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Abstract. Sparse representation based classification (SRC) methods
have recently drawn much attention in face recognition, due to their good
performance and robustness against misalignment, illumination varia-
tion, and occlusion. They assume the errors caused by image variations
can be modeled as pixel-wisely sparse. However, in many practical sce-
narios these errors are not truly pixel-wisely sparse but rather sparsely
distributed with structures, i.e., they constitute contiguous regions dis-
tributed at different face positions. In this paper, we introduce a class of
structured sparsity-inducing norms into the SRC framework, to model
various corruptions in face images caused by misalignment, shadow (due
to illumination change), and occlusion. For practical face recognition, we
develop an automatic face alignment method based on minimizing the
structured sparsity norm. Experiments on benchmark face datasets show
improved performance over SRC and other alternative methods.

1 Introduction

Face recognition is a long-standing problem in computer vision. It has broad
applications ranging from less-demanding ones such as family photo album or-
ganization (e.g., Apple iPhoto), to the most challenging applications of mass
surveillance and terrorist watchlist that require high recognition performance
but good training images are difficult to be obtained. In this work, we con-
sider an application scenario that falls between these two extremes, where high
recognition performance is desired but a rich set of training face images can be
pre-captured in controlled conditions. Notable applications of this kind are ac-
cess control for secure facilities, computer systems, automobiles, etc. Among face
recognition methods targeting for this scenario, the classical subspace methods
such as Eigenfaces [1], Fisherfaces [2] and nearest subspace (NS) [7] have been
extensively studied. They generally work well in laboratory conditions. Under
practical working or testing conditions their performance is very sensitive to
illumination change, occlusion, or misalignment (due to scale or pose changes).

Recently, sparse representation based classification (SRC) methods have been
proposed [3, 13, 11] and shown their promise in handling these variabilities in
face recognition. In particular, Wright et al. [3] proposed to use an extended
ℓ1-norm minimization for robust face recognition. Assuming access to a face
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database with each subject having multiple registered training images taken
under varying illuminations, [3] casts face recognition as the problem of finding
a sparse representation of a test image in terms of the training ones, plus a
sparse error image compensating for possible occlusion or corruption. Denote
the set of training images as {Ak}Kk=1 for K subjects. Ak ∈ Rm×nk contains
images of subject k, with each image being concatenated as a column vector
of Ak. We can put images of all subjects together to form a large matrix A =
[A1,A2, . . . ,AK ] ∈ Rm×n. The sparse representation x and sparse error e are
recovered in [3] by solving the extended ℓ1-norm minimization problem

(ℓ1 ℓ1) : min
x,e

∥x∥1 + ∥e∥1 s.t. y = Ax+ e, (1)

where y ∈ Rm is the given test face image. A key component in their method
leading to the above robustness is to enforce sparsity by ℓ1-norm on the residual
or error image e. By leveraging the same sparsity assumption using ℓ1-norm
minimization, an automatic face alignment algorithm was developed in [13].
Suppose y′ is an observed test face that is not in register with the training
images {Ak}Kk=1. To recover a well aligned image y = y′ ◦ τ so that it can be
readily used for robust face recognition, where τ represents some transformation
acting on the image domain (e.g., 2D similarity transformation), [13] proposed
to solve the following optimization problem to seek the correct transformation
τ and sparse error e

min
e,τk,xk

∥e∥1 s.t. y′ ◦ τk = Akxk + e, (2)

where y′ is sequentially aligned to each subject Ak instead of the whole training
set A, mainly due to the difficulty of optimization associated with the later
case, as discussed in [13]. [13] demonstrates the state-of-the-art face recognition
performance in a practical access control setting. The success of SRC methods
has also inspired many following works [14, 15].

In the context of statistical signal processing, it is well known that when
using ℓ1-norm to promote the sparsity in the errors e, it assumes that each pixel
is independently corrupted. However, for many practical face variations such as
occlusion, disguise, or shadow caused by illumination change, errors due to these
variations are typically spatially contiguous. It becomes inappropriate to model
these variations using ℓ1-norm minimization, as did in [3, 13, 14].

The theory of compressed sensing suggests that given contiguous structures,
it is possible to recover sparse signals with fewer measurements [12]. This means
that from a fixed number of measurements (pixels), we should expect to cor-
rect a larger fraction of errors and subsequently obtain improved recognition
performance if the structural prior knowledge of the corruption can be properly
harnessed. In particular, [11] has used a Markov Random Fields (MRF) model to
estimate a contiguous error support from the obtained e, and has demonstrated
significantly improved performance over [3] for contiguous occlusion. However,
the performance of the MRF model [11] drops drastically when test images are
subject to slight misalignment. To handle misalignment [13] still resorts to pro-
moting the sparsity on e with ℓ1-norm.
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In this paper we introduce a new class of norms that can promote error
sparsity patterns with the properties of contiguity and spatial locality. Our mo-
tivation follows the recent development of new sparsity-inducing norms that
are capable of encoding prior knowledge about the expected structured sparsity
patterns. While ℓ1-norm can only promote independent sparsity [16], one can
partition variables into disjoint groups and promote group sparsity using the so
called group Lasso regularization [17]. To induce more sophisticated structured
sparsity patterns, it becomes essential to use structured sparsity-inducing norms
built on overlapping groups of variables [20, 19]. In this paper, we consider to
use a hierarchical tree-structured sparsity-inducing norm [20, 22] on the error
e of a test face, as shown in Figure 1, where overlapping groups of pixels are
from local patches of varying size and each group corresponds to a node of the
tree. As shown in our experiments in Section 4, without knowing explicitly the
number, locations, sizes, and shapes of contiguous errors caused by various face
variations, our method performs better than [3] in terms of handling spatially
contiguous errors. When test images are not well aligned with training images,
unlike the MRF based method, we can effectively bring the images in alignment
via minimizing the structured sparsity norm, by simply replacing the ℓ1-norm in
equation (2). In fact, experiments show that our method performs better than
using the ℓ1-norm for alignment and recognition [13], especially in cases when
only partial face is visible due to occlusion or disguise.

To solve the corresponding optimization problems, we develop efficient al-
gorithms based on the Augmented Lagrange Multiplier (ALM) method [23], in
which a proximal problem associated with structured sparsity norm regulariza-
tion can be efficiently solved using techniques given in [21, 22]. The better er-
ror correction capability of structured sparsity translates readily into improved
face recognition performance. Experiments on benchmark face databases show
that our methods achieve the state-of-the-art recognition results, and outper-
form other SRC-based methods in simultaneously handling illumination change,
occlusion, and misalignment in the test face image.

2 Modeling using structured sparsity-inducing norms

In this section, we discuss how we could systematically develop sparsity-inducing
norms that can incorporate prior structures on the support of the errors such as
spatial continuity. We hope that such structures can better model corruptions in
practical face images due to shadows, occlusion or disguise, and misalignment.

In this broader context, the work of [3] essentially considers a special case to
the following problem

min
x,e

∥x∥1 + ψ(e) s.t. y = Ax+ e (3)

with the regularizer ψ(·) on e chosen to be ∥e∥1. The geometry of how ℓ1-
norm penalizing sparse errors is illustrated in Figure 2-(a), i.e., the unit ball
of ℓ1-norm. Clearly, the ℓ1-norm regularization treats each entry (pixel) in e
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Fig. 1. Illustration of a four-level hierarchical tree group structure defined on the error image. Each

circle represents a pixel, and connected circles represent a node/group in the tree. The 8× 8 image

in (a) is divided into 4 sub-images in (b) according to spatial locality, and each sub-image can be

viewed as a child node of (a). The similar relation goes from (b) to (c), and from (c) to (d). Each

group of connected black circles represents a node forced to zero, and white circles show the induced

sparsity pattern by the tree-structured norm (4).

(a) (b) (c) (d) (e)

Fig. 2. Unit balls of different norms. (a), (b), and (c) are respectively for ℓ1-norm, ℓ2-norm, and

ℓ∞-norm in 2-dimensional space. (d) is for a non-overlapping group Lasso norm in 3-dimensional

space: ψ(e) = ∥e{1,2}∥2 + |e3|. (e) is for a structured sparsity norm with overlapping groups in

3-dimensional space: ψ(e) = ∥e{1,2,3}∥2 + ∥e{1,2}∥2 + |e1| + |e2| + |e3|. Singular points appearing

on these balls characterize the sparsity-inducing behavior of the underlying norms.

independently. It does not take into account any specific structures or possible
relations among subsets of the entries. While in face recognition scenarios, shad-
ows caused by illumination change, occlusion, misalignment, or even pose and
expression changes normally have the structural properties of spatial contiguity
and locality. Indeed, as reported in [3], SRC based on ℓ1-norm performs better
in case of random pixel corruption than contiguous occlusion. Unfortunately the
later case is actually closer to practical situations in face recognition.

To encode prior knowledge, researchers have proposed to partition variables
into disjoint groups, and use the so called group Lasso penalty [17] to promote
sparsity on the group level. Given e ∈ Rm, the variables with indices {1, . . . ,m}
can be partitioned into a disjoint set of groups, denoted as G, with each group
G ∈ G containing a subset of these indices. A group Lasso norm used in [17]
is defined as ψ(e) =

∑
G∈G ∥eG∥2. As expected, a regularized solution by this

norm has the property that variables in the same group are prone to be zero or
nonzero simultaneously. Figure 2-(d) shows a geometric interpretation. Applied
to the face error image e, it corresponds to divide e into non-overlapping local
patches. However, the error patterns in e corresponding to various face variations
could have arbitrary shapes, with unknown sizes and number. It is impossible to
pre-design disjoint group structures in order to promote error patterns precisely
matching corruptions in actual face images.
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To induce more diverse and sophisticated sparse error patterns, we consider
structured sparsity-inducing norms that involve overlapping groups of variables,
motivated by recent advances in structured sparsity [20, 19]. Although it still
assumes pre-defined group structures, the overlapping patterns of groups and the
norms associated with the groups of variables allow to encode much richer classes
of structured sparsity. Figure 2-(d) and -(e) give a geometric comparison between
overlapping and non-overlapping group norms for a 3-dimensional vector. In
this work, we consider a tree-structured sparsity-inducing norm. It involves a
hierarchical partition of the m variables in e into groups, as shown in Figure 1.
The tree is defined in a way that leaf nodes are singleton groups corresponding
to individual pixels, and internal nodes/groups correspond to local patches of
varying size. Thus each parent node contains a hierarchy of child nodes that
are spatially adjacent to each other and constitute a local part in the face error
image e. As illustrated in Figure 1, when a parent node goes to zero all its
descendents in the tree must go to zero. Consequently, the nonzero or support
patterns are formed by removing those nodes forced to zero. This is exactly the
desired effect of structured error patterns of spatial locality and contiguity.

To put formally, denote G as a set of groups from the power set of the index
set {1, . . . ,m}, with each group G ∈ G containing a subset of these indices. The
tree-structured groups used in this paper are defined as follows: A set of groups
G is said to be tree-structured in {1, . . . ,m} if G = {. . . , Gi1, Gi2, . . . , Gibi , . . . }
where i = 0, 1, 2, . . . , d, d is the depth of the tree, b0 = 1 and G0

1 = {1, 2, . . . ,m},
bd = m and correspondingly {Gdj}mj=1 are singleton groups. Let Gij be the parent

node of a node Gi+1
j′ in the tree, we have Gi+1

j′ ⊆ Gij . For any 1 ≤ j, k ≤ bi,

j ̸= k, we also have Gij ∩Gik = ∅.
Similar group structures are also considered in [20, 22]. With the above no-

tation, a general tree-structured sparsity-inducing norm can be written as

ψ(e) =

d∑
i=0

bi∑
j=1

wij∥eGi
j
∥p, (4)

where eGi
j
is a vector with entries equal to those of e for the indices in Gij and

0 otherwise. wij are positive weights for groups Gij . It is commonly chosen as

wij = 1. ∥ · ∥p denotes ℓp-norm with p ≥ 1, and popular choices of p are {2,∞}.
Note that support patterns in the error image e corresponding to practical face
variations are usually spatially localized and continuous, such as occlusion or
shadow caused by illumination change. Pixels inside each of such error regions
may have similarly large magnitude. When applying the sparsity-inducing norm
∥ · ∥p to eGi

j
, i.e., a group of pixels in a local patch, we expect similar errors in

magnitude can be induced. For the ℓ∞-norm, it is the maximum value of pixels in
a group that decides if the group is set to nonzero or not, and it does encourage
the rest of the pixels to take arbitrary (hence close to the maximum) values.
Thus, in this paper we choose p = ∞ in the tree-structured norm (4). Figure
2-(b) and -(c) compares the unit balls of ℓ∞ and ℓ2 norms. The effectiveness of
this choice is also corroborated with empirical evidences. The so defined norm
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(4) promotes sparse error patterns more consistent to practical face variations
than standard ℓ1-norm. Figure 3 shows such an advantage by comparing with
[3] on recovering a clean face from occlusion.

3 Robust face recognition via structured sparsity

In this section, we use the so defined structured sparsity-inducing norm to replace
the ℓ1-norm for modeling the error e in robust face recognition. Thus, the (ℓ1 ℓ1)
objective function in the optimization program (1) is modified to the following

(ℓ1 ℓstruct) : min
x,e

∥x∥1 + λ
d∑
i=0

bi∑
j=1

wij∥eGi
j
∥∞ s.t. y = Ax+ e, (5)

where the sparse vector x induced by ℓ1-norm is naturally discriminative and
encodes the identity of the test sample y. λ is a parameter controlling the trade-
off between sparsity of x and structured sparsity of e.

A drawback of formulation (5) is that y could be linearly represented by
training samples of multiple subjects. As a consequence, the induced error e
contains both within-class variation and between-class difference. On the other
hand, identification of within-class variation is essential for face recognition since
misclassification is mainly due to these variations. We thus propose another
subject-wise face recognition method that involves solving

(ℓstruct) : min
ek,xk

d∑
i=0

bi∑
j=1

wij∥ek,Gi
j
∥∞ s.t. y = Akxk + ek, (6)

w.r.t. each subject k of all the K subjects. If y belongs to subject k, solving (6)
makes it possible to identify face regions of y that correspond to within-class
variations. By discarding those regions a clean face image well-approximated by
Ak can be recovered. The formulation (6) is thus a good approach to measure
the capabilities of different methods for identifying within-class variations of test
images. In this paper, we compare (6) with ℓ1-norm variant of (6), which was
considered in [11], in these settings. When optimizing (6) w.r.t. each subject,
ideally the optimal e∗k with the true subject would be smallest if based on some
properly defined measure. (6) thus suggests new classification criteria which will
be introduced shortly.

Both (5) and (6) are convex programs. To solve them we have developed algo-
rithms based on Augmented Lagrange Multiplier (ALM) methods [23]. ALM has
demonstrated its good balance between efficiency and accuracy in related sparse
representation based face recognition methods [4, 13]. The notable difference here
is that in our ALM framework, a subproblem concerns with a proximal problem
associated with structured sparsity-inducing norm regularization. A few recently
proposed techniques can be exploited to efficiently solve the proximal problems
of such kind [21, 22, 20]. For the case of ℓ∞-norm applied to overlapping groups
considered in this paper, solutions can be found by solving a quadratic min-cost
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flow problem [21]. Please refer to the supplemental material 1 for details of our
developed algorithms for solving (5) and (6).

3.1 Alternative classification criteria

Given a test image y, solving (5) enables us to obtain the optimal sparse vectors
x∗ and e∗. When y is a face image from one of the K classes in the training set,
we use the method in [3] for face classification. Denote δk(x) as a function to
select coefficients from x corresponding to training samples of subject k, y can
be classified as the class that minimizes the residuals

identity(y) = argmin
k
rk(y), rk(y) = ∥y −Akδk(x

∗)∥2. (7)

Solving (6) w.r.t. each subject gives the optimal vectors {e∗k}Kk=1 and {x∗k}Kk=1.
Since {x∗k}Kk=1 are computed locally w.r.t. each subject, it is no longer available
to use the criteria as above. Instead, it is natural to compare e∗k, k = 1, . . . ,K,
to classify y if y is from one of the K training subjects. In this paper, we choose
to classify y to the class that minimizes the structured group sparsity norms

identity(y) = argmin
k
ψ(e∗k), ψ(e

∗
k) =

d∑
i=0

bi∑
j=1

wij∥e∗k,Gi
j
∥∞. (8)

This criteria outperforms the conventional ℓ1-norm alternative, as reported in
our experiments in Section 4.

The so obtained {e∗k}Kk=1 provide information for identifying the regions of
y that correspond to either within-class variation or between-class difference2.
Intuitively, the size of support regions for within-class variation should be smaller
than that for between-class difference. This suggects a new classification criteria
based on support regions of e∗k for k = 1, . . . ,K. To identify the support regions,
[11] adopted a non-convex formulation based on a Markov random field model.
Instead, we here consider a simple thresholding scheme in order to show the
superiority of structured sparsity for identification of different face variations. In
particular, we can normalize the range of entry values of each e∗k to [0, 1]. Denote
0 < τ < 1 as a threshold parameter, and sk ∈ {0, 1}m as a support vector for
each e∗k. sk can be computed by setting sk[i] = 0 when e∗k[i] ≤ τ and sk[i] = 1
otherwise. With the above notations the new classification criteria based on the
sizes of support regions of {e∗k}Kk=1 is defined as

identity(y) = argmin
k

∥ê∗k∥1
|{i|sk[i] = 0}|

1

|{i|sk[i] = 0}|
, (9)

where ê∗k is a subvector of e
∗
k with entries of indices corresponding to {i|sk[i] = 1}

removed. Thus the first part in (9) computes the averaged error value for each
entry of ê∗k, and the introduction of the second part in (9) make this criteria
favor e∗k with smaller support regions.

1 http://web.adsc.com.sg/perception/publications.html
2 Usually entries of e∗

k will be very small in magnitude rather than exactly zero. And
support regions of e∗

k cannot be directly obtained.
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3.2 Robust face alignment via structured sparsity

So far we have assumed that the test image y is well aligned with the training
images A = [A1,A2, . . . ,AK ]. Precise alignment is crucial for success of sparse
representation based face recognition methods – in fact, good alignment is im-
portant for any recognition tasks. However, practically observed test image y′

could be subject to some pose change or misalignment, so that the above as-
sumed linear model y′ = Akxk + ek no longer holds for any k. In the context of
practical face recognition, y′ can be related to y by y = y′ ◦ τ , where τ stands
for some transformation in the image domain (e.g., 2D similarity transforma-
tion for correcting misalignment, or 2D projective transformation for handling
some pose change). The objective thus becomes to find the correct τ so that
after transformation the obtained y from y′ can be represented linearly by the
training images.

As suggested in [13], the assumption of sparsity itself provides a strong cue
for finding the deformation τ . As an extension to the problem (6), based on
our structured sparisty, we formulate the alignment problem as the following
optimization objective

τ∗k = arg min
τk,ek,xk

d∑
i=0

bi∑
j=1

wij∥ek,Gi
j
∥∞ s.t. y′ ◦ τk = Akxk + ek, (10)

for k = 1, . . . ,K. The problem (10) is a difficult, nonconvex optimization prob-
lem over the deformation τk, error ek and coefficient vector xk. Fortunately, in
practice a good initialization of τk can be obtained from the output of an auto-
matic face detector [8]. To solve (10), we follow the strategy of [13] by repeatedly
linearizing about the current estimate of τk, and seeking a deformation step ∆τk
via the following minimization problem

∆τ∗k = arg min
∆τk,ek,xk

d∑
i=0

bi∑
j=1

wij∥ek,Gi
j
∥∞ s.t. y′◦τk+J∆τk = Akxk+ek, (11)

where J = ∂
∂τk

y′ ◦ τk is the Jacobian of y′ ◦ τk w.r.t. the transformation pa-

rameters τk. The notable difference of model (11) from that considered in [13] is
the sparsity-inducing norm enforced on error ek: here we use structured group
sparsity norm while ℓ1-norm was used in [13]. We empirically observe that when
y′ contains large variations such as occlusion or disguise, our model is much
better than that in [13] for face alignment and recognition, as reported in our
experiments in Section 4. For solving (11), we have again developed an algorithm
based on ALM. Please refer to the supplemental material for details of our algo-
rithm. Similar to [13], it is important to normalize the warped image y′ ◦ τk in
optimization of (11), by replacing the linearization of y′ ◦ τk with a linearization

of the normalized version y′◦τk
∥y′◦τk∥2 .

After solving (10) w.r.t. all K subjects, the optimal {τ∗k}Kk=1 and {e∗k}Kk=1 can
be obtained. The per-subject alignment residuals {e∗k}Kk=1 can be naturally used
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Algorithm 1: Robust face alignment and classification via structured sparsity

input : A test image y′ ∈ Rm, initial transformations {τ0
k}

K
k=1, a matrix of well-aligned

and normalized training samples of K subjects A = [A1,A2, . . . ,AK ] ∈ Rm×n, a

set of pre-defined tree-structured groups G = {Gi
j} with i = 0, 1, . . . , d and

j = 1, . . . , bi, the weight wi
j ≥ 0 for each Gi

j , and a regularization parameter λ > 0.

1 for each subject k do
2 let τk = τ0

k ,
3 while not converged do
4 compute an optimal step ∆τ∗

k by solving (11): ∆τ∗
k =

argmin∆τk,ek,xk

∑d
i=0

∑bi
j=1 w

i
j∥ek,Gi

j
∥∞ s.t. y′ ◦ τk + J∆τk = Akxk + ek,

5 update τk ← τk +∆τ∗
k .

6 end

7 end
8 keep the indices of top S candidates c1, . . . , cS among {1, . . . , K} with the smallest

structured group sparsity norm ψ(ek) =
∑d

i=0

∑bi
j=1 w

i
j∥ek,Gi

j
∥∞.

9 set Ã← [Ac1 ◦ τ
∗−1
c1

, . . . ,AcS
◦ τ∗−1

cS
].

10 compute an optimal x̃∗ via solving

x̃∗ = argminx̃,e ∥x̃∥1 + λ
∑d

i=0

∑bi
j=1 w

i
j∥eGi

j
∥∞ s.t. y′ = Ãx̃ + e.

11 compute the residuals rk(y
′) = ∥y′ − Ãkδk(x̃

∗)∥2 for k = c1, . . . , cS .

output : identity(y′) = argmink rk(y
′).

for robust face recognition. For example, we can use (8) to classify the test image
y′ to one of the K subjects. To further improve the recognition performance,
a global sparse representation problem (5) can be solved by aligning training
samples of each Ak to y′ using the computed τ∗k . We thus get a discriminative
representation x∗ in terms of the entire training set, and (7) can be used as
the criteria for face classification. The complete procedure of our robust face
classification with automatic alignment is summarized as Algorithm 1, where
the parameter S is used to reduce the number of subjects used in the global
sparse representation problem (5), leaving a much smaller problem to solve.

4 Experiments

In this section, we conduct experiments to test the effectiveness of enforcing
structured sparsity on the error e for robust and practical face recognition. We
use three publicly available databases including the Extended Yale B [5, 7], AR
[10] and Multi-Pie [9] databases. We compare our method with those closely
related sparse representation based face recognition methods [3, 11, 13], and also
with other baseline classifiers such as Nearest Neighbor (NN), Nearest Subspace
(NS), and Support Vector Machine (SVM). We will first present how different
methods perform when both training and test images are well aligned, and then
present experiments of practical face recognition by automatic face alignment.

4.1 Robust face recognition with well aligned face images

Recognition with synthetic block occlusion. We use Extended Yale B
database to test the robustness of our method against illumination change and
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Fig. 3. Recognition on the Extended Yale B database (better view the electronic version). (a)

shows example results for test images under extreme illumination condition or with large fraction

of occlusion: (a)-i test images; (a)-ii estimated error images; (a)-iii recovered images; (a)-iv training

images with frontal illumination. Top row in (a) is the result by our method ℓ1 ℓstruct on a test

image under extreme illumination condition. Middle and bottom rows in (a) compare our method

with the method ℓ1 ℓ1 [3] on a test image with 60% occlusion. (b) plots recognition results of our

method ℓstruct and its ℓ1 variant under classification criteria (8) and (9), and compares with NN,

NS, SVM, and the method ℓ1 + MRF [11].

contiguous occlusion. There are 1238 frontal face images of 38 subjects captured
under varying laboratory lighting conditions in Subsets 1, 2, and 3 of the Ex-
tended Yale B database. Subsets 1, 2, and 3 contain face images under mild,
moderate, and extreme illumination conditions respectively. We choose four illu-
minations from Subset 1, two from Subset 2, and two from Subset 3 for testing,
and the rest of the images are used for training. The total number of training
and test images are respectively 935 and 303. All images are manually aligned
and cropped to the size of 96×84. In our experiments we simulate various levels
of contiguous block occlusion from 10% to 80%, by replacing a randomly located
block of each test image with an unrelated image, where locations of the occlu-
sion are unknown to the computer. We test both of our recognition methods,
namely ℓ1 ℓstruct for equation (5) and ℓstruct for equation (6). For ℓ1 ℓstruct, we
set λ = 1, which is chosen to seek a balanced sparsity between x and e. We
compare our methods with NN, NS, SVM, and especially with related sparse
representation based methods, dubbed ℓ1 ℓ1 for [3] and ℓ1 +MRF for [11].

Figure 3-(a) shows example results using our method ℓ1 ℓstruct. For the case
of no occlusion shown in the first row of Figure 3-(a), the obtained error image
by our method compensates well for the shadow around nose, which is due to
a violation of the assumed linear subspace model. Correspondingly a clean face
without dark shadow is recovered. The second and third rows of Figure 3-(a)
show results of our method and the method ℓ1 ℓ1 for an example test image
with 60% occlusion. This is a difficult recognition task even for humans. Careful
comparison between the second and third rows of Figure 3-(a) shows that our
method performs better in terms of recovering the clean face with no occlusion.
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Percent occluded 10% 20% 30% 40% 50% 60% 70% 80%

ℓ1 ℓ1 [3] 100% 100% 100% 99.7% 98.0% 68.4% 44.1% 22.4%

ℓ1 ℓstruct 100% 100% 100% 100% 99.3% 73.7% 47.0% 24.1%

Table 1. Recognition results of our method ℓ1 ℓstruct and the method ℓ1 ℓ1 [3] on the Extended

Yale B database with varying levels of synthetic block occlusion.

We quantitatively compare the recognition performance of different methods
in Table 1 and Figure 3-(b). We can see from Table 1 that up to 50% occlusion,
our method ℓ1 ℓstruct performs almost perfectly, and it consistently outperforms
the method ℓ1 ℓ1 up to 80% occlusion. For our method ℓstruct (problem (6)), we
report results in Figure 3-(b) by comparing with a variant of (6), dubbed “ℓ1”

3,
under classification criteria (8) and (9), where τ is set as 0.1 for criteria (9).
Under criteria (8), enforcing structured sparsity by ℓstruct gives better results
than the ℓ1 variant does. Under criteria (9), we also compare with NN, NS,
SVM, and the method ℓ1 + MRF [11]. ℓ1 + MRF uses the ℓ1 variant of (6)
as initialization, and a complicated non-convex optimization method based on
MRF to specifically address occlusion. Results by our method based on simple
thresholding (cf. Section 3.1) are comparable with those from ℓ1 +MRF up to
70% occlusion, and also consistently better than those from NN, NS, SVM, and
the thresholding based ℓ1 variant. It should be noted that ℓ1 + MRF can only
address the case that test images are well aligned, while our method is able to
automatically align test images, as will be reported shortly. For the well aligned
case, our method is also possible to be integrated with MRF to specifically
address occlusion, as did by ℓ1 +MRF [11]. Nevertheless, results in Table 1 and
Figure 3 clearly demonstrate that structured sparsity-inducing norm is a better
choice for robust face recognition.

Recognition with disguise. We test our method’s ability to cope with real
disguises using a subset of the AR database. The training set consists of 799
unoccluded face images of 100 subjects with different facial expressions 4. We
consider two separate test sets, each of which contains 200 face images. In the
first test set are images of subjects wearing sunglasses, which occlude about 30%
of each image. In the second test set are images of subjects wearing a scarf, which
occludes roughly half of each image. All training and test images are resized to
83 × 60. Table 2-Left compares our method ℓ1 ℓstruct with NN, NS, SVM, and
ℓ1 ℓ1 [3], where we again set λ = 1 for ℓ1 ℓstruct. Table 2-Right compares our
method ℓstruct with its ℓ1 variant under the classification criteria (9) (τ is set
as 0.1 for both ℓstruct and its ℓ1 variant), and also with the method ℓ1 +MRF
[11]. Table 2 shows that ℓ1 +MRF achieves the best performance for the case of

3 The ℓ1 variant of (6) solves the problem: minek,xk ∥ek∥1 s.t.y = Akxk + ek, w.r.t.
each subject k of all the K subjects.

4 We use image IDs {1−4} and {14−17} for each subject in the AR database, except
one corrupted image.
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NN NS SVM ℓ1 ℓ1 ℓ1 ℓstruct

sunglasses 60.5% 59.0% 66.5% 91.0% 92.5%

scarf 14.0% 15.0% 16.5% 64.0% 69.0%

ℓ1((9)) ℓstruct((9)) ℓ1+MRF

99.0% 99.5% 99.5%

84.0% 87.5% 97.5%

Table 2. Recognition results of different methods on the AR database with disguises.

occlusion by scarf. Since the scarf used in AR database [10] occludes half (the
lower part) of each test image, and it happens to be with dark color and resembles
some bearded men in the database, when pursuing sparse representation, there
could be a degenerate solution that considers the scarf as the correct signal and
the remainder of the face as error. In this case, the non-convex MRF approach
in [11] is helpful in iteratively guiding the identification of error support into
the scarf region, and hence getting improved performance. However, Table 2
also shows that our method ℓ1 ℓstruct outperforms ℓ1 ℓ1, and our method ℓstruct
outperforms its ℓ1 variant, for both cases of sunglasses and scarf. It demonstrates
that promoting structured sparsity on the error image is generally better than
promoting standard sparsity using ℓ1-norm in coping with real disguises.

4.2 Robust face recognition with automatic alignment

In this subsection, we test the effectiveness of our Algorithm 1 for automatic and
robust face alignment and recognition, using the CMU Multi-Pie database. The
CMU Multi-Pie database contains face images of 337 subjects captured in four
sessions with simultaneous variations in illumination, pose, and expression. Of
these 337 subjects, we use all the 249 subjects present in Session 1 as training
subjects. For each of the 249 subjects we choose frontal images of 7 illuminations
5 with neutral facial expression as training images. As suggested in [13], these
7 extreme illuminations of frontal view are chosen in order to linearly represent
other frontal illuminations well. We manually click outer eye corners in all the
training images and crop them to the size of 80× 60. The distance between the
two outer eye corners is normalized to be 50 pixels. We start with experiments
on region of attraction to verify the effectiveness of our alignment algorithm,
and then present face recognition experiments with automatic alignment.

Experiments on region of attraction. In the CMU Multi-Pie database, we
use frontal images of illumination 10 with neutral expression from Session 2 as
our test images. We manually align these images in the same way as for training
images, to provide ground truth for our region of attraction experiments. We
introduce artificial deformation of translation, rotation, or scaling to these test
images. To measure success of alignment, we use the structured sparsity norm on
error e, i.e., ψ(e) defined in (4), as the alignment error. More specifically, let r0
be the alignment error obtained by aligning a test image without any artificial
perturbation, and r be the error for the case with perturbation. We consider

5 They are illuminations {0, 1, 7, 13, 14, 16, 18} of the total 20 illuminations.
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Fig. 4. Experiments on region of attraction. The amount of translation is defined as a fraction of

the distance between the outer eye corners. From left to right: translation in x direction, translation

in y direction, in-plane rotation, and scale change.

occlusion % 10% 20% 30% 40% 50%

[13],S = 1 99.2% 94.4% 76.7% 44.2% 18.5%

Alg.1,S = 1 100% 95.6% 81.1% 48.6% 20.9%

[13] 99.2% 95.2% 79.1% 48.2% 21.1%

Alg.1 100% 96.8% 85.5% 52.6% 24.5%

Session 2 Session 3 Session 4

90.7% 89.6% 87.5%

92.1% 90.6% 88.4%

93.9% 93.8% 92.3%

95.7% 94.9% 93.7%

Table 3. Accuracy of recognition with automatic alignment on the Multi-Pie database. Left table

shows recognition results for test images from Session 1 under varying levels of synthetic block

occlusion. Right table shows recognition results for test images from Sessions 2 - 4.

the alignment as successful if |r − r0| < 0.01r0. Region of attraction results for
different kinds of deformation are plotted in Figure 4. Figure 4 shows that our
algorithm works well when translation is below 20% of the eye corner distance
(or 10 pixels) in both x- and y-directions, when in-plane rotation is below 30
degrees, or when change in scale is below 10%. As discussed in [13], outputs from
Viola and Jones’ face detector [8] fall safely inside this region of attraction.

Experiments on face alignment and recognition. We first test the robust-
ness of our method against misalignment, illumination change, and contiguous
occlusion. We use frontal images of illumination 10 from Session 1 (the same
session used for training) of the Multi-Pie database as our test images. This
choice is deliberate in order to remove other types of occlusion such as hair-style
change across sessions. We simulate various levels of contiguous block occlusion
from 10% to 50%, by replacing a randomly located block of each test image with
an unrelated image. We compare our method with the closely related method
[13], which is based on ℓ1-norm minimization for alignment and recognition.
For both methods, outputs from Viola and Jones’ face detector [8] are used as
initialization of the alignment process. Table 3-Left shows that our method per-
forms reasonably well up to 30% of occlusion, and consistently outperforms [13]
for both cases of S = 1 and S = 10 in Algorithm 1. These results show that
enforcing structured sparsity on the error e is a better choice in simultaneously
handling misalignment, illumination change, and contiguous occlusion.

We also test our method on frontal images of all the 20 illuminations from
Sessions 2− 4 of the Multi-Pie database. Table 3-Right reports our results, and
compares with those from [13]. Again, our method achieves better results.
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