been reported in the
literature, although some reported on different databases or with
different training subsets. For example, He et. al. [25] reported the
best recognition rate of 75% using Eigenfaces at 33 dimension,
and 89% using Laplacianfaces at 28 dimension on the Yale face
database, both using NN. In [32], Lee et. al. reported 95.4%

accuracy using the NS method on the Yale B database.
2) AR Database: The AR database consists of over 4,000

frontal images for 126 individuals. For each individual, 26 pic-
tures were taken in two separate sessions [60]. These images
include more facial variations including illumination change,
expressions, and facial disguises comparing to the Extended Yale
B database. In the experiment, we chose a subset of the dataset
consisting of 50 male subjects and 50 female subjects. For each
subject, 14 images with only illumination change and expressions
were selected: the seven images from Session 1 for training,
and the other seven from Session 2 for testing. The images are
cropped with dimension 165 × 120 and converted to grayscale.
We selected four feature space dimensions: 30, 54, 130, and 540,
which correspond to the downsample ratios 1/24, 1/18, 1/12, and
1/6, respectively. Because the number of subjects is 100, results
for Fisherfaces are only given at dimension 30 and 54.

This database is substantially more challenging than the Yale
database, since the number of subjects is now 100 but the
training images is reduced to seven per subject: Four neutral faces
with different lighting conditions and three faces with different
expressions. For NS, since the number of training images per
subject is seven, any estimate of the face subspace cannot have

16We cut off the dimension at 504 as the computation of Eigenfaces
and Laplacianfaces reaches the memory limit of MATLAB. Although our
algorithm persists to work far beyond on the same computer, 504 is already
sufficient to reach all our conclusions.

17Subspace dimensions significantly greater or less than 9 eventually led
to a decrease in performance.

18We also experimented with replacing the constrained `1-minimization in
the SRC algorithm with the Lasso. For appropriate choice of regularization
λ, the results are similar. For example, with downsampled faces as features
and λ = 1, 000, the recognition rates are 73.7%, 86.2%, 91.9%, 97.5%, at
dimensions 30, 56, 120, 504, (within 1% of the results in Figure 8).

dimension higher than 7. We chose to keep all seven dimensions
for NS in this case.

Figure 9 shows the recognition rates for this experiment.
With 540 dimensional features, SRC achieves a recognition rate
between 92.0% and 94.7%. One the other hand, the best rates
achieved by NN and NS are 89.7% and 90.3%, respectively. SVM
slightly outperforms SRC on this dataset, achieving a maximum
recognition rate of 95.7%. However, the performance of SVM
varies more with the choice of feature space – the recognition rate
using random features is just 88.8%. The supplementary appendix
contains a table of detailed numerical results.

Based on the results on the Extended Yale B database and the
AR database, we draw the following conclusions:

1) For both the Yale database and AR database, the best
performances of SRC and SVM consistently exceed the
best performances of the two classical methods NN and
NS at each individual feature dimension. More specifically,
the best recognition rate for SRC on the Yale database is
98.1%, compared to 97.7% for SVM, 94.0% for NS, and
90.7% for NN; the best rate for SRC on the AR database
is 94.7%, compared to 95.7% for SVM, 90.3% for NS, and
89.7% for NN.

2) The performances of the other three classifiers depends
strongly on a good choice of “optimal” features – Fisher-
faces for lower feature space dimension and Laplacianfaces
for higher feature space dimension. With NN and SVM, the
performance of the various features does not converge as
the dimension of the feature space increases.

3) The results corroborate the theory of compressed sensing:
Equation (18) suggests that d ≈ 128 random linear mea-
surements should suffice for sparse recovery in the Yale
database, while d ≈ 88 random linear measurements should
suffice for sparse recovery in the AR database [44]. Beyond
these dimensions, the performances of various features in
conjunction with `1-minimization converge, with conven-
tional and unconventional features (e.g., Randomfaces and
downsampled images) performing similarly. When the fea-
ture dimension is large, a single random projection performs
the best (98.1% recognition rate on Yale, 94.7% on AR).

B. Partial Face Features

There have been extensive studies in both the human and com-
puter vision literature about the effectiveness of partial features in
recovering the identity of a human face, e.g., see [21], [41]. As a
second set of experiments, we test our algorithm on the following
three partial facial features: nose, right eye, and mouth & chin.
We use the Extended Yale B database for the experiment, with
the same training and test sets as in subsection IV-A.1. See Figure
10 for a typical example of the extracted features.

For each of the three features, the dimension d is larger than the
number of training samples (n = 1, 207), and the linear system
(16) to be solved becomes overdetermined. Nevertheless, sparse
approximate solutions x can still be obtain by solving the ε-
relaxed `1-minimization problem (17) (here, again, ε = 0.05).
The results in Figure 10 right again show that the proposed SRC
algorithm achieves better recognition rates than NN, NS, and
SVM. These experiments also show the scalability of the proposed
algorithm in working with more than 104-dimensional features.
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Fig. 8. Recognition rates on Extended Yale B database, for various feature transformations and classifiers. Top left: SRC (our approach). Top right:
nearest neighbor. Bottom left: nearest subspace. Bottom right: support vector machine (linear kernel).
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Fig. 9. Recognition rates on AR database, for various feature transformations and classifiers. Top left: SRC (our approach). Top right: nearest neighbor.
Bottom left: nearest subspace. Bottom right: support vector machine (linear kernel).

C. Recognition Despite Random Pixel Corruption

For this experiment, we test the robust version of SRC, which
solves the extended `1-minimization problem (22), using the

Extended Yale B Face Database. We choose Subsets 1 and 2
(717 images, normal-to-moderate lighting conditions) for training,
and Subset 3 (453 images, more extreme lighting conditions) for
testing. Without occlusion, this is a relatively easy recognition
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Features Nose Right Eye Mouth & Chin
Dimension (d) 4,270 5,040 12,936

SRC 87.3% 93.7% 98.3%
NN 49.2% 68.8% 72.7%
NS 83.7% 78.6% 94.4%

SVM 70.8% 85.8% 95.3%

Fig. 10. Recognition with partial face features. Top: example features.
Bottom: Recognition rates of SRC, NN, NS, and SVM on the Extended Yale
B database.

problem. This choice is deliberate, in order to isolate the effect
of occlusion. The images are resized to 96×84 pixels,19 so in this
case B = [A, I] is an 8, 064× 8, 761 matrix. For this dataset, we
have estimated that the polytope P = conv(±B) is approximately
1, 185-neighborly (using the method given in [37]), suggesting
that perfect reconstruction can be achieved upto 13.3% (worst
possible) occlusion.

We corrupt a percentage of randomly chosen pixels from
each of the test images, replacing their values with iid samples
from a uniform distribution20. The corrupted pixels are randomly
chosen for each test image and the locations are unknown to the
algorithm. We vary the percentage of corrupted pixels from 0%

to 90%. Figure 11 (left) shows several example test images. To
the human eye, beyond 50% corruption, the corrupted images
(Figure 11(a) second and third rows) are barely recognizable as
face images; determining their identity seems out of the question.
Yet even in this extreme circumstance, SRC correctly recovers
the identity of the subjects.

We quantitatively compare our method to four popular tech-
niques for face recognition in the vision literature. The Principal
Component Analysis (PCA) approach of [23] is not robust to
occlusion. There are many variations to make PCA robust to
corruption or incomplete data, and some have been applied to
robust face recognition, e.g., [29]. We will later discuss their per-
formance against ours on more realistic conditions. Here we use
the basic PCA to provide a standard baseline for comparison21.
The remaining three techniques are designed to be more robust to
occlusion. Independent Component Analysis (ICA) architecture I
[53] attempts to express the training set as a linear combination of
statistically independent basis images. Local Nonnegative Matrix
Factorization (LNMF) [54] approximates the training set as an
additive combination of basis images, computed with a bias
toward sparse bases.22 Finally, to demonstrate that the improved
robustness is really due to the use of the `1-norm, we compare to
a least-squares technique that first projects the test image onto the
subspace spanned by all face images, and then performs nearest
subspace.

19The only reason for resizing the images is to be able to run all the
experiments within the memory size of MATLAB on a typical PC. The
algorithm relies on linear programming and is scalable in the image size.

20Uniform over [0, ymax], where ymax is the largest possible pixel value.
21Following [58] we normalize the image pixels to have zero mean and

unit variance before applying PCA.
22For PCA, ICA and LNMF, the number of basis components

is chosen to give the optimal test performance over the range
{100, 200, 300, 400, 500, 600}.

Figure 11 (right) plots the recognition performance of SRC
and its five competitors, as a function of the level of corruption.
We see that the algorithm dramatically outperforms others. From
0% upto 50% occlusion, SRC correctly classifies all subjects. At
50% corruption, none of the others achieves higher than 73%

recognition rate, while the proposed algorithm achieves 100%.
Even at 70% occlusion, the recognition rate is still 90.7%. This
greatly surpasses the theoretical bound of worst-case corruption
(13.3%) that the algorithm is ensured to tolerate. Clearly, the
worst-case analysis is too conservative for random corruption.

D. Recognition Despite Random Block Occlusion

We next simulate various levels of contiguous occlusion, from
0% to 50%, by replacing a randomly located square block of each
test image with an unrelated image, as in Figure 12(a). Again, the
location of occlusion is randomly chosen for each image and is
unknown to the computer. Methods that select fixed facial features
or blocks of the image (e.g., [16], [57]) are less likely to succeed
here, due to the unpredictable location of the occlusion. The top
two rows of Figure 12 left shows two representative results of
Algorithm 1 with 30% occlusion. Figure 12(a) is the occluded
image. In the second row, the entire center of the face is occluded;
this is a difficult recognition task even for humans. Figure 12(b)
shows the magnitude of the estimated error ê1. Notice that ê1

compensates not only for occlusion due to the baboon, but also for
the violation of the linear subspace model caused by the shadow
under the nose. Figure 12(c) plots the estimated coefficient vector
x̂1. The red entries are coefficients corresponding to test image’s
true class. In both examples, the estimated coefficients are indeed
sparse, and have large magnitude only for training images of the
same person. In both cases, the SRC algorithm correctly classifies
the occluded image. For this dataset, our Matlab implementation
requires 90 seconds per test image on a PowerMac G5.

The graph in Figure 12 (right) shows the recognition rates of
all six algorithms. SRC again significantly outperforms the other
five methods, for all levels of occlusion. Upto 30% occlusion,
Algorithm 1 performs almost perfectly, correctly identifying over
98% of test subjects. Even at 40% occlusion, only 9.7% of
subjects are misclassified. Compared to random pixel corruption,
contiguous occlusion is certainly a worse type of errors for the
algorithm. Notice, though, that the algorithm does not assume
any knowledge about the nature of corruption or occlusion. In
Section IV-F, we will see how prior knowledge that the occlusion
is contiguous can be used to customize the algorithm and greatly
enhance the recognition performance.

This result has interesting implications for the debate over the
use of holistic versus local features in face recognition [22]. It
has been suggested that both ICA I and LNMF are robust to
occlusion: since their bases are locally concentrated, occlusion
corrupts only a fraction of the coefficients. By contrast, if one uses
`2-minimization (orthogonal projection) to express an occluded
image in terms of a holistic basis such as the training images
themselves, all of the coefficients may be corrupted (as in Figure
12 left third row). The implication here is that the problem is not
the choice of representing the test image in terms of a holistic
or local basis, but rather how the representation is computed.
Properly harnessing redundancy and sparsity is the key to error
correction and robustness. Extracting local or disjoint features can
only reduce redundancy, resulting in inferior robustness.
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Fig. 11. Recognition under random corruption. Left: (a) Test images y from Extended Yale B, with random corruption. Top row: 30% of pixels are
corrupted, Middle row: 50% corrupted, Bottom row: 70% corrupted. (b) Estimated errors ê1. (c) Estimated sparse coefficients x̂1. (d) Reconstructed images
yr . SRC correctly identifies all three corrupted face images. Right: The recognition rate across the entire range of corruption for various algorithms. SRC
(red curve) significantly outperforms others, performing almost perfectly upto 60% random corruption (see table below).

Percent corrupted 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
Recognition rate 100% 100% 100% 100% 100% 100% 99.3% 90.7% 37.5% 7.1%
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Fig. 12. Recognition under varying level of contiguous occlusion. Left, top two rows: (a) 30% occluded test face images y from Extended Yale B. (b)
Estimated sparse errors, ê1. (c) Estimated sparse coefficients, x̂1, red (darker) entries correspond to training images of the same person. (d) Reconstructed
images, yr . SRC correctly identifies both occluded faces. For comparison, the bottom row shows the same test case, with the result given by least-squares
(overdetermined `2-minimization). Right: The recognition rate across the entire range of corruption for various algorithms. SRC (red curve) significantly
outperforms others, performing almost perfectly upto 30% contiguous occlusion (see table below).

Percent occluded 0% 10% 20% 30% 40% 50%
Recognition rate 100% 100% 99.8% 98.5% 90.3% 65.3%

E. Recognition Despite Disguise

We test SRC’s ability to cope with real, possibly malicious,
occlusions using a subset of the AR Face Database. The chosen
subset consists of 1, 399 images (14 each, except for a corrupted
image w-027-14.bmp) of 100 subjects, 50 male and 50 fe-
male. For training, we use 799 images (about 8 per subject) of
unoccluded frontal views with varying facial expression, giving a
matrix B of size 4, 980× 5, 779. We estimate P = conv(±B) is
approximately 577-neighborly, indicating that perfect reconstruc-
tion is possible upto 11.6% occlusion. Our Matlab implementation
requires about 75 seconds per test image on a PowerMac G5.

We consider two separate test sets of 200 images. The first
test set contains images of the subjects wearing sunglasses,
which occlude roughly 20% of the image. Figure 1 top shows a
successful example from this test set. Notice that ê1 compensates
for small misalignment of the image edges as well as occlusion
due to sunglasses. The second test set considered contains images
of the subjects wearing a scarf, which occludes roughly 40% of
the image. Since the occlusion level is more than three times the
maximum worst case occlusion given by the neighborliness of
conv(±B), our approach is unlikely to succeed in this domain.
Figure 13 top shows one such failure. Notice that the largest
coefficient corresponds to an image of a bearded man whose
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Algorithms Rec. rate Rec. rate
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SRC 87.0% 59.5%
(partitioned) (97.5%) (93.5%)
PCA + NN 70.0% 12.0%
ICA I + NN 53.5% 15.0%
LNMF + NN 33.5% 24.0%
`2 + NS 64.5% 12.5%

Fig. 13. Top: Partition scheme to tackle contiguous disguise. The top row
visualizes an example for which SRC failed with the whole image (holistic).
The two largest coefficients correspond to a bearded man and a screaming
woman, two images whose mouth region resembles the occluding scarf. If
the occlusion is known to be contiguous, one can partition the image into
multiple smaller blocks, apply the SRC algorithm to each of the blocks and
then aggregate the results by voting. The second row visualizes how this
partition-based scheme works on the same test image, but leading to a correct
identification. (A) The test image, occluded by scarf. (B) Estimated sparse
error ê1. (C) Estimated sparse coefficients x̂1. (D) Reconstructed image.
Bottom: Table of recognition rates on the AR database. The table shows
the performance of all the algorithms for both types of occlusion. SRC, its
holistic version (right top) and partitioned version (right bottom), achieves the
highest recognition rate.

mouth region resembles the scarf.
The table in Figure 13 left compares SRC to the other five

algorithms described in the previous section. On faces occluded
by sunglasses, SRC achieves a recognition rate of 87%, more
than 17% better than the nearest competitor. For occlusion by
scarves, its recognition rate is 59.5%, more than double its nearest
competitor but still quite poor. This confirms that although the
algorithm is provably robust to arbitrary occlusions upto the
breakdown point determined by the neighborliness of the training
set, beyond that point it is sensitive to occlusions that resemble
regions of a training image from a different individual. Because
the amount of occlusion exceeds this breakdown point, additional
assumptions, such as the disguise is likely to be contiguous, are
needed to achieve higher recognition performance.

F. Improving Recognition by Block Partitioning

Thus far we have not exploited the fact that in many real
recognition scenarios, the occlusion falls on some patch of image
pixels which is a-priori unknown, but is known to be connected. A
somewhat traditional approach (explored in [57] amongst others)
to exploiting this information in face recognition is to partition
the image into blocks and process each block independently. The
results for individual blocks are then aggregated, for example, by
voting, while discarding blocks believed to be occluded (using,

say, the outlier rejection rule introduced in Section II-D). The
major difficulty with this approach is that the occlusion cannot
be expected to respect any fixed partition of the image; while
only a few blocks are assumed to be completely occluded, some
or all of the remaining blocks may be partially occluded. Thus,
in such a scheme there is still a need for robust techniques within
each block.

We partition each of the training images into L blocks of
size a × b, producing a set of matrices A(1), . . . , A(L) ∈ Rp×n,
where p

.
= ab. We similarly partition the test image y into

y(1), . . . ,y(L) ∈ Rp. We write the l-th block of the test image as
a sparse linear combination A(l)x(l) of l-th blocks of the training
images, plus a sparse error e(l) ∈ Rp: y(l) = A(l)x(l) + e(l). We
can recover can again recover a sparse w(l) = [x(l) e(l)] ∈ Rn+p

by `1 minimization:

ŵ
(l)
1

.
= arg min

w∈Rn+p
‖w‖1 subject to

h
A(l) I

i
w = y(l). (24)

We apply the classifier from Algorithm 1 within each block23

and then aggregate the results by voting. Figure 13 illustrates this
scheme.

We verify the efficacy of this scheme on the AR database
for faces disguised with sunglasses or scarves. We partition the
images into eight (4×2) blocks of size 20×30 pixels. Partitioning
increases the recognition rate on scarves from 59.5% to 93.5%,
and also improves the recognition rate on sunglasses from 87.0%

to 97.5%. This performance exceeds the best known results on
the AR dataset [29] to date. That work obtains 84% on the
sunglasses and 93% on the scarfs, on only 50 subjects, using
more sophisticated random sampling techniques. Also noteworthy
is [16], which aims to recognize occluded faces from only a single
training sample per subject. On the AR database, that method
achieves a lower combined recognition rate of 80%.24

G. Rejecting Invalid Test Images

We next demonstrate the relevance of sparsity for rejecting
invalid test images, with or without occlusion. We test the outlier
rejection rule (15) based on the Sparsity Concentration Index (14)
on the Extended Yale B database, using Subsets 1 and 2 for
training and Subset 3 for testing as before. We again simulate
varying levels of occlusion (10%, 30%, and 50%) by replacing
a randomly chosen block of each test image with an unrelated
image. However, in this experiment, we include only half of
the subjects in the training set. Thus, half of the subjects in
the testing set are new to the algorithm. We test the system’s
ability to determine whether a given test subject is in the training
database or not by sweeping the threshold τ through a range
of values in [0, 1], generating the receiver operator characteristic
(ROC) curves in Figure 14. For comparison, we also considered
outlier rejection by thresholding the Euclidean distance between
(features of) the test image and (features of) the nearest training
images within the PCA, ICA and LNMF feature spaces. These
curves are also displayed in Figure 14. Notice that the simple
rejection rule (15) performs nearly perfectly at 10% and 30%

occlusion. At 50% occlusion, it still significantly outperforms the
other three algorithms, and is the only one of the four algorithms

23Occluded blocks can also be rejected via (15). We find that this does not
significantly increase the recognition rate.

24From our own implementation and experiments, we find their method
does not generalize well to more extreme illuminations.
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(b) 10% occlusion
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(c) 30% occlusion
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(d) 50% occlusion

Fig. 14. ROC curves for outlier rejection. Vertical axis: true positive rate. Horizontal axis: false positive rate. The solid red curve is generated by SRC
with outliers rejected based on equation (15). The SCI-based validation and SRC classification together perform almost perfectly for upto 30% occlusion.

that performs significantly better than chance. The supplementary
appendix contains more validation results on the AR database
using Eigenfaces, again demonstrating significant improvement
in the ROC.

H. Designing the Training Set for Robustness

An important consideration in designing recognition systems is
selecting the number of training images as well as the conditions
(lighting, expression, viewpoint etc.) under which they are to be
taken. The training images should be extensive enough to span
the conditions that might occur in the test set: they should be
“sufficient” from a pattern recognition standpoint. For instance,
[59] shows how to choose the fewest representative images to
well-approximate the illumination cone of each face. The notion
of neighborliness discussed in Section II provides a different,
quantitative measure for how “robust” the training set is: the
amount of worst-case occlusion the algorithm can tolerate is
directly determined by how neighborly the associated polytope
is. The worst case is relevant in visual recognition, since the
occluding object could potentially be quite similar to one of the
other training classes. However, if the occlusion is random and
uncorrelated with the training images, as in Section IV-C, the
average behavior may also be of interest.

In fact, these two concerns, sufficiency and robustness, are
complementary. Figure 15 left shows the estimated neighborliness
for the four subsets of the Extended Yale B database. Notice that
the highest neighborliness, ≈ 1, 330, is achieved with Subset 4, the
most extreme lighting conditions. Figure 15 right shows the break-
down point for subsets of the AR database with different facial
expressions. The dataset contains four facial expressions, Neutral,
Happy, Angry, and Scream, pictured in Figure 15 right. We
generate training sets from all pairs of expressions and compute
the neighborliness of each of the corresponding polytopes. The
most robust training sets are achieved by the Neutral+Happy and
Happy+Scream combinations, while the least robustness comes
from Neutral+Angry. Notice that the Neutral and Angry images
are quite similar in appearance, while (for example) Happy and
Scream are very dissimilar.

Thus, both for varying lighting (Figure 15 left) and expression
(Figure 15 right), training sets with wider variation in the images
allow greater robustness to occlusion. Designing a training set
that allows recognition under widely varying conditions does not
hinder our algorithm; in fact it helps it. However, the training
set should not contain too many similar images, as in the Neu-
tral+Angry example of Figure 15 right. In the language of signal
representation, the training images should form an incoherent
dictionary [9].

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we have contended both theoretically and exper-
imentally that exploiting sparsity is critical for high-performance
classification of high-dimensional data such as face images.
With sparsity properly harnessed, the choice of features becomes
less important than the number of features used (in our face
recognition example, approximately 100 are sufficient to make
the difference negligible). Moreover, occlusion and corruption can
be handled uniformly and robustly within the same classification
framework. One can achieve striking recognition performance for
severely occluded or corrupted images by a simple algorithm with
no special engineering.

An intriguing question for future work is whether this frame-
work can be useful for object detection, in addition to recognition.
The usefulness of sparsity in detection has been noticed in the
work of [61] and more recently explored in [62]. We believe
that the full potential of sparsity in robust object detection and
recognition together is yet to be uncovered. From a practical
standpoint, it would also be useful to extend the algorithm to less
constrained conditions, especially variations in object pose. Ro-
bustness to occlusion allows the algorithm to tolerate small pose
variation or misalignment. Furthermore, in the supplementary
appendix, we discuss our algorithm’s ability to adapt to nonlinear
training distributions. However, the number of training samples
required to directly represent the distribution of face images under
varying pose may be prohibitively large. Extrapolation in pose,
e.g., using only frontal training images, will require integrating
feature matching techniques or nonlinear deformation models into
the computation of the sparse representation of the test image.
Doing so in a principled manner remains an important direction
for future work.

ACKNOWLEDGMENTS

We would like to thank Dr. Harry Shum, Dr. Xiaoou Tang
and many others at Microsoft Research in Asia for helpful and
informative discussions on face recognition, during our visit
there in Fall 2006. We also thank Prof. Harm Derksen and
Prof. Michael Wakin of the University of Michigan, Prof. Robert
Fossum and Yoav Sharon of the University of Illinois for advice
and discussions on polytope geometry and sparse representation.
This work was partially supported by the grants ARO MURI
W911NF-06-1-0076, NSF CAREER IIS-0347456, NSF CRS-
EHS-0509151, NSF CCF-TF-0514955, ONR YIP N00014-05-1-
0633, NSF ECCS07-01676, and NSF IIS 07-03756.



MANUSCRIPT ACCEPTED BY IEEE TRANS. PAMI, MARCH 2008. 16

Subset 1 Subset 2 Subset 3 Subset 4
Training set 1 2 3 4
Neighborliness 1,124 1,122 1,190 1,330

Neutral (N) Happy (H) Angry (A) Screaming (S)
Training set N+H N+A N+S H+A H+S A+S
Neighborliness 585 421 545 490 550 510

Fig. 15. Robust training set design. Left: varying illumination. Top left: four subsets of Extended Yale B, containing increasingly extreme lighting conditions.
Bottom left: estimated neighborliness of the polytope conv(±B) for each subset. Right: varying expression. Top right: four facial expressions in the AR
database. Bottom right: estimated neighborliness of conv(±B) when taking the training set from different pairs of expressions.
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APPENDIX

I. RELATIONSHIPS TO NEAREST NEIGHBOR AND NEAREST

SUBSPACE

One may notice that the use of all the training samples of all
classes to represent the test sample goes against the conventional
classification methods popular in face recognition literature and
existing systems. These methods typically suggest using residuals
computed from “one sample at a time” or “one class at a time”
to classify the test sample. The representative methods include:

1) The nearest neighbor (NN) classifier: Assign the test sample
y to class i if the smallest distance from y to the nearest
training sample of class i

ri(y) = min
j=1,...,ni

‖y − vi,j‖2 (25)

is the smallest among all classes.25

2) The nearest subspace (NS) classifier (e.g., [32]): Assign
the test sample y to class i if the distance from y to the
subspace spanned by all samples Ai = [vi,1, . . . ,vi,ni

] of
class i:

ri(y) = min
αi∈Rni

‖y −Aiαi‖2 (26)

is the smallest among all classes.
Clearly, NN seeks the best representation in terms of just a single
training sample,26 while NS seeks the best representation in terms
of all the training samples of each class. The nearest feature line
(NFL) algorithm [20] strikes a balance between these two by
considering the distance of y to the line spanned by any pair of
training samples. As NN and NS represent the two extreme cases,
we will compare our method with them and see how enforcing
sparsity can strike a better balance than methods like NFL.

A. Relationship to Nearest Neighbor

Let us first assume that a test sample y can be well-represented
in terms of one training sample, say vi (one of the columns of
A):

y = vi + zi (27)

where ‖zi‖2 ≤ ε for some small ε > 0. As discussed in Section
II-B.2, the recovered sparse solution x̂ to (10) satisfies

‖x̂− x0‖2 ≤ ζε

where x0 ∈ Rn is the vector whose i-th entry is 1 and others
are all zero, and ζ is a constant that depends on A. Thus, in
this case, the `1-minimization based classifier will give the same
identification for the test sample as NN.

On the other hand, in face recognition, test images may have
large variability due to different lighting conditions or facial ex-
pressions, and the training sets generally do not densely cover the
space of all possible face images (as we see in the experimental
section, this is the case with the AR database). In this case, it
is unlikely that any single training image will be very close to
the test image, and nearest-neighbor classification may perform
poorly.

Example 3: Figure 16 left shows the `2-distances between the
downsampled face image from subject 1 in Example 1 and each
of the training images. Although the smallest distance is correctly

25Another popular distance metric for the residual is the `1-norm distance
‖ · ‖1. This is not to be confused with the `1-minimization in this paper.

26Alternatively, a similar classifier K-NN considers K nearest neighbors.

associated with subject 1, the variation of the distances for other
subjects is quite large. As we will see in Section IV, this inevitably
leads to inferior recognition performance when using NN (only
71.6% in this case, comparing to 92.1% of Algorithm 1).27

B. Relationship to Nearest Subspace

Let us now assume that the test sample y can be represented
uniquely as a linear combination of the training samples Ai of
class i:

y = Aiαi + zi (28)

where ‖zi‖2 ≤ ε for some small ε > 0. Then again according to
equation (11), the recovered sparse solution x̂ to (10) satisfies

‖x̂− x0‖2 ≤ ζε

where x0 ∈ Rn is a vector of the form [0, . . . , 0, αTi , 0, . . . , 0]T .
That is,

δi(x̂) ≈ x0 and ‖δj(x̂)‖ < ζε for all j 6= i. (29)

We have
‖y −Aδi(x̂)‖2 ≈ ‖zi‖2 ≤ ε, and (30)

‖y −Aδj(x̂)‖2 ≈ ‖y‖2 � ε for all j 6= i. (31)

Thus, in this case, the `1-minimization based classifier will give
the same identification for the test sample as NS. Notice that
for j 6= i, δj(x̂) is rather different from αj computed from
minαj ‖y − Ajαj‖2. The norm of δj(x̂) is bounded by the
approximation error (29) when y is represented just within class
j, whereas the norm of αj can be very large as face images of
different subjects are highly correlated. Further notice that each
of the αj is an optimal representation (in the 2-norm) of y in
terms of some (different) subset of the training data, whereas only
one of the {δj(x̂)}kj=1 computed via `1-minimization is optimal
in this sense; the rest have very small norm. In this sense, `1-
minimization is more discriminative than NS, as is the set of
associated residuals {‖y −Aδj(x̂)‖2}kj=1.

Example 4: Figure 16 right shows the residuals of the down-
sampled features of the test image in Example 1 w.r.t. the
subspaces spanned by the 38 subjects. Although the minimum
residual is correctly associated with subject 1, the difference from
the residuals of the other 37 subjects is not as dramatic as that
obtained from Algorithm 1. Compared to the ratio 1:8.6 between
the two smallest residuals in Figure 3, the ratio between the two
smallest residuals in Figure 16 right is only 1:3. In other words,
the solution from Algorithm 1 is more discriminative than that
from NS. As we will see Section IV, for the 12×10 downsampled
images, the recognition rate of NS is lower than that of Algorithm
1 (91.1% versus 92.1%).

Be aware that the subspace for each subject is only an approxi-
mation to the true distribution of the face images. In reality, due to
expression variations, specularity, or alignment error, the actual
distribution of face images could be nonlinear or multi-modal.
Using only the distance to the entire subspace ignores information
about the distribution of the samples within the subspace, which
could be more important for classification. Even if the test sample
is generated from a simple statistical model: y = Aiαi + zi with
αi and zi independent Gaussians, any sufficient statistic (for the

27Other commonly used distance metrics in NN such as `1-distance give
results similar to Figure 16 left.
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Fig. 16. Left: The `2-distances (logarithmic scale) between the test image and the training images in Example 1 (as used by nearest neighbor). Right: The
residuals of the test image in Example 1 w.r.t. the 38 face subspaces (as used by nearest subspace).

optimal classifier) depends on both ‖αi‖2 and ‖zi‖2, not just
the residual ‖zi‖2. While the `1-minimization based classifier
is also suboptimal under this model, it does implicitly use the
information in αi as it penalizes αi that has a large norm – the `1-
minimization based classifier favors small ‖zi‖2 as well as small
‖αi‖1 in representing the test sample with the training data.

Furthermore, using all the training samples in each class may
over-fit the test sample In the case when the solution αi to

y = Aiαi + zi subject to ‖zi‖2 < ε

is not unique, the `1-minimization (6) will find the sparsest αi0 ∈
Rni instead of the least `2-norm solution αi2 = (ATi Ai)

†y ∈ Rni .
That is, the `1-minimization will use the smallest number of
samples necessary in each class to represent the test sample,
subject to a small error. To see why the sparse solution αi0
respects better the actual distribution of the training samples
(inside the subspace spanned by all samples), consider the two
situations illustrated in Figure 17.

Fig. 17. A sparse solution within the subspace spanned by all training samples
of one class. Left: the samples exhibit a nonlinear distribution within the
subspace. Right: the samples lie on two lower-dimensional subspaces within
the subspace spanned by all the samples.

In the figure on the left, the training samples have a nonlinear
distribution within the subspace, say due to pose variation. For
the given positive test sample “+,” only two training samples are
needed to represent it well linearly. For the other negative test
sample “-,” although it is inside the subspace spanned by all the
samples, it deviates significantly from the sample distribution.
In the figure on the right, the training samples of one class
are distributed on two lower-dimensional subspaces. This could
represent the situation in face recognition when the training
images contain both varying illuminations and expressions. Again,
for a positive test sample “+,” typically a small subset of the
training samples are needed to represent it well. But if we use
the span of all the samples, that could easily over-fit negative
samples that do not belong to the same class. For example, as
we have shown in Figure 3, although subject 1 has 32 training

samples, the test image is well represented using less than 5 large
coefficients. In other words, `1-minimization is very efficient in
harnessing sparse structures even within the sample distribution
of each class.

From our discussions above, we see that the `1-minimization
based classifier works under a wider range of conditions than
NN and NS combined. It strikes a good balance between NN
and NS: To avoid under-fitting, it uses multiple (instead of the
nearest one) training samples in each class to linearly extrap-
olate the test sample, but it uses only the smallest necessary
number of them to avoid over-fitting. For each test sample, the
number of samples needed is automatically determined by the
`1-minimization, because in terms of finding the sparse solution
x0, the `1-minimization is equivalent to the `0-minimization.
As a result, the classifier can better exploit the actual (possibly
multi-modal and nonlinear) distributions of the training samples
of each class and is therefore likely to be more discriminative
among multiple classes. These advantages of Algorithm 1 are
corroborated by experimental results presented in Section IV as
well as the additional experimental results given below.

C. Experimental Comparison

In this subsection, we provide more detailed numerical results,
for easy comparison of Algorithm 1 with NN, NS and SVM, in
terms of both recognition and validation.

a) Comparison of Recognition Performance: The tables
below contain the numerical values plotted in the graphs in
Sections IV-A.1 and IV-A.2. Table I gives the performance of our
sparse representation based classification (SRC) algorithm on the
Extended Yale B database, across different feature transformations
and feature dimensions. Here, ”E-Random” refers to a variant
of the algorithm that uses an ensemble of multiple random
projections to compute averaged residuals ri (here, 5 differ-
ent random projections are used). Aggregating multiple random
projections improves the stability of the algorithm, leading to
better classification performance. Table II gives the corresponding
results for NN and NS. Similarly, using the same experimental
setup in Section IV-A.2, Table III gives the result for Algorithm
1, and Table IV for NN, NS and SVM.

b) Comparison of Validation Performance: In Section IV-
G, we have demonstrated the ability of the robust version of
Algorithm 1 to reject invalid test images, in the presence of occlu-
sion. Here, we present further experimental results comparing the
algorithm’s outlier rejection capability to that of nearest neighbor
and nearest subspace, this time without occlusion, working with
features rather than the raw image itself. Conventionally, the two
major indices used to measure the accuracy of outlier rejection are
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TABLE I
RECOGNITION RATES OF SRC ON THE EXTENDED YALE B DATABASE.

Dimension (d) 30 56 120 504
Eigen [%] 86.5 91.63 93.95 96.77
Laplacian [%] 87.49 91.72 93.95 96.52
Random [%] 82.6 91.47 95.53 98.09
Downsample [%] 74.57 86.16 92.13 97.1
Fisher [%] 86.91 N/A N/A N/A
E-Random [%] 90.72 94.12 96.35 98.26

TABLE II
RECOGNITION RATES OF NEAREST NEIGHBOR (LEFT), NEAREST SUBSPACE (CENTER) AND SUPPORT VECTOR MACHINE (RIGHT) ON THE EXTENDED

YALE B DATABASE.

NN NS SVM
Dimension (d)
Eigen [%]
Laplacian [%]
Random [%]
Downsample [%]
Fisher [%]

30 56 120 504
74.3 81.4 85.5 88.4
77.1 83.5 87.2 90.7
70.3 75.6 78.8 79.0
51.7 62.6 71.6 78.0
87.6 N/A N/A N/A

30 56 120 504
89.9 91.1 92.5 93.2
89.0 90.4 91.9 93.4
87.3 91.5 93.9 94.1
80.8 88.2 91.1 93.4
81.9 N/A N/A N/A

30 56 120 504
70.6 84.3 93.1 96.8
72.0 85.0 94.0 97.7
48.8 68.6 83.4 91.4
48.9 69.5 79.0 91.6
86.7 N/A N/A N/A

TABLE III
RECOGNITION RATES OF SRC ON THE AR DATABASE.

Dimension (d) 30 54 130 540
Eigen [%] 71.14 80 85.71 91.99
Laplacian [%] 73.71 84.69 90.99 94.28
Random [%] 57.8 75.54 87.55 94.7
Downsample [%] 46.78 67 84.55 93.85
Fisher [%] 86.98 92.27 N/A N/A
E-Random [%] 78.54 85.84 91.23 94.99

TABLE IV
RECOGNITION RATES OF NEAREST NEIGHBOR (LEFT), NEAREST SUBSPACE (CENTER) AND SUPPORT VECTOR MACHINE (RIGHT) ON THE AR

DATABASE.

NN NS SVM
Dimension (d)
Eigen [%]
Laplacian [%]
Random [%]
Downsample [%]
Fisher [%]

30 54 130 540
68.1 74.8 79.3 80.5
73.1 77.1 83.8 89.7
56.6 63.7 71.4 75.0
51.6 60.9 69.2 73.7
83.4 86.8 N/A N/A

30 54 130 540
64.1 77.1 82.0 85.1
65.9 77.5 84.3 90.3
59.2 68.2 80.0 83.3
56.2 67.7 77.0 82.1
80.3 85.8 N/A N/A

30 54 130 540
73.0 84.3 89.0 92.0
73.4 85.8 90.8 95.7
54.1 70.8 81.6 88.8
51.4 73.0 83.4 90.3
86.3 93.3 N/A N/A

the false acceptance rate (FAR) and the verification rate (VR).
False acceptance rate calculates the percentage of test samples that
are accepted and wrongly classified. Verification rate is one minus
the percentage of valid test samples that are wrongfully rejected.
A good recognition system should achieve high verification rates
even at very low false acceptance rates. Therefore, the accuracy
and reliability of a recognition system are typically evaluated
by the FAR-VR curve (sometimes it is loosely identified as the
receiver operating characteristic (ROC) curve).

In this experiment, we only use the more challenging AR
dataset – more subjects and more variability in the testing data
make outlier rejection a more relevant issue. The experiments are
run under two different settings. The first setting is the same as
in subsection IV-A.2: 700 training images for all 100 subjects
and another 700 images for testing. So in this case, there is
no real outliers. The role of validation is simply to reject test
images that are difficult to classify. In the second setting, we
remove the training samples of every third of the subjects and
add them into the test set. That leaves us 469 training images
for 67 subjects and 700 + 231 = 931 testing images for all 100

subjects. So about half of the test images are true outliers.28

We compare three algorithms: Algorithm 1, NN, and NS. To
be fair, all three algorithms use exactly the same features, 504-
dimensional eigenfaces.29

Figure 18 shows the FAR-VR curves obtained under the two
settings. Notice that Algorithm 1 significantly outperforms NS
and NN, as expected. Compared to the performance in Section IV-
G, we observe there that the validation performance of Algorithm
1 improves much further with the full image whereas the other
methods do not – their performance saturates when the feature
dimension is beyond a few hundred.

28More precisely, 462 out of the 931 test images belong to subjects not in
the training set.

29Notice that according to Table III, among all 504-D features, eigenfaces
are in fact the worst for our algorithm. We use it anyway as this gives a
baseline performance for our algorithm.
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Fig. 18. The FAR-VR curves (solid, red) for SRC using Eigenfaces, compared with the curves of NS and NN using Eigenfaces. Left: 700 images for all
100 subjects in the training, no real outliers in the 700 test images. Right: 469 images for 67 subjects in the training, about half of the 931 test images are
true outliers.


