Reinforcement Learning & Optimal Control Overview

Yi Ma and Shankar Sastry

University of California, Berkeley

t 1 :
s allg sy 2 llag

ol S

EE290-005: Integrated Perception, Learning, and Control

A Common Setting

A Closed-Loop Autonomous System:

vacuuming robots, autonomous cars, video game players,
internet advertisements, trading stocks, animals in the wild...

optimization

A

4

environment
controlled plant
dynamical system

perception

model uncertainty:

deterministic,

learning policy
> control
decision
agent
controller
decision maker /
A
resources:
data feedback cost
’ utility |«
Space, reward
computation...

stochastic,
adversarial...

A Brief (Recent) History

Evolution of Approximate DP/RL

\ Al/RL Decision/ W
I
\\ Learning through Control/DP
\ Data/Experience o : '
Reinforcement Complementary 'gmt?'P'?tOf Dynamic Programming
Learning \/ Simulation, Ideas ptimality and Optimal Control
An Introdcs Model-Free Methods [<G—]>- e T DINITRI P, BERTSEKAS
A Late 80s-Early 90s arPOVbI ecision
VG Ban / Feature-Based roblems
— v / Representations SOMDP
| A*/Games/ _ ‘
Heuristics Policy lteration

Value lteration

Historical highlights

@ Exact DP, optimal control (Bellman, Shannon, and others 1950s ...)

@ Al/RL and Decision/Control/DP ideas meet (late 80s-early 90s)

@ First major successes: Backgammon programs (Tesauro, 1992, 1996)
@ Algorithmic progress, analysis, applications, first books (mid 90s ...)

@ Machine Learning, BIG Data, Robotics, Deep Neural Networks (mid 2000s ...)
@ AlphaGo and AlphaZero (DeepMind, 2016, 2017)

Bertsekas Reinforcement Learning 9/36

Topics in Reinforcement Learning Lectures, Dimitri Bertsekas, EECS MIT, 2021

New Challenges

In RL, an agent learns by interacting with an environment

e unknown or changing environments
e delayed rewards or feedback
e enormous state and action space

® nonconvexity

Demystifying the Efficiency of Reinforcement Learning, Yuxin Chen, EE Princeton, 2021

Terminology: State Space Model

e ’\‘
environment \

Dynamic Programming Reinforcement \

an(‘if).pll‘rnfl.c‘f)im‘ml Controlled plant ‘Lea.mivng \A

| : OC/DP dynamical system Al/RL /‘:

|
State and Control space: S, U | State and Action space: S, A
|
State: =r € S,k=0,1,... : State: St €S8,t=0,1,...
|
Control: up € U,k =0,1, ... : Action: a; € A,t=0,1,...
|
Dynamical System: : MDP Transition (or simulation):
Tpa1 = f(xk’ uk) / stochastic |]]
' Tk =p(Sie1 =1 st = J,a; = k
Tet1 = [Tk, uk, W) v (se+ |50 = ar = F)
|
Output/observation (feature): . : Observation (feature):
Yr = h(zg, ug) + nk | p(ot | st)
|

Terminology: Optimization Objective

\

Al/RL == X

ITTYrTT—
Dynamic Programm ing pO“Cy

e control
OC/DP decision

Cost: g(xk,ux) € R

Total cost function:
N
J(SUO;/U'(L <. 7UN) - Zg(xkauk)
k=0

Control law: u(zg); v*(zy)

= f(@r, u(zr))

Ugt1 = U(Tka1)

Lk+1

Value function (minimal cost to go):

mln § g Lk, U Zl?k,

Reward: 7(s¢,a:) € R
Total reward (return):

LS Elr(se, ar)]

J(sl;al,...,aT) =

Policy: m(a: | s¢); ™ (at | S¢)

p((st41,ae41) | (5¢,a¢)) =
p(8t+1 \St,at)ﬁ(at+1 \St+1)

Value function (maximal return):

[/*(51)

Principle of (Path) Optimality

Dido of Carthage..., Euler, Lagrange, Newton, Hamilton, Jacobi, Pontryagin, Bellman, Ford, Kalman

850 BC 1960 AC
J*(x3)

®
’k\'{{ kﬁ{{.kl/ TN
J* (x0) wx&’} NI

@IS
(K % (U S
\Q//A\\t'/ AN

U (051 U2 o .. UnN—2 UN-1

Principle of Optimality (Richard Bellman’54):
An optimal path has the property that any subsequent portion is optimal.

Dynamical Programming: A “Fixed-Point” Type Algorithm

J*(xy) = ng}gn lg(@k, ur) + J*(f(xk,uk)J)}, Vg

-~

Trk+1

Bellman Operator: 7(J*) = J* with 7(J)(z) = min [g(z,u) + J(f(z, u))]

u

Value Function versus Q-Function

e

Dynamic Programming

and Oplima?Comml
4

@my; ocoP =L

0 1 Value function and Q-function:

-~

J* (.’L’k) = min [g(xknuk) + J*(f(xknuk))]) \V/ZUk; V*<St> = m7Ta,XE71- [?(St—l—l ‘ St, a’tli”(‘sta a‘t) + V*(St+1)l]7 \V/St
.. T Qsra0)

Uk

Q(zr,ur) -- model free

(many, many, many different ways to learn and solve them, depending on...)

Given the value or Q-function, the optimal control/policy and path:

Uy, = arg min (ks ur) + " (f 2k, ur))], 7% (s¢) = arg max Q (s, at)
(. ~ / a+
Q(Q?:,Uk;)

N . % p(5t+1 | St,W*(St))
L1 = fay,uy)

In practice, states can be replaced by observations or “features” to relate to control or action.

The Closed-Loop (Autonomous) System: Formal

u(x) = arg muin Q(x,u)

optimization #(a | s) ¢ argmaxQ(s, a)

\ 4

environment
controlled plant
dynamical system

Trr1 = fo(xk, uk)

Po(Si4+1 | S¢,ar)

perception/sampling/exploration

Q(z,u)
Q(s,a) learning policy
» control
decision
J(z) agent P
. controller @Y
V($) | decision maker \
feedback cost
utility |«
9(k, uk) reward
r(se, at)

(xkauk) or (ykauk)

(Suat) or (Otaat)

From Principle to Computation!

What to Compute, and How?
OC/DP Al/RL

Optimal value function: J(x), V*(s)

Optimal Q-function: Q(x,u), QF(s,a)

Optimal control/policy: u*(x), w(al|s) (oru*(y), m*(a|o))
System/model identification: f* x,u), p*(3t+1 \ S¢, CLt)

Closed-form versus numerical solution (simulation & optimization)

LQR: J*(xx) = mln [xk Qxy + up Ruy + J*(Axpyr + Buy,)]
The Riccati equatlon (Kalman Filter ’60):.

K. = —(R + BTWf+1B)_1BT%+1A (—18)
— O+ AV A— AW, \B(R + BV B) " BTV, A (49)

Optimal Control and the Linear Quadratic Regulator, notes by Sastry, Laine, Tomlin

How to Compute?

Another Example: y
W B

Parallel Parking a (Nonholonomic) Car - ,7{\\

: 15 F A S ¢

X = cos0u - .

. . 1 2 L ,//'/ \‘,g
y= sinfu min/ ||u(t)||"dt 0 - 27 e

0 = %tan O uq 0 I _/

. 05 — —

o= W - —
Optimal trajectories: zig-zagging sinusoids 0.0 _“1 e
(Brockett, Murray & Sastry’93,...) 6 4 2 02 46

More Examples: chained form or Goursat normal form systems

//"\\\
/NN ~ P
7//7 TN | 6\ > A
A { N ; A
Y N N 1 I 7 N
_- \ %
A P X . / ey LN \
% RN ~ P RN ‘.H”
-~ -~ S / - /)Y
- SN y ‘
< //// "\ H)} / {\/ ///
N\ > \ -
N\
\ /,// \ 7
N\ N

Steering Nonholonomic Systems Lectures, Shankar Sastry, EE106B/2068B, 2021

Control versus Learning

I — \

Dynamic Programmin

an(‘if).pli‘rnfl.c‘?m‘r-olg OCID P AIIRL ﬁ:;r:ﬁ;;eman \
B ¢’ o ‘

|

.« LQR « Backgammon: Tesauro, 1992"”" |

» Parallel parking * Chess: Deep Blue, 1997

* Chained form systems » Go: Alpha Go, 2017

* Mechanical systems... * Video games, robots...

Conditions & Assumptions Conditions & Assumptions

clear model class/uncertainty
clear cost function

low to moderate dimension
continuous state/time...

unknown models (but can sample)
uncertain, long-horizon return
large-scale, high-dimensional
discrete state/time...

O O O O

O
O
O
O

Solutions that work for a broad class of problems v.s. a few (important) instances

From Principle to Computation (Approximation)!

How to COMPUTE if no analytic or closed-form solution?

Major Approaches to Compute the Approximate Cost Function J

Problem approximation

Use as J the optimal cost function of a related problem (computed by exact DP)

Rollout and model predictive control

Use as J the cost function of some policy (computed somehow, perhaps according to
some simplified optimization process)

Use of neural networks and other feature-based architectures
They serve as function approximators (usually obtained through off-line training)

Use of simulation to generate data to “train" the architectures

Approximation architectures involve parameters that are “optimized" using data

Policy iteration/self-learning, repeated policy changes

Multiple policies are sequentially generated; each is used to provide the data to train
the next

Bertsekas Reinforcement Learning 17 /36

Topics in Reinforcement Learning Lectures, Dimitri Bertsekas, EECS MIT, 2021

What to Learn or Compute?

A Closed-Loop Autonomous System:

Policy-based RL

u(x) = arg muin Q(x, u)

Tra1 = fo(T, ug)
Po(Si41 | 5¢,a¢)

Model-based RL

Q(x, u)
Q(s,a) learning policy | optimization #(a|s) + argmaxQ(s, a)
» control ¢
Value-based RL decision
J(z) agent environment
A controller controlled plant
V(s) | decision maker > dynamical system
feedback cost perception
utility |«
g(xk, ug) reward (zk, ur) or (yi,ur)
r(s¢, as) (8¢, a¢) or (o4, ay) .

sample efficiency -

Monte Carlo

On policy/off policy
Importance sampling
In/dependence
Exploration

From Principle to Computation: Scalability

How to COMPUTE?

Chess (Deep Blue, 1997) Go (Alpha Go, 2017)
V/ /& ge -8/

of atoms in
the universe

10%? Al ~ 35 |T| =80 Al ~ 250 |T| =150

Unfortunately, there is no closed-form solution...

How to avoid the “curse of dimensionality” at all?

The solutions (functions) have low-dimensional structure!
7T*(CL| S) %ﬁ-(a;hl(sae)a'°°7hd(57(9))7 hz(879) cR
V*(s) = V(h1(s,0),...,ha(s,0)), h;(s,0) €R

Q

How to Approximate?

Policy: 7*(a|s)=7(a;fi(s,0),..., fa(s,0)), fi(s,0) €R
Value: V¥(s) = V(fi(s,0), . fa(s.0)), fi(s,@) e R N

regression!
Alpha Go, 2017
. 51 82 83 ST
policy Network Value Network a.self-play FH » P 15] e 000 353
ay ~vm a9 ~ Ty ap ~ Ty
pa
o
s
g -) ™ 2 m3
z l
|
! |
i
] s z
| ‘ ‘ b. Neural Network Training s ‘
i
| p v
I %, o*®
i
o
) |
& I
N o - fo :
L
j.’.:_;‘_ e IEE
g g "% i
3g g ME 919%19 _ 9361 His

Reinforcement Learning, Sutton and Barto, MIT Press, 2018

How to Approximate?

Policy: 7*(a | 0) = 7(a; h1(0,0), ..., hd(o,0)),
‘A/<h1 (0’ 9)’ T hd(o’ 9))’ hj (0’ 0) €R \ Nonlinear & sparse

Value: V7™(o)

Q

Autonomous Driving

.

training
data

hi(O, (9) c R

regression!

" (
donse| |der B |
| | “
|

r T
at
super\/‘|sed ’/Te(at |0t)
learning

Bojarski et al., 2016, NVIDIA, from Sergey Levine CS285

How to Learn Low-Dimensional Structures

In computer vision, we have been dealing with high-dimensional data
with low-dimensional structures all the time!

" ARADAAND | p
- IREENNER N
EEE0EEEN e

Figure 4: Examples of rotated images of MNIST digits, each rotated by 18°. (Left) Diagram for polar coordinate
representation; (Right) Rotated images of digit ‘0" and digit “1°.

a
>

\ Y
G
-

> >)

b A [, AR |
MV e AN
> HELYd HEIE
»
a
Figure 5: Examples of translated images of MNIST digits (with stride=7). (Left) A torus on which 2D cyclic translation is
defined; (Right) Cyclic translated images of digit ‘0" and digit ‘1".

N |

N

Goal & role of deep networks: ©
« Compression
* Optimization
* Linearization

High-Dim Data Analysis with Low-Dim Models, Wright and Ma, Cambridge Univ. Press, 2021

Some Representative Algorithms — Value-Based RL

Bellman Operator: 7 (Q)(s,a) = 1(s,a) + E,s/s.q0) [HZE}X Q(s',a")]
Bellman Equation: (Q* is the unique “fixed point” to

T(QY) =Q"
Q-Learning (Chris Watkins & Peter Dayan 1992)

Qir1(st,a) = (1 —1n) - Qu(se,ar) + 1 Te(Qe)(5¢, ar)

Model-free, stochastic approximation to solve the Bellman equation, updating
only the (s¢, a;) entry one at a time.

In practice, approximate value with a deep network and approximate “gradients”,
with many tricks.

Demystifying the Efficiency of Reinforcement Learning, Yuxin Chen, EE Princeton, 2020

Some Representative Algorithms — Value-Based RL

Question: how many samples are needed to ensure ||Q — Q*||o, < £7?

A
(801a0) |
sample
(s1fa1)l complexity
\
|
| |)
S l ’ I I(Sg,az)
I _|\SIA
o >|S||Al
@(3 a) [Yuxin Chen et. al. 2021]
)

Yet, for Alpha Go |S| = 2°%*

Demystifying the Efficiency of Reinforcement Learning, Yuxin Chen, EE Princeton, 2021

Some Representative Algorithms — Value-Based RL

Low-rank Matrix Completion:

’53...?' i)
& |22 ... 4 4 2 ... 4

Pa

Users
|

5'?...'? 5 5 ... 3
” i\ ‘ \C‘E)mplete Ratings X)

Items
Observed (Incomplete) Ratings Y THEOREM 4.26 (Matrix Completion via Nuclear Norm Minimization). Let X, €
R™™™ be a rank-r matriz with incoherence parameter v. Suppose that we observe
Y = Pal[X,], with Q sampled according to the Bernoulli model with probability

p> CIM (4.4.18)

n
Then with probability at least 1 — Con™, X, is the unique optimal solution to

minimize || X||. subject to Po[X]|=Y. (4.4.19)

The real “matrix” ()(s, a) has low-dimensional structure!

Harnessing Structures for Value-based Planning and Reinforcement Learning, Yuzhe Yang, Guo
Zhang, Zhi Xu, Dina Katabi, ICLR 2020. (MIT)

High-Dim Data Analysis with Low-Dim Models, Wright and Ma, Cambridge Univ. Press, 2021

Some Representative Algorithms - Policy-Based RL

V*(s1) = max — ZE” (s8¢, ar)]
Policy Gradient Methods (Richard Sutton’00)

6h(8,a,0)

Z) ch(s,a’,0)
a

71'(0 ; -
max V ZEW(Q) with 7(a|s,0)

Opy1 = Or +1- VoV ™R (s)

Natural Policy Gradient (Kakate’'02)
Or1 = Ok + 1+ (F(6) VoV ™) (s)

Fisher info. matrix

[Cen et. al. '20] For any 0 < n < (1 —~)/7, entropy-regularized NPG achieves
||Q:' _Q$t+1)||oo S (/117 (1 _777_)t1 t = 0«1*

Demystifying the Efficiency of Reinforcement Learning, Yuxin Chen, EE Princeton, 2021

Case Study of a Model Problem: Parallel Parking

L
/1
F 3
Y Unicycle model

(& = uycosf

{Yy=wursint & <

Zi?:?Jl

9202

\(92162

\3):1119

20

1.5

05

00

y

-
L
L
r
-
8
L

B
A 7 ﬁ\ ¢ \
z/ \\ |
v\ >-
'\:’/__,,/J /’/

What if we apply
deep policy gradient?

Motion Planning for Nonholonomic Systems, Valmik Prabhu, EECS 106B/206B

Parallel Parking: Qualitative

— X |
2 ~ = 1081
FANIRPUAN — Goal ~‘
o] LD v\— Sinusoids 4] } '
oo B e e emmed ---- Upper bound
AN ---- Lower bound s ol e =
v
) 5 0 15 20 -3 30 o2 |
3 i N oA —_ 0s] — AL | — R
“. ," N ¥ Sinusoids AT | Sinusoids
2 R ™7 Goal T " T - s o - T
Done
1 Sinusoids Y
---- Bound
0 . o
P 30
! — 0
) — Goal
Qone) — — R
- Sinusoids [Sinusoid Sinusoid
0 5 0 15 20 > 0 TR
t
(b) Control inputs over time
(a) Trajectories over time
00 *
30 Bl M
VRNV
02 25 Vz \/
0. 20
e
™~
T 06 ! 15
o) 10
08 | /
—— Trajectory
o3 * Goal
s | ‘ * Start
00 Spot
/ Sinusoids
— RL ot \ —— Front
Sinusoids S —— Rear
0 5 10 15 2 bl 30 -2 -1 0 1
t X
(c) Reward over time (d) Top down view of maneuver
Figure 4: r(si,ar) = —||sr — 8| - Minimizing distance to goal (run for 1000 epochs)

Parallel Parking using Reinforcement Learning, Report, Kshama Dwarakanath, 2020

Parallel Parking: Qualitative

4

> 0
>0
-1
-1
Trajectory N
-2 * Goal ,
+ Start
3 Spot "
-3 -2 -1 0 1 2
-2.0 -15 -10 -0.5 0.0 05 10 15 20 X
(d) Top down view of maneuver (e) Top down 'view o'f maneuver - Showing the front and rear
of the car for inspection of safety
Figure 6: Testing for different initial conditions when trained using r(sg, ar) = —||sx — s4|| - Minimizing distance
to goal

Parallel Parking using Reinforcement Learning, Report, Kshama Dwarakanath, 2020

Parallel Parking: Quantitative

1
min / u(t)|[2dt
0

RL Sinusoids
[v3(t)dt 92146 | 1.5700
Jy v3()dt 75501 | 6.0200
[v3(t)dt + [, v3(t)dt | 9.7737 | 7.5900

0

Table 1: Comparison of energy consumed by the two methods

Takeaway messages about RL for parallel parking:
Higher cost (economy)

Very jittery control (comfort)

Do not always respect constraints (safety)

Hard to ensure accuracy in end position (precision)

B~ wh =

Parallel Parking using Reinforcement Learning, Report, Kshama Dwarakanath, 2020

Pause and Reflect

What about computational efficiency?
For LQR: Simple Random Search Provides a Competitive Approach to
Reinforcement Learning, Horia Mania Aurelia Guy Benjamin Recht, 2018.

Empirically observed efficiency of RL does not come from the value-
based methods or any smart sample schemes, it comes from
exploiting the low-dimensionality of the solutions of the instances!

Diligence (by machine) is not intelligence!

What are other techniques that are effective in dealing with structured
complexities in problems and enhance computation efficiency?

Parallel Parking using Reinforcement Learning, Report, Kshama Dwarakanath, 2020

Real-World Robotic System Design: Quadrupedal

Fig. 1. Deployment of the presented locomotion controller in a variety of challenging environments.

Learning Quadrupedal Locomotion over Challenging Terrain, Joonho Lee et. al., 2020

Real-World Robotic System Design: Quadrupedal

A Policy training B Automatic terrain curriculum

&

Step 1. Teacher policy training RL algorithm i:::::::“: Param(-"_jflelrized terrainsst <o
[|—| oL ills eps airs

v Policy Y
Privileged - robot state 0y gradient .
Information 7 R N

- contact states —
- contact forces \

- terrain profile parameters:

- friction coeff. - Roughness - Step width - Step width
_ disturb. - Frequency - Step height - Step height
ISsturbances - Amplitude
4
- — - Simulation environment Randomly sample
Step2. Student policy training LI""tate 3 initial terrain parameters
Y
- " O (action a¢) {er,0, wo)
Proprioceptive 1]
history H Propagate particles
Fid sl - via random walk <
A CTi—1 —> CTi
S p— R ¥
Save proprioceptive measurements every 0.02 s Generate trajectories

using current policy m;

| A—

C Control architecture

Motion generation Motion tracking
command sowe [/ [400 bz s e
' e B . .
= foot position res@uals Inverse Joint i torrain Wiy — W; M1 = T
' 'g y leg frequencies Kinematics | |PD controller|: traversability —
! - < \ :
: § 2 FooGte':'::rjaeg:)ry target i i \ feriie gl | Resample particles l—
| g_ foot positions Robot !
'3) Dynamics |i
|z < leg phases observations T !
' -]

Fig. 4. Overview of the presented approach. (A) Two-stage training process. First, a teacher policy is trained using reinforcement learning in
simulation. It has access to privileged information that is not available in the real world. Next, a proprioceptive student policy learns by imitat-
ing the teacher. The student policy acts on a stream of proprioceptive sensory input and does not use privileged information. (B) An adaptive
terrain curriculum synthesizes terrains at an appropriate level of difficulty during the course of training. Particle filtering is used to maintain a
distribution of terrain parameters that are challenging but traversable by the policy. (C) Architecture of the locomotion controller. The learned
proprioceptive policy modulates motion primitives via kinematic residuals. An empirical model of the joint PD controller facilitates deployment
on physical machines.

Learning Quadrupedal Locomotion over Challenging Terrain, Joonho Lee et. al., 2020

Learning from Imitation

OC/DP

Adaptive control
Inverse Lyapunov
Leader/follower

Sastry

Al/RL

Imitation learning
Inverse RL
Teacher/student

Learning Quadrupedal Locomotion over Challenging Terrain, Joonho Lee et. al., 2020

Hierarchical Design and Control Architecture

OC/DP Al/RL

Hierarchical synthesis Generalized imitation
Hybrid controllers

C Control architecture

Hierarchical Synthesis of Hybrid Controllers from Temporal
Logic Specifications, Georgios Fainekos et. al. 2007

Learning to Generalize Across Long-Horizon Tasks from Human
Demonstrations, Ajay Mandlekar et. al. 2020...

______________________________ 1 d /-Motlon generation /-MOtIOI‘I tracking
| comman
: Hybrid controller: H ! [0Hz /. e 400 !'l_Z|
| ! it 1 ’ "
! f ! I [L i resuc?uals ' Inverse | Joint i
! . ! 1 g y leg frequencies [| Kinematics PD controller !
| Hybrid motion planner: H | ! - 5 - H
! 7 ' Foot Trajecto -
: : I | g % Generjator v - :?):)gtetosiﬁons J i
! v ! 1 |52l |y | oot Robot ||
! ! R E V! . Dynamics ||
: L | 1z | L observations I !
; (2, [1s) E | = N]
I Abstraction: ¥/ [~~~ "~~~ = mm o > |
| !
! ; I Learning Quadrupedal Locomotion over Challenging Terrain,
! z | Joonho Lee et. al., 2020
S Y ' l I
I I
- . N |
E Interface: Uw : I Collect human Stage 1: Train our GTl model with diverse human demonstrations Collect diverse trajectories with GT1
demonstrations A

|] = o Ry WD e
__________________________ R P i Z ~ . t =

|l 2¢O oY

(v, [[I]) =« I U M . A Perception Stage 2: Train goal-conditioned
Plant: ¥ = F---=----=-=-=-=----+ - I % m (ResNet-18) agent from GTI trajectories
x l | Poli Percepti D EEQ' Mdmed m[:]

: ® « [l fes=on||C = m‘lg

|

I

https://www.researchgate.net/publication/221421761_Hierarchical_Synthesis_of_Hybrid_Controllers_from_Temporal_Logic_Specifications
https://www.researchgate.net/profile/Georgios_Fainekos

Key Challenges and Guidelines

Bridge Principles and Practices via Computation:

1. Scalabiltiy meets Low-dimensionality:
* Q-Learning versus Matrix Completion
« A“Compressive Sensing Theory” for learning to control?

2. System/domain Adaptation/transfer:
« Adaptive Control versus Imitation Learning.
» Leader/follower versus Teacher/student

3. Complexity meets Hierarchical Abstraction:
 Hierarchical and hybrid control design versus
» High-level/low-level or long-term/short-term learning

4. Quantitative objectives versus Qualitative goals
« Time, energy, cost, precision (OC/DP)
« Stability, survivability, or winning (Control/RL)
 A“Lyapunov Theory” for learning to achieve qualitative goals?

Questions, please?

Principles

by oo

Dynamic Programming
and Optimal Control

Computation

Practices

High-Dimensional Data Analysis
with Low-Dimensional Models:

Principles, Computation, and Applications

JOHN WRIGHT (Columbia University)
Y1 MA (University of Caifornia, Berkeley)

e bty o by P D A
TepmRe iy i e e ot
e ot Bt ST
A ey i
T m R

Reinforcement \
Learning ,

Practice Keeps Theory Honest, and Vice Versa!

February 17, 2021

