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ABSTRACT
In this paper, we address the problem of hallucinating a high
resolution face given a low resolution input face. The prob-
lem is approached through sparse coding. To exploit the fa-
cial structure, Non-negative Matrix Factorization (NMF) [1]
is first employed to learn a localized part-based subspace.
This subspace is effective for super-resolving the incoming
low resolution face under reconstruction constraints. To fur-
ther enhance the detailed facial information, we propose a
local patch method based on sparse representation with re-
spect to coupled overcomplete patch dictionaries, which can
be fast solved through linear programming. Experiments
demonstrate that our approach can hallucinate high quality
super-resolution faces.

Index Terms— Super-resolution, face hallucination, non-
negative matrix factorization, sparse representation, sparse
coding.

1. INTRODUCTION

In most surveillance scenarios, there is a large distance be-
tween the camera and the objects of interest in the scene, usu-
ally resulting in low resolution of these objects. For tasks
such as automatic face recognition and identification, it is of-
ten needed to enhance the resolution of the faces. Numerous
super-resolution algorithms for generic images have been pro-
posed in the literature [11], [10], [4], [8], [13], [5], which ei-
ther achieve a Maximum a Posteriori (MAP) solution comb-
ing multiple frames under reconstruction constraints or gener-
ate a high resolution image from a single low resolution input
using priors learned from local patch pairs. However, without
consideration on special characteristics of face images, these
algorithms are not so efficient when applied to very low reso-
lution faces.

Baker and Kanade [3] started the pioneering work on face
hallucination. As a heuristic method, the gradient pyramid-
based prediction cannot model the face priors very well, and
the pixels are predicted individually, causing discontinuity
and artifacts. Liu et al. [12] proposed a two-step statistical
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approach integrating the global PCA model and a local patch
model. Although the algorithm yields good results, it uses the
holistic PCA model tending to render results like the mean
face and the probabilistic local patch model is very compli-
cated. Wei Liu et al. [2] proposed a new approach based on
TensorPatch and residue compensation. Adding more details
to the face, the algorithm also results in more artifacts.

In this paper, we propose a novel approach to the face hal-
lucination problem through sparse coding. Non-negativeMa-
trix Factorization is used to learn a localized parts-based rep-
resentation, which is believed to be the principles of human
learning by psychologists and physiologists. Then with cou-
pled overcomplete dictionaries, the local patch based method
from sparse representation is used to further enhance the res-
olution.

2. SPARSE CODING USING NON-NEGATIVE
MATRIX FACTORIZATION

In face hallucination, the most frequently used subspace
method for modeling the human face is PCA, which chooses
a new coordinate system such that the variances of the dataset
are preserved orderly. However, the PCA bases are holistic,
making it unstable to occlusions. Compared to NMF, the
reconstruction results of PCA are not that intuitive and hard
to interpret as PCA allows subtractive combinations of the
basis images.

Even though faces are objects with lots of variance, they
are made up of several relatively independent parts such as
eyes, eyebrows, noses, mouths, checks and chins. The idea
behind Non-negative Matrix Factorization (NMF) [1] is to
extract these relevant parts and find an additive combination
of these local features, which is inspired by psychological
and physiological principles assuming that humans learn ob-
jects in part-based owner. To find such a part-based subspace,
NMF is formulated as the following optimization problem:

argmin
W,H

‖D − WH‖2
2

s.t. W ≥ 0, H ≥ 0,
(1)

whereD ∈ %n×m is the data matrix,W ∈ %n×r is the basis
matrix and H ∈ %r×m is the coefficient matrix. The number



of the bases r can be chosen as n∗m/(n+m)which is smaller
than n andm, meaning a more compact representation. It can
be shown that the solution to (1) can be achieved through the
following updata rules:

Hij ←− Hij
(WT D)ij

(WT WH)ij

Wti ←− Wti
(DHT )ti

(WHHT )ki
,

(2)

where 1 ≤ i ≤ r, 1 ≤ j ≤ m and 1 ≤ t ≤ n.
Let Ih and Il denote the high resolution and low resolution

faces respectively. Il is obtained from Ih by smoothing and
downsampling. Write Ih and Il as long vectors by stacking
their columns, the image degradation process from high to
low resolution can be formulated as Il = MIh, where M is
a matrix performing both blurring and downsampling. Given
Il, we can achieve the optimal solution for Ih based on the
Maximum a Posteriori (MAP) criterion,

I∗h = argmax
Ih

p(Il|Ih)p(Ih). (3)

Using the rules in (2), we can obtain the basis matrixW ,
which is composed of sparse bases. Let Ω denote the face
subspace spanned by W . Then in the subspace Ω, the super-
resolution problem in (3) can be reformulated as:

c∗ = arg min
c

‖MWc− Il‖2
2 + λρ(Wc)

s.t. c ≥ 0,
(4)

where ρ(Wc) is a prior term regularizing the high resolution
solution, c ∈ %r×1 is the coefficient vector in the subspace
Ω for estimated the high resolution face, and λ is a parame-
ter used to balance the reconstruction fidelity and the penalty
of the piror term. A lot of image priors have been proposed
over the years to regularize those ill-posed inverse problems
in image processing including super-resolution.

In this paper, we simply use a generic image prior requir-
ing that the solution should be smooth. Let Γ denote a matrix
performing high-pass filtering. The final formulation for (4)
is:

c∗ = argmin
c

‖MWc− Il‖2
2 + λ‖ΓWc‖2

s.t. c ≥ 0.
(5)

The high resolution image Ih is approximated byWc∗. How-
ever, the prior term in (5) suppresses the high frequency com-
ponents, resulting in over-smoothness in the solution image.
We will rectify this in Sec. 3 using a local patch method based
on sparse representation.

3. SPARSE CODING FROM SPARSE
REPRESENTATION

In recent years, there has been a growing interest in the study
of sparse representation of signals. Using an overcomplete

dictionary that contains prototype signal-atoms, signals are
represented as sparse linear combinations of these atoms.
Specifically, let D ∈ %n×K be an overcomplete dictionary
containing K prototype signal-atoms, and suppose a signal
x ∈ %n can be represented as a sparse linear combination of
these atoms. That is, x = Dα0 where α0 ∈ %K is a vector
with very few () K) nonzero entries. In practice, we might
observe only a small set of or corrupted measurements y of
x:

y .= Lx = LDα0, (6)

where L ∈ %k×n with k ≤ n. In our super-resolution con-
text, x is a high-resolution image patch, while y is its low-
resolution counterpart (or features extracted from it). If the
dictionary D is overcomplete, the equation x = Dα0 is un-
derdetermined for the unknown coefficients α0. The equa-
tion y = LDα0 is even more underdetermined. Neverthe-
less, under mild conditions, the sparsest solution α0 to this
equation will be unique. Furthermore, if D satisfies an ap-
propriate near-isometry condition, then for a wide variety of
matrices L, any sufficiently sparse linear representation of a
high-resolution image x in terms ofD can be recovered from
the low-resolution image.

Since the results given by (5) are smooth because of the
prior term, we further use a local patch method to add more
details. As in other patch-based methods, we divide the in-
coming low resolution image into overlapped patches and try
to infer the high-resolution patch for each low-resolution
patch from the input. Suppose we have low-resolution
face images {I (i)

l }ns
i=1 and their high-resolution counterparts

{I(i)
h }ns

i=1 as our training set, where ns is the sample number.
For each image pair in the training set, randomly sample
patch pairs in the same locations from them. We arrange all
these patches into two matrices: D! = [y(1), ..., y(N)] and
D! = [x(1), ..., x(N)], where y(i) is the vector representation
of the i-th low resolution patch, and x(i) is the vector repre-
sentation of the corresponding high resolution patch. D ! and
D! form the two dictionaries we use for our sparse represen-
tation algorithm. We subtract the mean pixel value for each
patch, so that the dictionaries represent image patterns more
succinctly.

For each input low-resolution patch y, we find a sparse
representation for it with respect to the low-resolution dictio-
naryD!. The corresponding high-resolution patchesD! will
be combined according to these sparse coefficients to gener-
ate the output high-resolution patch x. The problem of finding
the sparsest representation of y can be formulated as:

min ‖α‖0 s.t. ‖FD!α− Fy‖2
2 ≤ ε, (7)

where ‖ · ‖0 denotes the zero norm (the number of nonzero
entries of the vector), and F is a feature extraction operator.
In this paper, F is chosen as a gradient filter. The main role
of F in (7) is to provide a perceptually meaningful constraint
on how closely the coefficients α must approximate y.



Although the optimization problem (7) is NP-hard in gen-
eral, recent results [6] indicate that as long as the desired co-
efficients α are sufficiently sparse, they can be efficiently re-
covered by instead minimizing the %1-norm, as follows:

min ‖α‖1 s.t. ‖FD!α− Fy‖2
2 ≤ ε. (8)

Lagrange multipliers offer an equivalent formulation:

min η‖α‖1 + 1
2‖FD!α− Fy‖2

2, (9)

where the parameter η balances the sparsity of the solution
and fidelity of the approximation to y. Notice that this is es-
sentially a linear regression regularized with %1-norm on the
coefficients, known in the statistical literature as the Lasso
[14].

Solving (9) individually for each patch however does not
guarantee compatibility between adjacent patches. We en-
force compatibility between adjacent patches using a one-
pass algorithm similar to that of [9]. The patches are pro-
cessed in raster-scan order in the image, from left to right and
top to bottom. We modify (8) so that the super-resolution
reconstruction D!α of the patch y is constrained to closely
agree with the previously computed adjacent high-resolution
patches. The resulting optimization problem is

min ‖α‖1 s.t. ‖FD!α− Fy‖2
2 ≤ ε1

‖PD!α− w‖2
2 ≤ ε2,

(10)

where the matrix P extracts the overlapped region between
the current target patch and previously reconstructed high-
resolution image, andw contains the values of the previously
reconstructed high-resolution image on the overlap. The con-
strained optimization (10) can be similarly reformulated as:

min η‖α‖1 + 1
2‖D̃α− ỹ‖2

2, (11)

where D̃ =
[

FD!

βPD!

]
and ỹ =

[
Fy
βw

]
. The parameter β con-

trols the tradeoff between matching the low-resolution input
and finding a high-resolution patch that is compatible with its
neighbors. In our experiments, we simply set β = 1. Given
the optimal solution α∗ to (11), the high-resolution patch can
be reconstructed as x = D!α∗.

4. FACE HALLUCINATION FROM SPARSE CODING
ALGORITHM

In this section we summarize our face hallucination algo-
rithm. In the first step, using the sparse subspace Ω, we can
recover the global face structure and main local features of
the target high resolution image. However, the result image is
over smoothed from the first step because of the smoothness
prior term. To further enhance the local detail information,
we employ the sparse representation technique with respect
to coupled dictionaries D! and D! for each input patch.
The complete framework of our algorithm is summarized as
Algorithm 1.

Algorithm 1 (Face Hallucination via Sparse Coding).
1: Input: sparse basis matrix W , training dictionaries D!
andD!, a low-resolution image Il.

2: Find a smooth high resolution face Y from the subspace
spanned byW through:

• Solve the optimization problem in (5):
arg minc ‖MWc−Il‖2+λ‖ΓWc‖2 s.t. c ≥ 0.

• Y = Wc∗.

3: For each patch y of Y , taken starting from the upper-left
corner with 1 pixel overlap in each direction,

• Solve the optimization problem with D̃ and ỹ de-
fined in (11): min η‖α‖1 + 1

2‖D̃α− ỹ‖2
2.

• Generate the high-resolution patch x = D!α∗. Put
the patch x into a high-resolution imageX ∗.

4: Output: super-resolution faceX ∗.

5. EXPERIMENT RESULTS

Our experiments were conducted on the face database FRGC
Ver 1.0 [15]. All these face images were aligned by an auto-
matic alignment algorithm using the eye positions, and then
cropped to the size of 100 × 100 pixels. To obtain the sparse
subspace Ω spanned by W , we selected 540 face images,
covering both genders, different races and facial expressions
(Figure 1). To prepare the coupled dictionaries needed by our
sparse representation algorithm, we sampled approximately
100,000 patch pairs from the training images. The patches
are of size 5 × 5 pixels. 30 outside faces were chosen as our
testing cases, which were blurred and downsampled to the
size of 25-by-25 pixels.

Fig. 1. Example training faces in our algorithm.

In our algorithm, there is only one parameter λ (5) that
we need to determine. Experimentally, we find that setting
λ = 0.005 generally offers satisfactory results. We com-
pare our algorithmwith bicubic interpolation and backprojec-
tion [11]. The results are shown in Figure 2, which indicate
that our method can generate much higher resolution faces.
From columns 4 and 5, we can also see that the local patch
method based on sparse respresentation further enhances the
edges and textures.



Fig. 2. Results of our algorithm compared to other methods. From left to right columns: low resolution input; bicubic interpo-
lation; back projection; sparse coding via NMF followed by bilater filtering; sparse coding via NMF and Sparse Representation;
Original.

6. CONCLUSION

In this paper, we propose a new method for face hallucination
via sparse coding (sparse basis coding and sparse represen-
tation). Although we only use a small database and a sim-
ply face alignment algorithm, the results already reveal the
potential of our algorithm for hallucinating faces. A larger
training database and more complicated face alignments as
in [12] and [2] will promise better results, and we leave that
to our future work.
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