
Unified Parallel C at LBNL/UCB

The Berkeley UPC Project

Kathy Yelick

Christian Bell, Dan Bonachea,
Wei Chen, Jason Duell,

Paul Hargrove, Parry Husbands,
Costin Iancu, Wei Tu, Mike Welcome

Unified Parallel C at LBNL/UCB

Parallel Programming Models

• Parallel software is still an unsolved problem !

• Most parallel programs are written using either:
- Message passing with a SPMD model

- for scientific applications; scales easily
- Shared memory with threads in OpenMP, Threads, or Java

- non-scientific applications; easier to program
• Partitioned Global Address Space (PGAS) Languages

- global address space like threads (programmability)
- SPMD parallelism like MPI (performance)
- local/global distinction, i.e., layout matters (performance)

Unified Parallel C at LBNL/UCB

UPC Design Philosophy
• Unified Parallel C (UPC) is:

- An explicit parallel extension of ISO C
- A partitioned global address space language
- Sometimes called a GAS language

• Similar to the C language philosophy
- Concise and familiar syntax
- Orthogonal extensions of semantics
- Assume programmers are clever and careful

- Given them control; possibly close to hardware
- Even though they may get intro trouble

• Based on ideas in Split-C, AC, and PCP

Unified Parallel C at LBNL/UCB

A Quick UPC Tutorial

Unified Parallel C at LBNL/UCB

Virtual Machine Model

• Global address space abstraction
- Shared memory is partitioned over threads
- Shared vs. private memory partition within each thread
- Remote memory may stay remote: no automatic caching implied
- One-sided communication through reads/writes of shared variables

• Build data structures using
- Distributed arrays
- Two kinds of pointers: Local vs. global pointers (“pointers to shared”)

Shared

G
lo

ba
l

ad
dr

es
s

sp
ac

e

X[0]

Private
ptr: ptr: ptr:

X[1] X[P]

Thread0 Thread1 Threadn

Unified Parallel C at LBNL/UCB

UPC Execution Model

• Threads work independently in a SPMD fashion
- Number of threads given by THREADS set as compile

time or runtime flag
- MYTHREAD specifies thread index (0..THREADS-1)
- upc_barrier is a global synchronization: all wait

• Any legal C program is also a legal UPC program

#include <upc.h> /* needed for UPC extensions */
#include <stdio.h>
main() {

printf("Thread %d of %d: hello UPC world\n",
MYTHREAD, THREADS);

}

Unified Parallel C at LBNL/UCB

Private vs. Shared Variables in
UPC

• C variables and objects are allocated in the private memory space
• Shared variables are allocated only once, in thread 0’s space

shared int ours;
int mine;

• Shared arrays are spread across the threads
shared int x[2*THREADS] /* cyclic, 1 element each, wrapped */
shared int [2] y [2*THREADS] /* blocked, with block size 2 */

• Shared variables may not occur in a function definition unless static

Shared

G
lo

ba
l a

dd
re

ss

sp
ac

e

Private
mine: mine: mine:

Thread0 Thread1 Threadn

ours:

x[0,n+1]

y[0,1]

x[1,n+2]

y[2,3]

x[n,2n]

y[2n-1,2n]

Unified Parallel C at LBNL/UCB

• This owner computes idiom is common, so UPC has
upc_forall(init; test; loop; affinity)

statement;

• Programmer indicates the iterations are independent
- Undefined if there are dependencies across threads
- Affinity expression indicates which iterations to run

- Integer: affinity%THREADS is MYTHREAD
- Pointer: upc_threadof(affinity) is MYTHREAD

Work Sharing with upc_forall()

shared int v1[N], v2[N], sum[N];
void main() {

int i;
for(i=0; i<N; i++)

if (MYTHREAD = = i%THREADS)
sum[i]=v1[i]+v2[i];

}

cyclic layout

owner computes

shared int v1[N], v2[N], sum[N];
void main() {

int i;
upc_forall(i=0; i<N; i++; &v1[i])

sum[i]=v1[i]+v2[i];
}

i would
also work

Unified Parallel C at LBNL/UCB

Memory Consistency in UPC
• Shared accesses are strict or relaxed, designed by:

- A pragma affects all otherwise unqualified accesses
- #pragma upc relaxed
- #pragma upc strict
- Usually done by including standard .h files with these

- A type qualifier in a declaration affects all accesses
- int strict shared flag;

- A strict or relaxed cast can be used to override the
current pragma or declared qualifier.

• Informal semantics
- Relaxed accesses must obey dependencies, but

non-dependent access may appear reordered by
other threads

- Strict accesses appear in order: sequentially
consistent

Unified Parallel C at LBNL/UCB

Other Features of UPC

• Synchronization constructs
- Global barriers

- Variant with labels to document matching of barriers
- Split-phase variant (upc_notify and upc_wait)

- Locks
- upc_lock, upc_lock_attempt, upc_unlock

• Collective communication library
- Allows for asynchronous entry/exit

shared [] int A[10];
shared [10] int B[10*THREADS];
// Initialize A.
upc_all_broadcast(B, A, sizeof(int)*NELEMS,

UPC_IN_MYSYNC | UPC_OUT_ALLSYNC);

• Parallel I/O library

Unified Parallel C at LBNL/UCB

The Berkeley UPC Compiler

Unified Parallel C at LBNL/UCB

Goals of the Berkeley UPC Project

• Make UPC Ubiquitous on
- Parallel machines
- Workstations and PCs for development
- A portable compiler: for future machines too

• Components of research agenda:
1. Runtime work for Partitioned Global Address

Space (PGAS) languages in general
2. Compiler optimizations for parallel languages
3. Application demonstrations of UPC

Unified Parallel C at LBNL/UCB

Berkeley UPC Compiler

UPC

Higher WHIRL

Lower WHIRL

• Compiler based on Open64
• Multiple front-ends, including gcc
• Intermediate form called WHIRL

• Current focus on C backend
• IA64 possible in future

• UPC Runtime
• Pointer representation
• Shared/distribute memory

• Communication in GASNet
• Portable
• Language-independent

Optimizing
transformations

C +
Runtime

Assembly: IA64,
MIPS,… + Runtime

Unified Parallel C at LBNL/UCB

Optimizations

• In Berkeley UPC compiler
- Pointer representation
- Generating optimizable single processor code
- Message coalescing (aka vectorization)

• Opportunities
- forall loop optimizations (unnecessary iterations)
- Irregular data set communication (as in Titanium)
- Sharing inference
- Automatic relaxation analysis and optimizations

Unified Parallel C at LBNL/UCB

Pointer-to-Shared
Representation

• UPC has three difference kinds of pointers:
- Block-cyclic, cyclic, and indefinite (always local)

• A pointer needs a “phase” to keep track of where it is in a block
- Source of overhead for updating and de-referencing
- Consumes space in the pointer

• Our runtime has special cases for:
- Phaseless (cyclic and indefinite) – skip phase update
- Indefinite – skip thread id update
- Some machine-specific special cases for some memory layouts

• Pointer size/representation easily reconfigured
- 64 bits on small machines, 128 on large, word or struct

Address Thread Phase

Unified Parallel C at LBNL/UCB

Performance of Pointers to Shared

• Phaseless pointers are an important optimization
- Indefinite pointers almost as fast as regular C pointers
- General blocked cyclic pointer 7x slower for addition

• Competitive with HP compiler, which generates native code
- Both compiler have improved since these were measured

Pointer-to-shared operations

0
5

10
15
20
25
30
35
40
45
50

generic cyclic indefinite

type of pointer

o

f
cy

cl
es

 (
1.

5
n

s/
cy

cl
e) ptr + int -- HP

ptr + int -- Berkeley
ptr == ptr -- HP
ptr == ptr-- Berkeley

Cost of shared remote access

0

1000

2000

3000

4000

5000

6000

HP read Berkeley
read

HP write Berkeley
write

#
 o

f
c

y
c

le
s

 (
1

.5

n
s

/c
y

c
le

)

Unified Parallel C at LBNL/UCB

Generating Optimizable
(Vectorizable) Code

• Translator generated C code can be as efficient as
original C code
• Source-to-source translation a good strategy for
portable PGAS language implementations

L iv e r m o r e L o o p s

0 .8 5

0 .9

0 .9 5

1

1 .0 5

1 .1

1 .1 5

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3

K e r n e l

C
 ti

m
e/

 U
PC

 ti
m

e

Unified Parallel C at LBNL/UCB

NAS CG: OpenMP style vs. MPI
style

• GAS language outperforms MPI+Fortran (flat is good!)
• Fine-grained (OpenMP style) version still slower

• shared memory programming style has more
communication events

• GAS languages can support both programming styles

NAS CG Performance

0

20

40

60

80

100

120

2 4 8 12

Threads (SSP mode, two nodes)

M
FL

OP
S

pe
r t

hr
ea

d/

se
co

nd

UPC (OpenMP style)

UPC (MPI Style)

MPI Fortran

Unified Parallel C at LBNL/UCB

Communication Optimizations

• Automatic optimizations of communication are key to
- Usability of UPC: fine-grained programs with coarse-

grained performance
- Performance portability: make application

performance less sensitive to the architecture
• Types of optimizations

- Use of non-blocking communication (future work)
- Communication code motion
- Communication coalescing
- Software caching (part of runtime)
- Automatic relaxation: towards elimination of “relaxed”

- Fundamental research problem for PGAS languages

Unified Parallel C at LBNL/UCB

Message Coalescing

• Implemented in a number of parallel Fortran compilers (e.g.,
HPF)

• Idea: replace individual puts/gets with bulk calls
• Targets bulk calls and index/strided calls in UPC runtime (new)
• Goal: ease programming by speeding up shared memory style

int lr[U-L];
…
upcr_memget(lr, &r[L], U-L);
for (i = L; i < U; i++)
exp1 = exp2 + lr[i-L];

Optimized Loop

shared [0] int * r;
…
for (i = L; i < U; i++)
exp1 = exp2 + r[i];

Unoptimized loop

Unified Parallel C at LBNL/UCB

Message Coalescing vs. Fine-
grained

speedup over fine-grained code

0

50

100

150

200

250

0 2 4 6 8

Threads

sp
ee

du
p

elan comp-
indefinite
elan comp-cyclic

• One thread per node
• Vector is 100K elements, number of rows is 100*threads
• Message coalesced code more than 100X faster
• Fine-grained code also does not scale well

- Network overhead

Unified Parallel C at LBNL/UCB

Message Coalescing vs. Bulk

matvec multiply (elan)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

2 4 6 8

Threads

Ti
m

e
(s

ec
on

ds
)

comp-indefinite
man-indefnite
comp-cyclic
man-cyclic

matvec multiply -- lapi

0

0.1

0.2

0.3

0.4

0.5

2 4 6 8

Threads

tim
e

(s
ec

on
ds

)

comp-indefinite
man-indefnite
comp-cyclic
man-cyclic

• Message coalescing and bulk (manual) style code have comparable
performance
- For indefinite arrays the generated code is identical
- For cyclic array, coalescing is faster than manual bulk code on elan

- memgets to each thread are overlapped
- Points to need for language extension

• Status: coalescing prototyped on 1D arrays
- Needs full multi-D implementation and release

Unified Parallel C at LBNL/UCB

Automatic Relaxation

• Goal: simplify programming by giving programmers the illusion
that the compiler and hardware are not reordering

• When compiling sequential programs:

Valid if y not in expr1 and x not in expr2 (roughly)
• When compiling parallel code, not sufficient test.

y = expr2;

x = expr1;

x = expr1;

y = expr2;

Initially flag = data = 0

Proc A Proc B

data = 1; while (flag!=1);

flag = 1; ... = ...data...;

Unified Parallel C at LBNL/UCB

Cycle Detection: Dependence
Analog

• Processors define a “program order” on accesses from the
same thread

P is the union of these total orders
• Memory system define an “access order” on accesses to the

same variable
A is access order (read/write & write/write pairs)

• A violation of sequential consistency is cycle in P U A.
• Intuition: time cannot flow backwards.

write data read flag

write flag read data

Unified Parallel C at LBNL/UCB

Cycle Detection

• Generalizes to arbitrary numbers of variables and
processors

• Cycles may be arbitrarily long, but it is sufficient to
consider only cycles with 1 or 2 consecutive stops per
processor

write x write y read y

read y write x

Unified Parallel C at LBNL/UCB

Static Analysis for Cycle
Detection

• Approximate P by the control flow graph
• Approximate A by undirected “dependence” edges
• Let the “delay set” D be all edges from P that are part of

a minimal cycle

• The execution order of D edge must be preserved;
other P edges may be reordered (modulo usual rules
about serial code)

write z read x

read y write z

write y read x

Unified Parallel C at LBNL/UCB

Cycle Detection Status

• For programs that do not require pointer or array
analysis [Krishnamurthy & Yelick]:
- Cycle detection is possible for small language
- Synchronization analysis is critical: need to line up

barriers to reduce analysis cost, improve accuracy
• Recent work [Chen, Krishnamurthy & Yelick 2003]

- Improved running time O(n3) to O(n2)
- Array analysis extensions (3 types)

• Open: can this be done on complicated programs?
- Implementation work and experiments needed
- Pointer analysis will be needed: Titanium/Parry

style distributed arrays

Unified Parallel C at LBNL/UCB

GASNet: Communication Layer for
PGAS Languages

Unified Parallel C at LBNL/UCB

GASNet Design Overview - Goals

• Language-independence: support multiple PGAS languages/compilers
- UPC, Titanium, Co-array Fortran, possibly others..
- Hide UPC- or compiler-specific details such as pointer-to-shared representation

• Hardware-independence: variety of parallel arch., OS's & networks
- SMP's, clusters of uniprocessors or SMPs
- Current networks:

- Native network conduits: Myrinet GM, Quadrics Elan, Infiniband VAPI, IBM LAPI
- Portable network conduits: MPI 1.1, Ethernet UDP
- Under development: Cray X-1, SGI/Cray Shmem, Dolphin SCI

- Current platforms:
- CPU: x86, Itanium, Opteron, Alpha, Power3/4, SPARC, PA-RISC, MIPS
- OS: Linux, Solaris, AIX, Tru64, Unicos, FreeBSD, IRIX, HPUX, Cygwin, MacOS

• Ease of implementation on new hardware
- Allow quick implementations
- Allow implementations to leverage performance characteristics of hardware
- Allow flexibility in message servicing paradigm (polling, interrupts, hybrids, etc)

• Want both portability & performance

Unified Parallel C at LBNL/UCB

GASNet Design Overview - System Architecture

• 2-Level architecture to ease implementation:
• Core API

- Most basic required primitives, as narrow and general
as possible

- Implemented directly on each network
- Based heavily on active messages paradigm

Compiler-generated code

Compiler-specific runtime system

GASNet Extended API

GASNet Core API

Network Hardware• Extended API
– Wider interface that includes more complicated operations
– We provide a reference implementation of the extended API in terms of

the core API
– Implementors can choose to directly implement any subset for

performance - leverage hardware support for higher-level operations
– Currently includes:

– blocking and non-blocking puts/gets (all contiguous), flexible
synchronization mechanisms, barriers

– Recently added non-contiguous extensions

Unified Parallel C at LBNL/UCB

GASNet Performance Summary

GASNet Put/Get Roundtrip Latency (min over msg sz)

0
5

10
15

20
25

30
35

40
45

50
55

60
65

mpi elan mpi elan mpi gm mpi gm mpi lapi lapi-
poll

mpi gm mpi vapi

R
ou

nd
tri

p
La

te
nc

y
(m

ic
ro

se
co

nd
s) put_nb

get_nb

quadrics
opus
(IA64)

quadrics lemieux
(Alpha)

myrinet
alvarez
(x86)

Colony/GX
seaborg

(PowerPC)

infiniband
pcp

(x86 PCI-X)

myrinet
citris
(IA64)

myrinet
pcp

(x86 PCI-X)

Unified Parallel C at LBNL/UCB

GASNet Performance Summary

GASNet Put/Get Bulk Flood Bandwidth (max over msg sz)

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750

mpi elan mpi elan mpi gm mpi gm mpi lapi lapi-
poll

mpi gm mpi vapi

B
an

dw
id

th
 (M

B
/s

ec
)

put_nb_bulk
get_nb_bulk

quadrics
opus
(IA64)

quadrics lemieux
(Alpha)

myrinet
alvarez
(x86)

Colony/GX
seaborg

(PowerPC)

infiniband
pcp

(x86 PCI-X)

myrinet
citris
(IA64)

myrinet
pcp

(x86 PCI-X)

Unified Parallel C at LBNL/UCB

GASNet vs. MPI on Infiniband
Roundtrip Latency of GASNet vapi-conduit and MVAPICH 0.9.1 MPI

0

5

10

15

20

25

30

1 2 4 8 16 32 64 128 256 512 1KB 2KB

Message Size (bytes)

R
ou

nd
tri

p
La

te
nc

y
(u

s)

MPI_Send/MPI_Recv ping-pong

gasnet_put_nb + sync

OSU MVAPICH widely regarded as the "best" MPI implementation on Infiniband
MVAPICH code based on the FTG project MVICH (MPI over VIA)

GASNet wins because fully one-sided, no tag matching or two-sided sync.overheads
MPI semantics provide two-sided synchronization, whether you want it or not

Unified Parallel C at LBNL/UCB

GASNet vs. MPI on Infiniband
Bandwidth of GASNet vapi-conduit and MVAPICH 0.9.1 MPI

0

100

200

300

400

500

600

700

800

1 2 4 8 16 32 64 128 256 512 1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB

Message Size (bytes)

Ba
nd

w
id

th
 (M

B
/s

ec
)

MVAPICH MPI

gasnet_put_nb_bulk (source pre-pinned)

gasnet_put_nb_bulk (source not pinned)

GASNet significantly outperforms MPI at mid-range sizes - the cost of MPI tag matching
Yellow line shows the cost of naïve bounce-buffer pipelining when local side not prepinned -
memory registration is an important issue

Unified Parallel C at LBNL/UCB

Problem Motivation

• Partitioned Global-address space (PGAS) languages
- App performance tends to be sensitive to the latency & overhead
- Total remotely accessible memory size limited only by VM space
- Working set of memory being touched likely to fit in physical mem

• Implications for communication layer (GASNet)
- Want high-bandwidth, zero-copy msgs for large transfers
- Ideally all communication should be fully one-sided

• Pinning-based NIC's (e.g. Myrinet, Infiniband, Dolphin)
- Provide one-sided RDMA transfer support, but…
- Memory must be explicitly registered ahead of time

- Requires explicit action by the host CPU on both sides
- Memory registration can be VERY expensive!

- Myrinet: 40 usecs to register one page, 6000 usecs to deregister
- Want to reduce the frequency of registration operations and the

need for two-sided synchronization

Unified Parallel C at LBNL/UCB

Memory Registration Approaches

NotesFull VM
avail

One-
sided

Zero-
copy

Approach

Common case: All the benefits of hardware-based
Uncommon case: Messaging overhead (metadata and
handshaking)

Firehose

Round-trip message to pin remote pages before each op
Registration costs paid on every operation

Rendezvous

Stream data through pre-pinned bufs on one/both sides
Mem copy costs (CPU consumption/overhead, prevents
comm. overlap), Messaging overhead (metadata and
handshaking)

Bounce
Buffers

Pin all pages at startup or when allocated (collectively)
Total usage limited to physical memory, may require a
custom allocator

Pin Everything

Hardware manages everything
No handshaking or bookkeeping in software
Hardware complexity and price, Kernel modifications

Hardware-
based
(eg.Quadrics)

(common case)(common case)

Unified Parallel C at LBNL/UCB

Firehose: Conceptual Diagram

• Runtime snapshot of two nodes (A and C) mapping their firehoses to a third node (B)

firehose bucket

• A and C can freely "pour" data
through their firehoses using
RDMA to/from anywhere in
the buckets they map on B

• Refcounts used to track
number of attached firehoses
(or local pins)

• Support lazy deregistration for
buckets w/ refcount = 0 using
a victim FIFO to avoid re-
pinning costs

• For details, see Firehose paper on
UPC publications page (CAC'03)

Unified Parallel C at LBNL/UCB

Application Benchmarks

• Simple kernels written in Titanium - just want a realistic access pattern
- 2 nodes, Dual PIII-866MHz, 1GB RAM, Myrinet PCI64C, 33MHz/64bit PCI bus

• Firehose misses are rare, and even misses often hit in victim cache
- Firehose never needed to unpin anything in this case (total mem sz < phys mem)

2.1 M

1.5 M

Total Puts

522 µs
33 µs
15 µs
54 µs

4740 s
289 s

255 s

Rendezvous with-unpin
Rendezvous no-unpin
Firehose (hit: 99.98%)

(miss: 0.02%)

Bitonic Sort

5141 µs
34 µs
14 µs
46 µs

5460 s
797 s

781 s

Rendezvous with-unpin
Rendezvous no-unpin
Firehose (hit: 99.8%)

(miss: 0.2%)

Cannon
Matrix

Multiply

Average Put
Latency

Total RuntimeRegistration StrategyApp Name

Unified Parallel C at LBNL/UCB

Performance Results: "Best-case" Bandwidth

• Peak bandwidth - puts to same location with increasing message sz
• Firehose beats Rendezvous no-unpin by eliminating round-trip handshaking msgs
• Firehose gets 100% hit rate - fully one-sided/zero-copy transfers

Unified Parallel C at LBNL/UCB

Performance Results: "Worst-case" Put Bandwidth

Rendezvous no-unpin
exceeds physical
memory and crashes at
400MB

• 64 KB puts, uniform randomly distributed over increasing working set size
- worst-case temporal and spatial locality

• Note graceful degradation of Firehose beyond 400 MB working set

Unified Parallel C at LBNL/UCB

Firehose Status and Conclusions

• Firehose algorithm is an ideal registration strategy for PGAS
languages on pinning-based networks
- Performance of Pin-Everything (without the drawbacks) in

the common case, degrades to Rendezvous-like behavior
for the uncommon case

- Exposes one-sided, zero-copy RDMA as common case
• Recent work on firehose

- Generalized Firehose for Infiniband/VAPI-GASNet (region-
based), prepared for use in Dolphin/GASNet

- Algorithmic improvements for better scaling
- Improving pthread-safe implementation of Firehose

Unified Parallel C at LBNL/UCB

Berkeley UPC Runtime

•UPC-specific layer above GASNet

•Code gen target for our compiler and Intrepid

Unified Parallel C at LBNL/UCB

Pthreaded UPC

• Pthreaded version of the runtime
- Our current strategy for SMPs and clusters of SMPs

• Implementation challenge: thread-local data.
- Different solution for binary vs. source-to-source

• Has exposed issues in UPC specification:
- Global variables in C vs. UPC
- Misc. standard library issues: rand() behavior

• Plan for the future
- System V shared memory implementation

- Benefit: many scientific libraries are not pthread-safe.
- But: bootstrapping issues, limits on size of shared regions

Unified Parallel C at LBNL/UCB

GCCUPC (Intrepid) support

• GCCUPC can now use Berkeley UPC runtime
- Generates binary objects that link with our library.

• GCCUPC previously only for shared memory: now
able to use any GASNet network
- Myrinet, Quadrics, Infiniband, MPI, Ethernet

• Demonstrates flexibility of our runtime
- Primary obstacle: inline functions
- Current solution:

- GCCUPC generates performance-critical logic (ptr
manipulation, MYTHREAD, etc.) directly

- Convert other inline functions into regular functions
- Future: extra inlining pass

- Read our inline function definitions & generate binary
code from them for shared accesses

- Would give GCCUPC our platform-specific shared
pointer representations

Unified Parallel C at LBNL/UCB

C++/Fortran/MPI Interoperability

• Experiment came out of GCCUPC work
- Needed to publish an explicit initialization API
- Made sure C++/MPI could use it, so we wouldn’t have to

change interface later.

• Motivation: “2nd Front” for UPC acceptance
- Allow UPC to benefit existing C++/Fortran/MPI codes
- Allow UPC code to use C++/Fortran/MPI libraries
- Optimize critical sections of code
- Communication, CPU overlap
- Easier to implement certain algorithms
- Easier to use than GASNet
- Provide transparently in existing libraries (SuperLU)

Unified Parallel C at LBNL/UCB

C++/MPI Interoperability

• Note: “This is not UPC++”
- We’re not supporting C++ constructs within UPC
- C++/MPI can call UPC functions like regular C functions
- UPC code can call C functions in C++/MPI code
- UPC functions can return regular C pointers to local shared

data, then convert them back to shared pointers to do
communication

• Status:
- Working in both directions: {C++/MPI} --> UPC, and vice

versa
- Tested with IBM xlC, Intel ecc, HP cxx, GNU g++, and their

MPI versions.

Unified Parallel C at LBNL/UCB

UPC as a Library Language

• Major limitation: can’t share arbitrary data
- Can’t share arbitrary global/stack/heap memory: must

allocate shared data from UPC calls (local_alloc, etc.)
- This problem would exist for UPC++, too.

• “Shared everything” UPC
- Regular dynamic/heap memory: easy (hijack malloc)
- Stack/global data: harder (but firehose allows)
- Optional UPC extensions?

- UPC_SHARED_EVERYTHING
- Allow pointer casts from local --> shared.

• Interoperability with MPI Communicators
- subgroup collectives, I/O

• UPC libraries: static vs. dynamic threads

Unified Parallel C at LBNL/UCB

Usability/Stability improvements

• Nightly build of runtime on many configurations:

MPIAlphaT3E
pthread/MPIIA64SGI Altix
IB/MPIPower 5OS X
LAPI/MPIPower 3AIX
Elan/MPIAlphaTru64
GM/VAPIx86/IA64Linux

•Test suite now contains 250+ test cases
• works with IBM, Quadrics, PBS batch systems
• Nightly tests: 20 configurations, including all
network types (both single/multi-threads,
optimized/debug)

Unified Parallel C at LBNL/UCB

upc_trace
Performance Analysis Tool

• Included in Berkeley UPC 2.0

• Plugs into the existing GASNet tracing facilities
- records detailed statistics and traces of all GASNet

communication activities

• Provides convenient summarization of a GASNet trace file
- helps you understand the communication behavior of your

UPC program
- helps to find communication "leaks"
- diagnose load imbalance

Unified Parallel C at LBNL/UCB

upc_trace
Performance Analysis Tool

• Usage is very simple - analogous to gprof
upcc-trace MG.upc compile with tracing enabled
upcrun -trace -n 4 -p 2 MG enable run w/trace output

• Features:
- displays all put/get traffic

- with message size statistics
- distinguishes shared-remote and shared-local accesses

- displays all barriers with wait times and notify/wait interval
- all information is correlated to a source line in your UPC program

• Future plans:
- Increase Speed and hide internals
- Features: Track memory allocation & usage, lock/unlock, collectives

• Separate barriers by thread (instead of node)
- Data analysis services

- Distribution of resources used in put/get reports
- Auto detect load imbalance in barrier reports

Unified Parallel C at LBNL/UCB

Applications in PGAS Languages

Unified Parallel C at LBNL/UCB

PGAS Languages Scale

• Use of the memory model (relaxed/strict) for
synchronization

• Medium sized messages done through array copies

NAS MG in UPC (Berkeley Version)

0

50,000

100,000

150,000

200,000

250,000

128 256 512 1024

Procs

M
F

lo
p

s

Unified Parallel C at LBNL/UCB

Performance Results
Berkeley UPC FT vs MPI Fortran FT

NAS FT 2.3 Class A - NERSC Alvarez Cluster

0

500

1000

1500

2000

2500

4 8 16 32

Threads (1 per node)

M
FL

O
PS

UPC (blocking)
UPC (non-blocking)
MPI Fortran

80 Dual PIII-866MHz Nodes running Berkeley UPC
(gm-conduit /Myrinet 2K, 33Mhz-64Bit bus)

Unified Parallel C at LBNL/UCB

Challenging Applications

• Focus on the problems that are hard for MPI
- Naturally fine-grained
- Patterns of sharing/communication unknown until runtime

• Two examples
- Adaptive Mesh Refinement (AMR)

- Poisson problem in Titanium (low flops to memory/comm)
- Hyperbolic problems in UPC (higher ratio, not adaptive so far)
- Task parallel view (first)

- Sparse direct solvers
- Irregular data structures, dynamic/asynchronous communication
- Small messages

- Mesh generator
- Delauney

Unified Parallel C at LBNL/UCB

Ghost Region Exchange in AMR

• Ghost regions exist even in the serial code
- Algorithm decomposed as operations on grid patches
- Nearest neighbors (7, 9, 27-point stencils, etc.)

• Adaptive mesh organized by levels
- Nasty meta-data problem to find neighbors
- May exists only at a different level

Grid 1 Grid 2

Grid 3 Grid 4

C

BA

Unified Parallel C at LBNL/UCB

Parallel Triangulation in UPC

• Implementation of a projection-based algorithm (Blelloch, Miller,
Talmor, Hardwick)

• Points and processors recursively divided
- Uses parallel convex hull algorithm (also divide & conquer) to

decide on division of points into two sets
- Each set is then processed by ½ of the processors

• Lowest level of recursion (when we have one processor)
performed by Triangle (Shewchuk)

• UPC feedback
- Teams should really be in the language
- Non-blocking bulk operations needed
- May need some optimization guarantees or pragmas (e.g. for

vectorization)

Unified Parallel C at LBNL/UCB

Preliminary Timing Numbers

• Time for 1 million points in a sphere

667MHz Alpha/Elan @ MTU (HP UPC)

7.504

5.198

12.612

14.61

Time (s)Threads

Caveat: Using “optimistic”
median scheme

Unified Parallel C at LBNL/UCB

Sparse Solvers

• Sparse matrices arise in many application domains
• Direct solvers are even more challenging than iterator
• Investigating SuperLU on the X1 in collaboration with X. Li
• SuperLU factors a matrix; after factoring triangular solves (one or

many) follow
• Sparse Triangular Solve (SpTS).

- Solve for x in Tx = b where T is a lower triangular sparse
- Used after sparse Cholesky or LU factorization to solve

sparse linear systems
• Irregularity arises from dependence
• Hard to parallelize

- dependence structures only known at runtime
- must effectively build dependence tree in parallel

Unified Parallel C at LBNL/UCB

Performance

bmw matrix m=141347 n=141347 nz=5066530
Pentium III Xeon / Myrinet

0

2

4

6

8

10

12

1 2 4 8 16 32

Number of Threads

Sp
ee

du
p

Blocking
Non Blocking

• Linear scaling is not expected or achieved
• Plan to compare to MPI implementation

Unified Parallel C at LBNL/UCB

Summary

• Berkeley UPC compiler has made UPC ubiquitous
- PCs, desktops, cluster, SMPs, supercomputers

• Performance portability is the next challenge
- Compiler optimizations for communication
- Runtime optimizations (caching)

• Language questions remain
- Consistency model: can we simplify it through better

compiler analysis?
- Are explicit non-blocking primitives?

• Better tool support is key
- Debugging as well as performance tools
- Present high level information--the vector super model

