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Abstract— We consider the problem of estimating a state x
from noisy and corrupted linear measurements y = Ax +
z + e, where z is a dense vector of small-magnitude noise
and e is a relatively sparse vector whose entries can be
arbitrarily large. We study the behavior of the `1 estimator
x̂ = arg minx ‖y −Ax‖1, and analyze its breakdown point
with respect to the number of corrupted measurements ‖e‖0.
We show that the breakdown point is independent of the noise.
We introduce a novel algorithm for computing the breakdown
point for any given A, and provide a simple bound on the
estimation error when the number of corrupted measurements
is less than the breakdown point. As a motivational example we
apply our algorithm to design a robust state estimator for an
autonomous vehicle, and show how it can significantly improve
performance over the Kalman filter.

I. INTRODUCTION

The problem of estimating a state x0 ∈ Rn from m >
n noisy linear measurements y ≈ Ax0 ∈ Rm, arises in a
vast number of applications. In some applications one can
assume that the difference between y and Ax0 is a small
i.i.d. Gaussian noise z ∈ Rm:

y = Ax0 + z. (1)

In this case, the optimal estimate of x0 is the least-squares
estimate: x̂2 =

(
ATA

)−1
ATy = arg minx ‖y −Ax‖2. The

least-square estimate is known as stable in the sense that
the estimation error ‖x̂2−x0‖2 is bounded by a continuous
function of z. Thus, small noise causes only small estimation
error. Often, however, some of the measurements in y can be
corrupted by arbitrarily large errors. In this case, we instead
must solve x0 from the equation

y = Ax0 + z + e, (2)

where e ∈ Rm has some arbitrarily large nonzero entries.
One typical example is a GPS system, whose estimated
position output can occasionally be considerably corrupted
when the signals from the satellites are reflected off the
surrounding terrain (i.e. multipath). Even one such corrupted
measurement can cause arbitrarily large estimation error in
the least-squares estimate.

When the state being estimated is a scalar (n = 1), the
least-squares estimate x̂2 is equivalent to taking a weighted
average of the measurements. A known robust alternative to
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the average is the median. With the median, up to almost 50%
of the measurements can be arbitrarily corrupted before the
estimation error becomes unbounded. That is, the breakdown
point of the median is 50%.

Taking the median, one essentially looks for the point
which minimizes the sum of distances to all the measure-
ments whereas taking the average minimizes the sum of the
squares of these distances. One natural generalization of this
concept to multivariate (n > 1) estimation1 is to view the m
measurements y .= [y1, . . . , ym]T as defining m hyperplanes:

Hi
.=
{
x ∈ Rn

∣∣yi = aTi x
}
,

where aTi ∈ Rn is the corresponding row of the matrix A .=
[a1, . . . ,am]T . Then the “median” estimate for x can be
defined to be the point that minimizes the sum of distances
to these hyperplanes:

x̂ = arg min
x

m∑
i=1

∣∣yi − aTi x∣∣ = arg min
x
‖y −Ax‖1 . (3)

To understand why this estimate can be robust to errors,
let us assume the noise is zero for now: z = 0. That is, we
try to solve x0 from the equation y = Ax0 +e. If we could
somehow compute e, then x0 could be easily recovered from
the clean system of equations Ax0 = y − e. One approach
to recovering e is to choose a matrix B ∈ Rp×m, p = m−n,
with BA = 0, and definew = By. Multiplying both sides of
the measurement equation by B yields an underdetermined
system of equations w = Be in e alone. In the context of
compressed sensing [2], it has recently been discovered that
whenever e is sparse enough, it can be correctly recovered
by solving the following `1-minimization problem:

ê = arg min
e
‖e‖1 subject to w = Be. (4)

So, in the noise free case, the two problems (3) and (4) are
equivalent.

There is also a large literature analyzing the performance
of (4) and related estimates in the presence of noise. The
strongest available results ([3], [4], amongst others) have the
following flavor: for some constants C and ρ, and almost all
random matrices B, if one applies an `2-penalized version of
(4) (i.e., the Lasso [5], [6]) and the number of errors ‖e‖0
is less than ρ · n, then the estimation error is bounded by

1Another multivariate generalization of the median occurs in robust
center-point estimation, where the observations are themselves points (rather
than inner products). There, the estimator that minimizes the sum of
distances to the observations, known as the Fermat-Weber point, achieves a
breakdown point of 50% [1, Theorem 2.2]. Although the estimator studied
here also generalizes the median, it addresses the more general problem of
robust linear regression.



C · ‖z‖ for some C > 0. However, specific forms of the
constants C and ρ are difficult to derive. A similar bound
can be derived when B is known to be a restricted isometry
[3]. However, it requires prior knowledge of the noise level,
and the estimation error depends on the number of corrupted
measurements, with the bound C diverging to infinity when
the error fraction ρ approaches the breakdown point. Similar
results have also been obtained for greedy alternatives to
`1-minimization [7]. In this setting, one does not require a
bound on the noise term. However, it does require that the
number of corrupted measurements be considerably lower
than the breakdown point for `1-minimization.

Whereas most of the existing stability results and bounds
are derived for the underdetermined case (4), in this paper,
we directly study the stability of the `1 estimator for the
overdetermined problem (3). Our bounds are weaker than
those obtained in the asymptotic setting of large random
matrices and small error fractions [4]. However, they hold
for all matrices A, including the structured matrices arising
in state estimation problems, and all error fractions ρ, up to
the intrinsic breakdown point of the `1 estimator. Moreover,
our bound has a very simple expression, whose derivation
naturally suggests an algorithm for computing the intrinsic
breakdown point of the `1 estimator. The complexity of our
algorithm is exponentially lower than the existing alternative,
and it is especially suitable for the kind of problems of
interest for the system and control community – moderate-
sized robust state estimation problems.

II. PRELIMINARIES

Throughout, the 0-norm will denote the number of nonzero
elements in a vector v ∈ Rm:

‖v‖0
.= #

{
i
∣∣vi 6= 0

}
.

We will use [m] to denote the set of indices [m] .=
{1, 2, . . . ,m}. We will use the following notation for “posi-
tive” directional derivative of an arbitrary multivariate func-
tion f : Rm → R:

D+
v f (x) = lim

ε↘0

f (x+ εv)− f (x)
ε

.

Consider a general estimation problem, y = f (x0, z, e),
where x0 is the unknown state to be estimated, z is a
noise term, e is a corruption term and y is the available
measurements. Let x̂ = g (y) be some estimate. We say that
for given x0 and z, the estimate is robust up to T corrupted
measurements (or T -robust) if there exists a smooth function
β (x0, z) ∈ R such that:

∀e : if ‖e‖0 < T then ‖x̂− x0‖2 ≤ β(x0, z). (5)

The breakdown point of this scheme, T ∗ (x0, z), is the
minimum T ∈ N for which the estimation scheme is not
T -robust. In other words,

T ∗ (x0, z) .= min
{
T ∈ N

∣∣∣ sup
e,‖e‖0≤T

‖x̂− x0‖2 =∞
}
.

We say T ∗ is a stable breakdown point if it does not depend
on x0 and z, i.e. T ∗ (x0, z) ≡ T ∗.

Throughout this paper we consider the problem of esti-
mating x0 from y:

y = Ax0 + z + e,

where x0 ∈ Rn, A ∈ Rm×n, z ∈ Rm and e ∈ Rm. For
this problem we consider the Minimum Sum of Distances
(MSoD) estimation scheme

x̂ = arg min
x
Cy (x) , (6)

with the cost function

Cy (x) .= ‖y −Ax‖1 . (7)

Our goal is to study whether the breakdown point of this
estimate is stable and if so, how to compute it.

We start by giving results pertaining to the noiseless case,
z = 0. We assume T of the measurements can be corrupted.
Geometrically, this means that the remaining m−T measure-
ment hyperplanes Hi

.=
{
x ∈ Rn | yi = aTi x

}
pass through

x0. We will let I denote the indices of these uncorrupted hy-
perplanes. The corrupted ones will be conveniently denoted
by Ic. We ask whether these T hyperplanes can be positioned
so that x0 no longer minimizes the cost function (7). Since
Cy is convex, this will be true if and only if there exists
a direction v, from x0, along which the cost function does
not increase, i.e. D+

v Cy (x0) ≤ 0. Since the uncorrupted
hyperplanes pass through x0, moving in the direction of v
from x0 will increase the distance to each of the uncorrupted
hyperplanes at a rate of

∣∣aTi v∣∣, i ∈ I . We have freedom in
placing the corrupted hyperplanes, and so for each v we
can position them so that moving in the direction of v will
decrease the distance to each of the corrupted hyperplanes by
a rate of

∣∣aTi v∣∣, i ∈ Ic. In this case, which can be referred
to as worst positioning of the corrupted hyperplanes given
v, the condition D+

v Cy (x0) ≤ 0 becomes∑
i∈I

∣∣aTi v∣∣−∑
i∈Ic

∣∣aTi v∣∣ ≤ 0. (8)

Because (8) represents the worst case for a given v, x0 fails
to minimize the cost function if and only if (8) holds for some
v. Thus we arrive at a lemma following the next definition:

Definition 2.1: T̃ (A) is defined as the minimal integer T
for which there exists I ⊂ [m], |I| = m − T and v ∈ Rn
such that (8) holds.

Lemma 2.1: Under the condition z = 0, the breakdown
point of the estimation scheme (6) is equal to T̃ as defined
in Definition 2.1, i.e. T ∗ (x0,0) = T̃ (A), ∀x0 ∈ Rn.

In the next section we will consider the noisy case and
show that this breakdown point is stable and the estimation
error is bounded by a linear function of the noise magnitude
‖z‖2 that does not depend on x0.

III. PROOF OF ROBUSTNESS

We start with the following definition:
Definition 3.1: Given an arbitrary T ∈ N we call a set J ′

a possibly extreme set if there exists I , I ⊇ J ′, |I| = m−T



such that the following holds:∑
i∈J′∪Ic

∣∣aTi νJ′∣∣ ≥ ∑
i∈I\J′

∣∣aTi νJ′ ∣∣ (9)

where νJ′ is any of the singular vectors corresponding to
the smallest singular value of the |J ′| × n submatrix AJ′

of A containing those rows indexed by J ′: ‖AJ′νJ′‖2 =
σmin (AJ′) ‖νJ′‖2 with σmin (·) being the smallest singular
value. We define QT to be the set of all possibly extreme
sets for a given T .

The following is our main result:
Theorem 3.1: For any T ∈ {0, 1, . . . ,m}, if the number

of corrupted measurements is not larger than T , then the
estimation error is bounded as follows:

‖x̂− x0‖2 ≤
(

max
J′∈QT

1
σmin (AJ′)

)
‖z‖2 . (10)

Before proving Theorem 3.1 we emphasize a few ob-
servations. First note that if T < T̃ (A) then ∀I ⊂ [m],
|I| = m− T the following holds:

∀v ∈ Rn :
∑
i∈I

∣∣aTi v∣∣ >∑
i∈Ic

∣∣aTi v∣∣ . (11)

Now, assume for some J ′ we have σmin (AJ′) = 0. This
implies that aTi νJ′ = 0 ∀i ∈ J ′. From (11) we see that
in this case (9) can not hold and thus J ′ 6∈ QT . From this
we conclude that σmin (AJ′) > 0 ∀J ′ ∈ QT and thus the
expression inside the brackets in (10) must be finite. The
fact that we have established a finite bound (when ‖z‖2 is
finite) for all T < T̃ (A), and T̃ (A) is independent of x0

and z, proves that the breakdown point T ∗ (x0, z) ≡ T̃ (A)
is stable.

The second observation is that for T ′ < T we have
QT ′ ⊆ QT and possibly even QT ′ ⊂ QT where some of the
smaller sets in QT may not be in QT ′ . Since J ′ ⊆ J implies
σmin (AJ′) ≤ σmin (AJ), losing the smaller sets from QT
(as we reduce the number of corrupted measurements) can
produce a smaller bound in Theorem 3.1

Definition 3.2: We define the following sets:

J+ (x,y) .=
{
i ∈ [m] | aTi x > yi

}
J0 (x,y) .=

{
i ∈ [m] | aTi x = yi

}
J− (x,y) .=

{
i ∈ [m] | aTi x < yi

}
Also, for a point x ∈ Rn, Ix (y) = J0 (x,y) ∩ I is defined
to be the set of uncorrupted hyperplanes passing through x.

Proposition 3.2: For any x̂ ∈ Rn:

‖x̂− x0‖2 ≤
1

σmin
(
AIx̂(y)

) ‖z‖2
Proof: Trivial since zIx̂(y) = AIx̂(y) (x̂− x0).

Our proof of Theorem 3.1 will go as follow. Assume x0,
I , z, e are given and let x̂ be the point minimizing the
cost function. We will show that we can change only the
noise and the corruption to z′, e′ such that ‖z′‖2 = ‖z‖2,
e′I = 0, and the new corresponding minimizing point x̂′

achieves a larger estimation error,
∥∥x̂′ − x0

∥∥
2
≥ ‖x̂− x0‖2.

Furthermore, with the new y′ = Ax0 +z′+e′ we will have

Ix̂′ (y′) ∈ Q. Applying then Proposition 3.2 on the new
x̂′ and y′, together with the fact that we did not decrease
the estimation error, gives us (10). We will do this through
several steps.

Proposition 3.3: Let y and the corresponding point x̂
which minimizes the cost function be given. For a different
y′, if there exists a point x′ such that

J+ (x′,y′) ⊆ J+ (x̂,y)
J− (x′,y′) ⊆ J− (x̂,y)
J0 (x̂,y) ⊆ J0 (x′,y′) , (12)

then x′ will minimize the cost function for y′.
Proof: The rate of change of the cost function moving

from x′ in an arbitrary direction v is:

D+
v Cy′ (x′) =∑

i∈J+(x′,y′)

aTi v +
∑

i∈J0(x′,y′)

∣∣aTi v∣∣− ∑
i∈J−(x′,y′)

aTi v ≥∑
i∈J+(x̂,y)

aTi v +
∑

i∈J0(x̂,y)

∣∣aTi v∣∣− ∑
i∈J−(x̂,y)

aTi v =

D+
v Cy (x̂) > 0

Lemma 3.4: Assume x0, I , z, e are given and let x̂
be the point minimizing the cost function. There exists z′,
e′ such that ‖z′‖ = ‖z‖, e′I = 0, and the new corre-
sponding minimizing point x̂′ achieves a larger estimation
error,

∥∥x̂′ − x0

∥∥
2
≥ ‖x̂− x0‖2. Furthermore, either v′ .=

x̂′ − x0 ∝ νIx̂′ (y
′) or Ix̂ (y) ( Ix̂′ (y′).

Proof: Define v .= x̂ − x0. If v ∝ νIx̂
then we are

done. Otherwise set v̄ ∝ νIx̂
, 〈v̄,v〉 ≥ 0, ‖v̄‖2 = 1. Also,

set v̄⊥ to be the normalized vector perpendicular to v̄, in the
span of v and v̄, and such that

〈
v̄⊥,v

〉
≥ 0. Consider the

vector function

f (α) =
cos (α) v̄⊥ + sin (α) v̄∥∥AIx̂(y)

(
cos (α) v̄⊥ + sin (α) v̄

)∥∥
2

∥∥zIx̂(y)

∥∥
2
.

Define α0 = sin−1 (〈v̄,v〉) ∈ [0, π/2]. Note that if we set

z̄Ix̂(y) (α) = AIx̂(y)f (α)
z̄[m]\Ix̂(y) (α) = z[m]\Ix̂(y)

ēIc (α) = eIc +AIcf (α)−AIcf (α0)
ēI (α) = 0

then z̄ (α0) = z and for α ∈ [α0, π/2] we have ‖z̄‖2 =
‖z‖2.

We will set z′ = z̄ (α∗), e′ = ē (α∗) where
α∗ = max {π/2, α̃}

α̃ = sup

α
∣∣∣∣∣∣
aif (α) > zi ∀i ∈ I ∩ J+ (x̂,y)

and
aif (α) < zi ∀i ∈ I ∩ J− (x̂,y)

 .

With this choice of z′ and e′ we guarantee that (12) holds
with x′ = x0 +f (α∗), and therefore v′ = f (α∗) is the new
estimation error. If α∗ = π/2 then v′ ∝ νIx̂′ . Otherwise one
of the strict inequalities in (13) must become an inequality



with α∗, which implies Ix̂ (y) ( Ix̂′ (y′). To complete the
proof we are left to show that

‖f (α)‖2 =

∥∥cos (α) v̄⊥ + sin (α) v̄
∥∥

2∥∥AIx̂(y)

(
cos (α) v̄⊥ + sin (α) v̄

)∥∥
2

∥∥zIx̂(y)

∥∥
2

(13)
is monotonically non-decreasing.

The numerator in (13) as well as the
∥∥zIx̂(y)

∥∥
2

term are
constants. Because the singular vector v̄ is an eigenvector of
ATIx̂(y)AIx̂(y) we have that

〈
AIx̂(y)v̄

⊥, AIx̂(y)v̄
〉

= 0, thus
the derivative of the denominator with respect to α is(

−
∥∥AIx̂(y)v̄

⊥
∥∥2

2
+
∥∥AIx̂(y)v̄

∥∥2

2

)
sin (α) cos (α)∥∥AIx̂(y)

(
cos (α) v̄⊥ + sin (α) v̄

)∥∥
2

.

This is always non-positive because α ∈ [0, π/2] and v̄ is the
singular vector corresponding to the smallest singular value.

By iterating the procedure described in the last lemma,
each time adding at least one more element to Ix̂′ (y′), we
arrive at the following Corollary:

Corollary 3.5: Assume x0, I , z, e are given and let x̂ be
the point minimizing the cost function. There exists z′, e′

such that ‖z′‖2 = ‖z‖2, e′I = 0, the new corresponding
minimizing point x̂′ achieves a larger estimation error,∥∥x̂′ − x0

∥∥
2
≥ ‖x̂− x0‖2, and v′ .= x̂′ − x0 ∝ νIx̂′ .

Remark 3.1: Without loss of generality, for a given y ∈
Rm and an arbitrary direction v ∈ Rn, we can assume that
aTi v ≥ 0 ∀ i ∈ [m]. This is because we can arbitrarily
negate some of the ai’s and their corresponding yi’s without
affecting the cost function (7).

Lemma 3.6: Assume x0, I , z, e are given. Let x̂ be the
point minimizing the cost function and assume v .= x̂ −
x0 ∝ νIx̂(y). If Ix̂ (y) 6∈ Q then there exists z′, e′ such that
‖z′‖2 = ‖z‖2, e′I = 0, the new corresponding minimizing
point x̂′ achieves a larger estimation error,

∥∥x̂′ − x0

∥∥
2
≥

‖x̂− x0‖2, and Ix̂ (y) ( Ix̂′ (y′).
Proof: WLOG (see Remark 3.1) assume aTi v ≥ 0 ∀i ∈

[m]. The rate of change going in direction −v from x̂ is:

−
∑

i∈J+(x̂,y)

∣∣aTi v∣∣+
∑
i∈J0(x̂,y)

∣∣aTi v∣∣+
∑

i∈J−(x̂,y)

∣∣aTi v∣∣ . (14)

Because x̂ minimizes the cost function, (14) must be non-
negative. If indeed Ix̂ (y) 6∈ Q then from the fact that (9) is
not satisfied for J ′ = Ix̂ (y) we have∑

i∈I∩J−(x̂,y)

∣∣aTi v∣∣ >∑
i∈Ix̂(y)

∣∣aTi v∣∣+
∑
i∈Ic

∣∣aTi v∣∣−∑
i∈I∩J+(x̂,y)

∣∣aTi v∣∣ .
Now given that (14) is nonnegative we can write∑

i∈Ix̂(y)

∣∣aTi v∣∣−∑
i∈I∩J+(x̂,y)

∣∣aTi v∣∣ ≥∑
i∈Ic∩J+(x̂,y)

∣∣aTi v∣∣−∑
i∈Ic∩J0(x̂,y)

∣∣aTi v∣∣− ∑
i∈Ic∩J−(x̂,y)

∣∣aTi v∣∣−∑
i∈I∩J−(x̂,y)

∣∣aTi v∣∣ .
Combining these last two inequalities we get

2
∑
i∈I∩J−(x̂,y)

∣∣aTi v∣∣ > 2
∑
i∈Ic∩J+(x̂,y)

∣∣aTi v∣∣ ≥ 0

which implies that I ∩ J− (x̂,y) cannot be empty. Now, for
every zi, i ∈ I ∩ J− (x̂,y), we have

zi = yi − aTi x0 = yi + aTi v − aTi x̂ > 0.

Arbitrarily choose i′ ∈ I ∩ J− (x̂,y) and consider the
following:

z̄Ix̂(y) (α) = AIx̂(y) (1 + α)v

z̄i′ (α) =
√
z2
i′ +

(
1− (1 + α)2

)∥∥zIx̂(y)

∥∥2

2

z̄[m]\(Ix̂(y)∪{i′}) (α) = z̄[m]\(Ix̂(y)∪{i′})

ēIc (α) = ēIc (α) + αAIcv

ēI = 0.

with α ≥ 0. Note that ‖z̄ (α)‖2 is constant, and z̄ (0) = z.
We will set z′ = z (α∗) and e′ = ē (α∗) where

α∗ = sup
{
α
∣∣aTi (1 + α)v < z̄i (α) ∀i ∈ I ∩ J− (x̂,y)

}
.

For every α ∈ [0, α∗) we have that (12) holds with x′ = x0+
(1 + α)v and therefore (1 + α)v is the new estimation error.
With α = α∗ we also have aTi (1 + α)v = z′i ⇔ aTi x

′ = y′i
for some i ∈ I ∩ J− (x̂,y). This implies Ix̂ (y) ( Ix̂′ (y′).

By iterating the procedures described in (3.4) and (3.6)
several times as necessary we arrive at the final corollary:

Corollary 3.7: Assume x0, I , z, e are given and let x̂ be
the point minimizing the cost function. There exists z′, e′

such that ‖z′‖2 = ‖z‖2, e′I = 0, and the new corresponding
minimizing point x̂′ achieves a larger estimation error,∥∥x̂′ − x0

∥∥
2
≥ ‖x̂− x0‖2. Furthermore, Ix̂′ (y′) ∈ Q.

The last Corollary, together with Proposition 3.2, proves
Theorem 3.1.

IV. COMPUTING THE BREAKDOWN POINT

Definition 2.1 does not immediately suggest an algorithm
for computing T̃ = T ∗, because it requires checking condi-
tion (8) for all v ∈ Rn, ‖v‖2 = 1, and there are infinitely
many such v. The following Lemma 4.1, however, states that
it is sufficient to check only a finite subset of Rn:

Lemma 4.1: Condition (8) holds for some I ⊂ [m] and
v ∈ Rn \ {0} if and only if there exist J ⊂ [m] and v′ ∈
Rn\{0} with the following properties: |J | = n−1; {ai}i∈J
is a set of n − 1 linearly independent vectors; aTi v

′ = 0
∀i ∈ J ; and (8) holds for v′.

The if direction in 4.1 is trivial. In the degenerate case
where dim span {ai}i∈I ≤ n − 1 the only if is also trivial
since (8) will hold for any nonzero vector which is not in the
span of {ai}i∈I . The only if direction in the non-degenerate
case is an immediate corollary of the following proposition:

Proposition 4.2: Assume I and v are given, and
dim span {ai}i∈I = n. Define J (v) .= {i ∈ I |aiv = 0}
and d (J) .= dim span {ai}i∈J . If Condition (8) holds for
v ∈ Rn \ {0} and d (J (v)) < n − 1 then there exists
v′ ∈ Rn \ {0} for which (8) also holds but in addition
d (J (v′)) > d (J (v)).



Proof: WLOG we can assume aTi v ≥ 0 ∀i ∈ [m].
Consider the following set of equations in z ∈ Rn:∑

i∈Ic

aTi z = 0 (15)

aTi z = 0 ∀i ∈ J (v) . (16)

In the case that d (J (v)) = dim span {ai}i∈J(v) < n − 1,
there is a nontrivial solution z̃ 6= 0 to (15) and (16). By
changing the sign of z̃ if necessary, we can assume∑

i∈I
aTi z̃ ≤ 0. (17)

Define the set P
.=

{
i ∈ I

∣∣aTi z̃ < 0
}

and α
.=

mini∈P
aT

i v

−aT
i

z̃
. Note that from (17) and the assumption that

d (I) = n, P cannot be empty and thus α is well defined
and positive. Also note that P contains only the indices of
vectors from I which are linearly independent of {ai}i∈J(v).
Set v′ = v + αz̃. By our choice of α we have for some
i′ ∈ P ⊂ I \ J that aTi′v

′ = 0. Since z̃ satisfies (16) this
gives us J (v′) ) J (v) and d (J (v′)) > d (J (v)). From
(15) we have∑
i∈Ic

∣∣aTi v′∣∣ ≥∑
i∈Ic

aTi (v + αz̃) =
∑
i∈Ic

aTi v =
∑
i∈Ic

∣∣aTi v∣∣ .
(18)

By our choice of α we also have aTi v
′ ≥ 0 ∀i ∈ I . Together

with (17) this gives us∑
i∈I

∣∣aTi v′∣∣ =
∑
i∈I
aTi v

′ =
∑
i∈I
aTi v + α

∑
i∈I
aTi z̃

≤
∑
i∈I

∣∣aTi v∣∣ . (19)

Combining (18), (19) and the fact that (8) holds for v implies
that (8) also holds for v′.

Given J ⊂ I , |J | = n − 1, d (J) = n − 1, the condition
AJv

′ = 0 determines v′ uniquely up to scale. The validity
of condition (8) is unchanged by scaling v′. Thus, we could
equivalently define T ∗ (A) to be the minimal integer T such
that there exists J ⊂ [m] of size |J | = n−1, d (J) = n−1,
and I ⊂ [m] of size |I| = m − T for which condition (8)
holds for v′ satisfying AJv′ = 0. Fix J (and a corresponding
v), and sort the |aTi v| such that

∣∣aTr1v∣∣ ≥ ∣∣aTr2v∣∣ ≥ . . . ≥∣∣aTrm
v
∣∣. Then, condition (8) holds for some I of size m−T if

and only if it holds for I .= {rT+1 . . . rm}. We can therefore
compute T ∗ (A) by checking this condition for every subset
J of size n− 1. This idea is formalized as Algorithm 1.

The computation time of Algorithm 1 is(
m

n

)
(tsle (n− 1) + tmv (m) + tsort (m)) , (20)

where tsle (n) = O
(
n3
)
, tmv (n) = O

(
n2
)

and tsort (n) =
O (n log n) are the times it takes to solve a system of
linear equations, to compute a matrix-vector multiplication,
and to sort, respectively. When both m and n grow,

(
m
n

)
,

and thus the computation time of our algorithm, grows
exponentially. In many control applications, however, the
number of variables describing the state of the system, n,

Algorithm 1 Computing T ∗ (A)
Input: A ∈ Rm×n.

1: Set T ← m and let J1, . . . , JN , N =
(
m
n−1

)
, be all the

subsets of [m] .= {1 . . .m} containing n− 1 indices.
2: for k = 1 : N do
3: if dim span {ai}i∈Jk

= n− 1 then
4: Find a nontrivial solution v ∈ Rn such that

aTi v = 0 ∀i ∈ Jk.
5: Find the order r1 . . . rm such that∣∣aTr1v∣∣ ≥ ∣∣aTr2v∣∣ ≥ . . . ≥ ∣∣aTrm

v
∣∣.

6: Find the smallest integer, s, such that
s∑
i=1

∣∣aTri
v
∣∣ ≥ m∑

i=s+1

∣∣aTri
v
∣∣.

7: Set T ← min {T, s}.
8: end if
9: end for

Output: T .

is fixed, while the number of measurements, m, is flexible.
In this case, where n is fixed, our algorithm’s computation
time is polynomial in m. We further note, that while the
running time of the algorithm might still be relatively large in
practice, from the engineering design point of view it needs
to be executed only once during the design of the system to
analyze its performance. In real-time only (6) needs to be
evaluated, which can be done very efficiently using linear
programming.

The algorithm described above is different from the exist-
ing algorithm in the literature for computing the breakdown
point. In the introduction we have mentioned that in the
absence of noise, (3) and (4) are equivalent problems when
B ∈ Rp×m, p = m − n, BA = 0. The following result,
proved in [8] and in [2, §II], states that the ability of (4) to
recover e from the underdetermined linear system w = Be
depends only on the sign pattern of e:

Theorem 4.3: If for some e′ ∈ Rn, we have

e′ = arg min
e
‖e‖1 subject to Be = Be′, (21)

then for all ẽ such that sign (ẽi) = sign (e′i) , i = 1 . . . n,

ẽ = arg min
e
‖e‖1 subject to Be = Bẽ.

From this result, to determine whether we can recover any
T -sparse signal e (i.e. ‖e‖0 = T ), we only need to check
one e for each T -sparse sign pattern. Specifically:

T ∗ = min
{
T ∈ N

∣∣∃e′ ∈ ET : e′ 6= arg min
e|Be=Be′

‖e‖1
}
(22)

where ET
.= {e ∈ Rm | ∀i : ei ∈ {−1, 0, 1}, ‖e‖0 = T} .

Since |ET | = 2T
(
m
T

)
, a straightforward algorithm for

computing (22) requires time
T∗∑
T=1

2T
(
m

T

)
tlp (m× p) , (23)

where tlp is the time it takes to solve the linear programming
problem (21). We note that instead of actually solving for the
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Fig. 1. We attempt to estimate a line model from which 40 noisy and
corrupted points are drawn. The breakdown point of the MSoD estimator
is 10 points. Corrupting the 10 leftmost points corresponds to the worst-
case in which the MSoD will fail. In the example shown here we corrupted
only the 9 leftmost points. Shown in the plot are the initial model estimated
using least-squares for all the points, the model estimated by the iterative
least-squares method, and that estimated by the MSoD. We can see that
the MSoD works well, but the iterative trimming method, labeled “iterative
LS,” fails to converge to a good model.

right hand side of (21), one can check if e′ minimizes the
right hand side by looking for appropriate sub-gradients (see
[2, §II]). This alternative approach, however, still requires
solving a linear programming problem of similar size.

It is easy to see that the running time of our algorithm (20)
is exponentially faster than the alternative (23) when n/m is
small compared to T ∗/m (i.e. A is very tall) or when n/m
is very close to one (i.e. A is almost square). The first case
is precisely the interest of robust estimation – the number of
measurements needs to be large so as to tolerate more errors.
This is the case for the robust state estimation problem one
often encounters in control systems.

V. COMPARISON TO OTHER ROBUST ESTIMATORS

In this section we compare the Minimum Sum of Distances
(MSoD) estimator to other typical robust estimation schemes
in the literature.

A. Iterative Trimming

Arguably, this is the simplest robust estimator. Its appli-
cation involves calculating an estimate using all (noisy and
corrupted) measurements, say by least squares in our case.
After discarding a certain number of measurements which
are most inconsistent with the estimate, one recomputes
the estimate using the remaining measurements. One may
iterate the above process until only a predefined number
of measurements remains, or until the residual error of the
remaining measurements drops below some predefined level.

The main drawback of this method is that for certain
corruption, the initial estimate from all the data can be
made to favor some of the corrupted measurements over
the uncorrupted measurements. We are not aware of any
work that carefully analyzes the breakdown point of such an
iterative method. However, we found that we can make this
method fail using far fewer corrupted measurements than the
breakdown point calculated for the MSoD estimator. Figure
1 shows a simple example in which the iterative least squares
method fails but MSoD succeeds.

B. Random Sampling

Another popular approach to obtain robust estimate is
through the RANdom SAmpling Consensus (RANSAC)
method [9]. In our context, this corresponds to randomly
selecting n of the m measurements (equations) and solving
x. One then checks how many other measurements are con-
sistent with this estimate, say error incurred is below some
level. The algorithm repeatedly select sets of n measurements
until an estimate with high consensus is obtained. In theory,
this approach has a breakdown point of 50%.

With p randomly selected sets of n measurements, the
probably that at least one set contains no corrupted mea-
surements at all is 1− (1− qn)p where q is the percentage
of uncorrupted points. When n is small, this probability of
success can be very high with relatively small number of
selections – the reason why RANSAC has been very popular
amongst practitioners. However, ensuring a fixed probability
of success requires that the number of selections p grows
exponentially in n, making it utterly inefficient when the
dimension n is high. Linear programming solvers which
minimize the MSoD cost function, on the other hand, require
time polynomial in the size of the matrix A. Hence, MSoD
is more scalable than RANSAC in dimension n, despite a
lower breakdown point.2

VI. APPLICATION - VEHICLE POSITION ESTIMATION

In this subsection we present a “real-life” application that
demonstrates the potential benefits of the Minimum Sum
of Distances Estimator (MSoD). The problem which we
address is estimating the position, orientation and velocity of
a vehicle moving in 2D. The vehicle has inertial navigation
sensors (gyroscopes) that generate noisy measurements of its
velocity v and its rate of orientation change θ̇. In addition,
the vehicle receives noisy measurements of its east, e, and
north, n, position. A typical source for such measurements
is a GPS system, which may produce corrupted or erroneous
measurements due to multi-paths. The inertial measurements
are generated every ts seconds, while the position measure-
ments are generated every Ts seconds, with ts � Ts.

Given the car state at time t0, its position at time t1 is

e (t1) = e (t0) +
∫ t1
t0

cos θ (τ) v (τ) dτ
n (t1) = n (t0) +

∫ t1
t0

sin θ (τ) v (τ) dτ.

Denote by ·̂ our estimate of the car state and by x =(
e− ê, n− n̂, θ − θ̂, v − v̂

)T
our (presumably small) esti-

mation error. Denote by ge, gn the position measurements

and by y (t) .=
(
yT0 (t) , . . . , yd (t)T

)T
the measurement

residuals over a dTs-time period, where

yk (t) .=
(

ge (t+ kTS)− ê (t+ kTS)
gn (t+ kTS)− n̂ (t+ kTS)

)
≈(

1 0 0 0
0 1 0 0

)
x (t+ kTs)

.= Cxk (t) .

2It has been shown in the literature that for randomly generated A, the
breakdown point of MSoD grows linearly in m [2], [10]. However, the
fraction is normally bounded from above by 1/3.



Based on our assumptions, we can write

x (t+ Ts) ≈

x (t) +


∫ t+Ts

t
cos θ(τ)v(τ)dτ−

∫ t+Ts

t
cos θ̂(τ)v̂(τ)dτ∫ t+Ts

t
sin θ(τ)v(τ)dτ−

∫ t+Ts

t
sin θ̂(τ)v̂(τ)dτ

0
0

 ≈
 1 0

∫ t+Ts

t
− sin θ(τ)v(τ)dτ

∫ t+Ts

t
cos θ(τ)dτ

0 1
∫ t+Ts

t
cos θ(τ)v(τ)dτ

∫ t+Ts

t
sin θ(τ)dτ

0 0 1 0
0 0 0 1

x (t) .=

F (t)x (t)

so that

y (t) ≈

 C
CF (t)

...
CF (t+(d−1)Ts)...F (t+Ts)F (t)

x (t) .= A (t)x (t) .

(24)
The approximations are due to the linearization of the
nonlinear relation between the presumably small estimation
error and the measurement residuals, and due to the noise
and corruptions of the measurements.

Equation (24) is the linear model on which we apply our
estimation scheme. Every time a new position measurement
is generated we use it together with the last d position mea-
surements to correct the vehicle estimated state. The matrix
A (t) and the estimated expected positions in the y vector are
regenerated every time a new position measurement arrives
to reflect our best estimate so far.

Simulation results are given in Figure 2. In this simulation,
the breakdown point, calculated by Algorithm 1, ranges from
4 to 6, depending on the vehicle maneuvers. While the
number of corrupted measurements occasionally exceeded
the breakdown point, the results were still remarkably good.
This is because the breakdown point represent a worst case
scenario whose probability is relatively low. For comparison
we also show in Figure 2 simulation results when a standard
nonlinear Kalman filter was used for this system.

VII. CONCLUSION

The main contribution of this paper was to show that
the MSoD estimator, which was known to be robust with
respect to corruption, is also stable with respect to noise.
We also showed how to quantify the robustness and stability
properties for deterministic matrices. Further study, for which
the results in this paper can be used as a basis, is still needed.
Key problems include developing a probabilistic or average-
case analysis, as well as studying whether reweighting (by
scaling the ai’s) can improve the estimator.
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Fig. 2. Estimating a vehicle position which is moving in a 2D plane
from noisy and corrupted measurements. The MSoD estimation scheme was
applied on the linear model (24) using d = 19. The units in the plot are
meters. The car average velocity is 85km/h. New position measurements are
generated every Ts = 1 seconds. Uncorrupted position measurements have
noise with 10m standard deviation. Corrupted measurements have errors
which are uniformly distributed up to 400m. The system have a 0.06 (6%)
probability of switching from an uncorrupted to a corrupted mode, and a 0.5
probability of switching from a corrupted mode to an uncorrupted mode. The
maximum and the average magnitude of the position errors were 55m and
9m, respectively. For comparison we also show the results of using standard
nonlinear Kalman filter. The standard deviation of the position errors, used
to calculate the Kalman gains, was 200m. The maximum and the average
magnitude of the position errors were 157m and 30m, respectively.
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