## Automating Science: Applications, Algorithms, and Architectures

#### Kathy Yelick Vice Chancellor for Research Robert S. Pepper Distinguished Professor of Electrical Engineering and Computer Sciences University of California, Berkeley

Senior Faculty Scientist, Lawrence Berkeley National Laboratory

## **Opportunities in Science**



#### Analyze Images to Find Cats

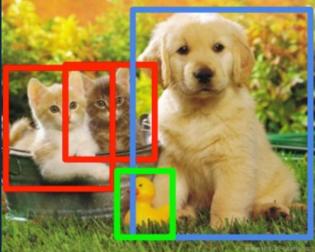
#### Classification



#### Localization



#### Detection



#### Segmentation



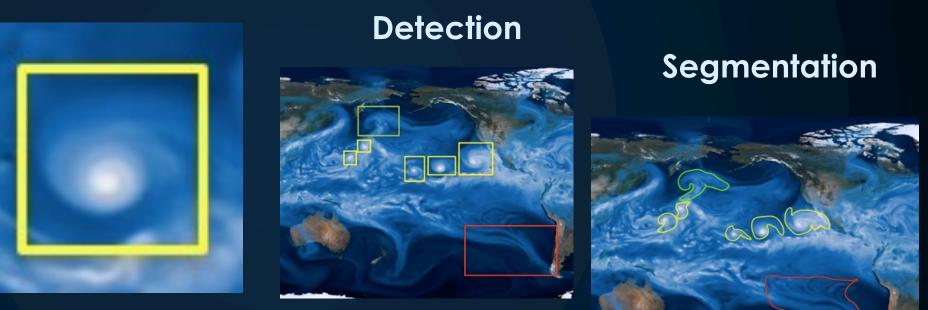
Source: Prabhat

#### **Analyze Simulations to Find Hurricanes**

#### Classification



#### Localization

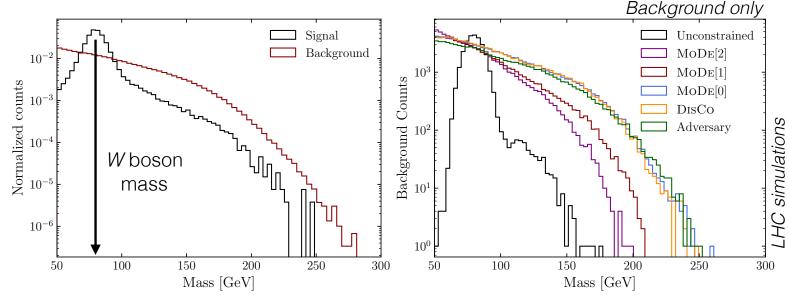


**Extending image-based methods to complex**, **3D**, **scientific data sets is non-trivial!** Source: Prabhat

## Fairness in Phy

#### Separating signal from noise in the search for Lorentz-boosted W bosons at Large Hadron Collider





Signal and background events without selection.

Back-ground distributions at 50% signal efficiency (true positive rate) for different classifiers.

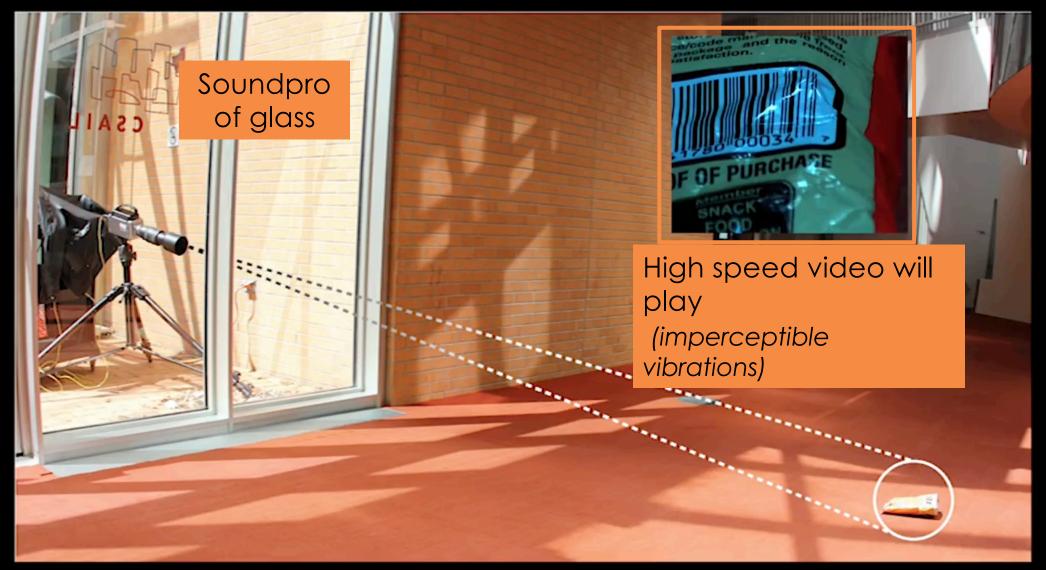
35

O. Kitouni, B. Nachman, C. Weisser, M. Williams, 2010.09745

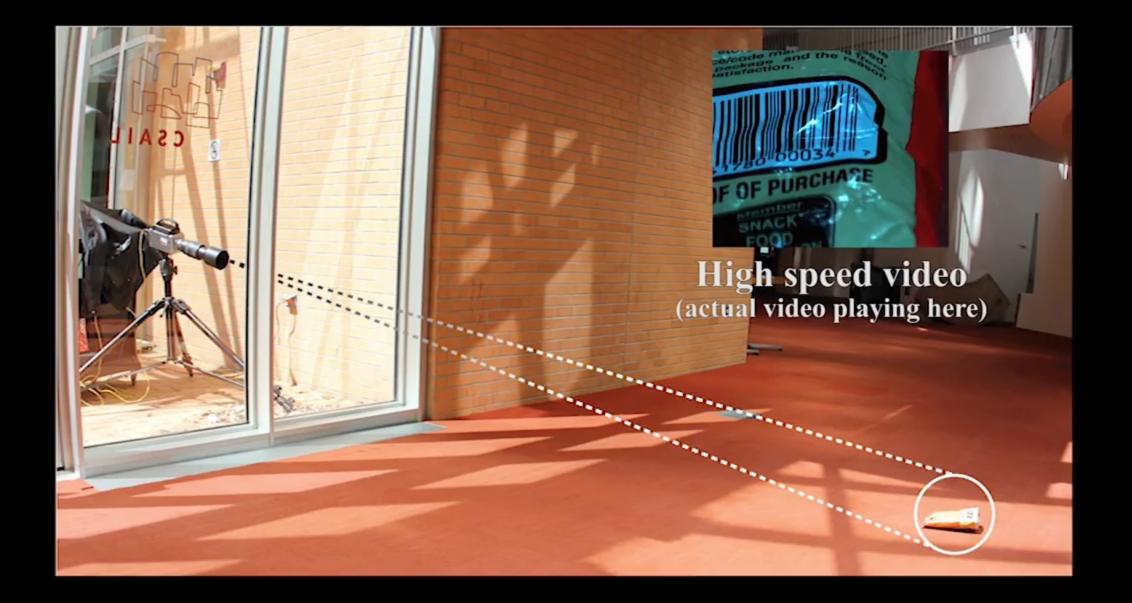
# Deep Learning: like adding 4,000 extra tons of detectors!

Based on 8/12/2016 slide by Joe Lykken at Fermilab

#### Extracting signals from noisy data: "Visual Microphone"



Abe Davis, M Rubinstein, N Wadhwa, GJ Mysore, F Durand, WT Freeman, MIT



## First Image of a Black Hole

This is not replicating human vision

#### Filtering, De-Noise and Curating Data



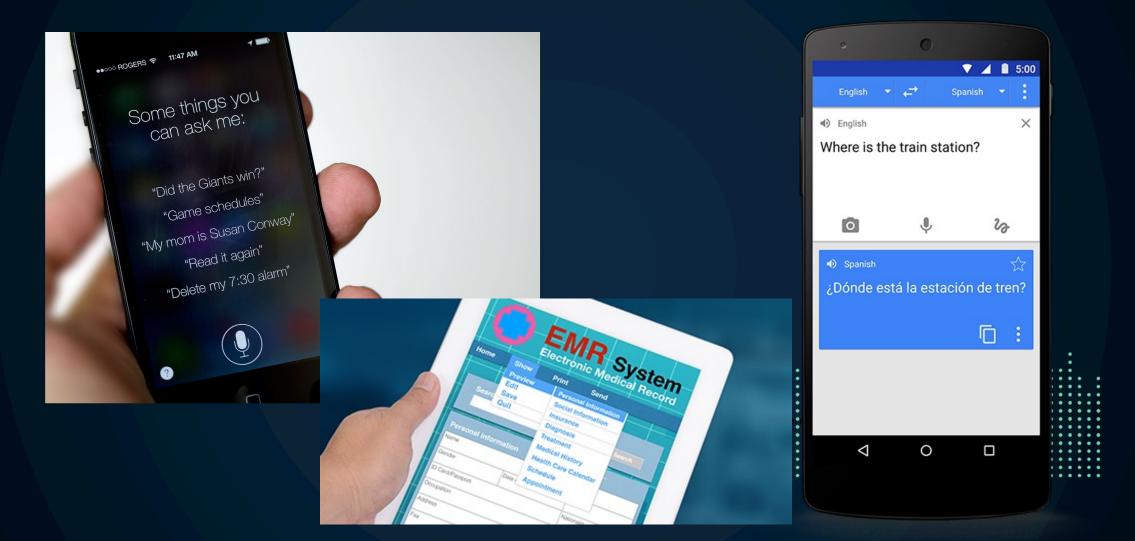
AmeriFlux & FLUXNET: 750 users access carbon sensor data from 960 carbon flux data years; Developing ML to denoise data.



Arno Penzias and Robert Wilson discover Cosmic Microwave Background in 1965

Gilberto Z. Pastorello, Dario Papale, Housen Chu, Carlo Trotta, Deb A. Agarwal, Eleonora Canfora, Dennis D. Baldocchi, M. S. Torn

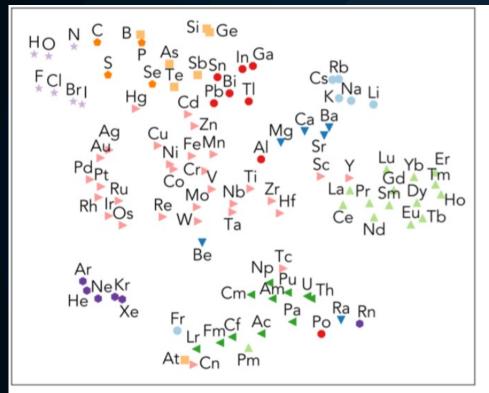
## Al for Natural Language Processing (NLP)



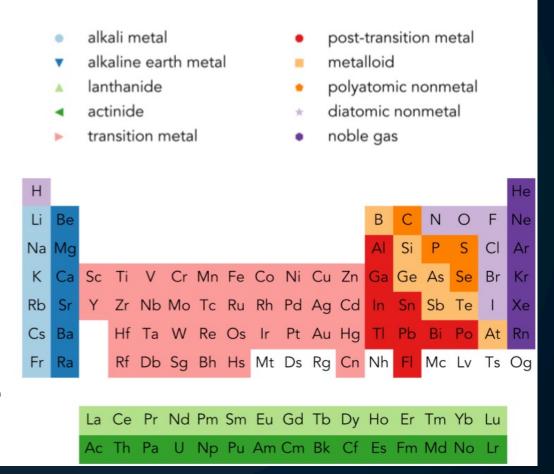
#### Slide source: Steve Farrell

#### Using NLP on scientific publications

#### Analyze 3.3 million abstracts from materials science papers



Word2vec's representation of the elements, projected onto two dimensions



#### Vahe Tshitoyan, Leigh Weston, John Dagdelen, Anubhav Jain

## **Opportunities in Science**



### Generate Videos

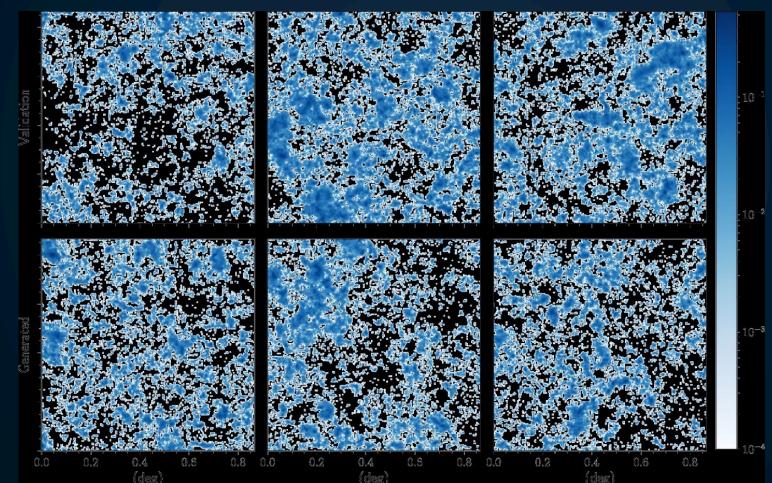


Caroline Chan, Shiry Ginosar, Tinghui Zhou, Alexei A. Efros, UC Berkeley



## **Generate Data from Expensive Experiments**

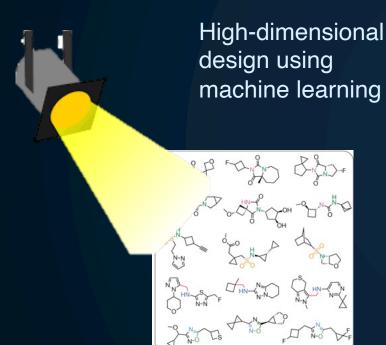
Generate convergence maps of weak gravitational lensing, to help in understanding the physical laws governing the universe.



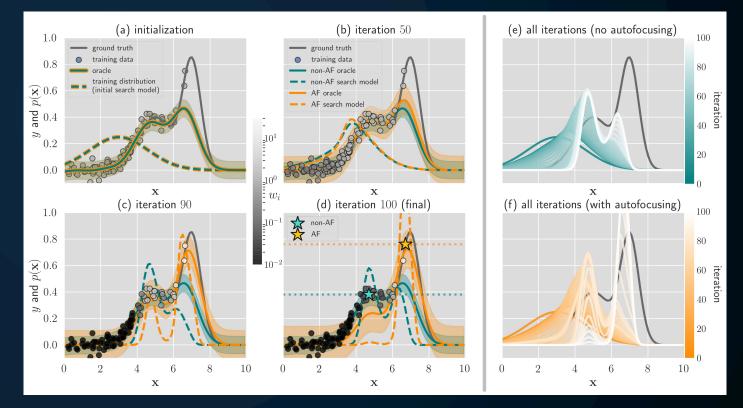
CosmoGAN: Mustafa Mustafa, Deborah Bard, Wahid Bhimji, Zarija Lukić, Rami Al-Rfou, Jan M. Kratochvil

## **Inverse Design with ML**

#### Designing materials, proteins, and small molecules with ML



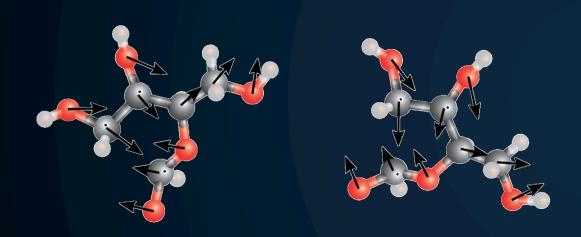
Search for a molecules using an autofocusing generative model: moves around the design space, guided by an oracle

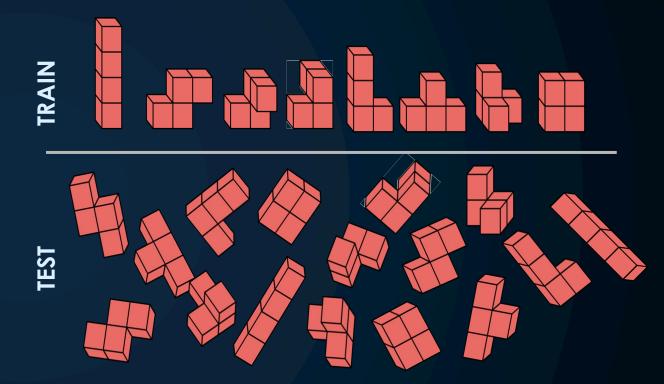


Clara Fannjiang and Jennifer Listgarten at NeurIPS '20

## **CNNs for Materials with Physical Laws**

#### Physics-aware learning





A network with 3D translation- and 3D rotation-equivariance

Slides from Tess Smidt and Risi Condor; E.g., 2018 paper by Thomas, Smidt, Kearnes, Yang, Li, Kohlhoff, Riley

## **Opportunities in Science**

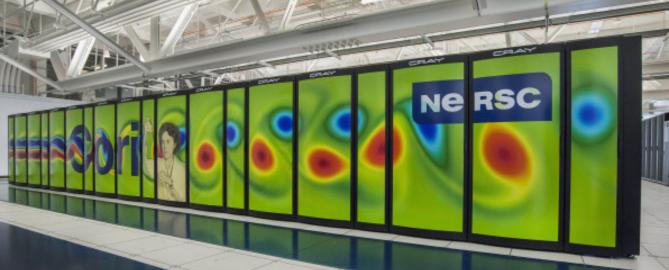


#### **Edge Computing and Automation in Science**



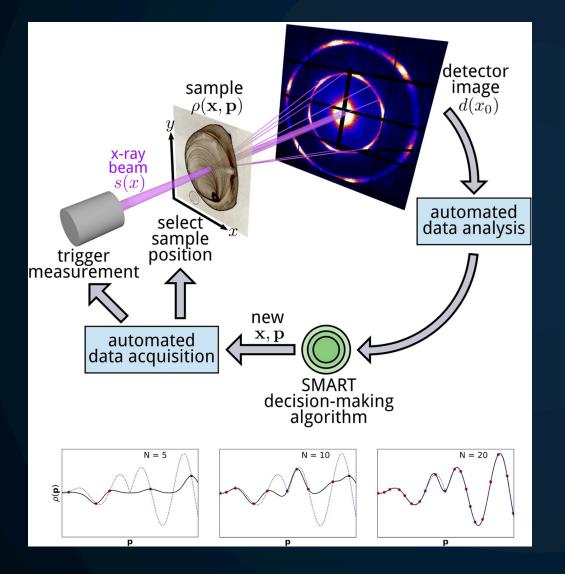
#### **Streaming Experimental Data**





Researchers from Turkey working at the Linac Coherent Light Source at SLAC have used X-ray crystallography to capture detailed images of the structure of the SARS-CoV-2 virus.

### **Automated experiments**



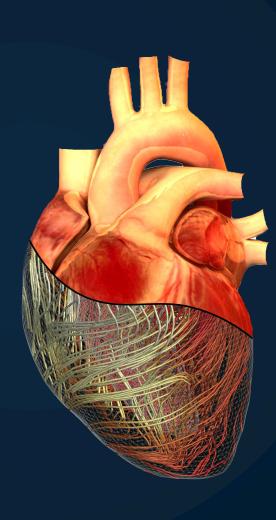
#### Utilization and robustness

- Al-based autonomous discovery
- Decisions based on small datasets
- Uncertainty estimates

Source: CAMERA Project, PI James Sethian Slide input: Lavanya Ramakrishna

## **Digital Twins**





- Simulations
- Sensors / data
- Multi-level
- Real-time

## Robotics and precision control in science



MassSpec robot at JGI



Nanoparticle Robot at the Molecular Foundry



Robot at SYBLIS beamline at ALS

## Self-Driving Cars

Go-gle

-----

6WRE5

28

Go≈gle™

#### **Self-Driving Laboratories**



Automated COVID-19 Testing at the Innovative Genomics Institute at Berkeley

#### Strateos Cloud Lab



10 YEARS 14K SQUARE FEET 200+ INSTRUMENTS

## **Emerald Cloud Lab**

LIQUID TRANSFERS SOLID TRANSFERS **ORGANIC SYNTHESIS SEPARATIONS SPECTROSCOPY** MASS SPECTROMETRY BIOASSAYS CRYSTALLOGRAPHY SAMPLE PREPARATION TRANSFER ENVIRONMENT SAMPLE TRANSPORT **STORAGE CONDITIONS PROPERTY MEASUREMENT** WATER SOURCES

## CMU invests \$40M to build an ECL with 100+ unique scientific instruments

### Why Cloud Lab?







#### 1. Efficiency

Reduce costs and increase experimental output.

2. Flexibility

Break free of limitations posed by instrumentation availability.

#### 3. Productivity

Focus on intellectual contribution instead of manual labor.



Repeat past work at the push of a button.



#### 5. Accessibility

All data contextualized with methods and analyses.

Source: Emerald Cloud Lab

## Setting up



"Plugging an experiment into a browser forces researchers to translate the exact details of every step into unambiguous code"

https://www.theguardian.com/

## **ML in Science**



#### **Economics of Science**





# This is not just about replicating human capabilities

## Is there an ML Advantage in science?

#### 2018 ACM Turing Award for Deep Learning

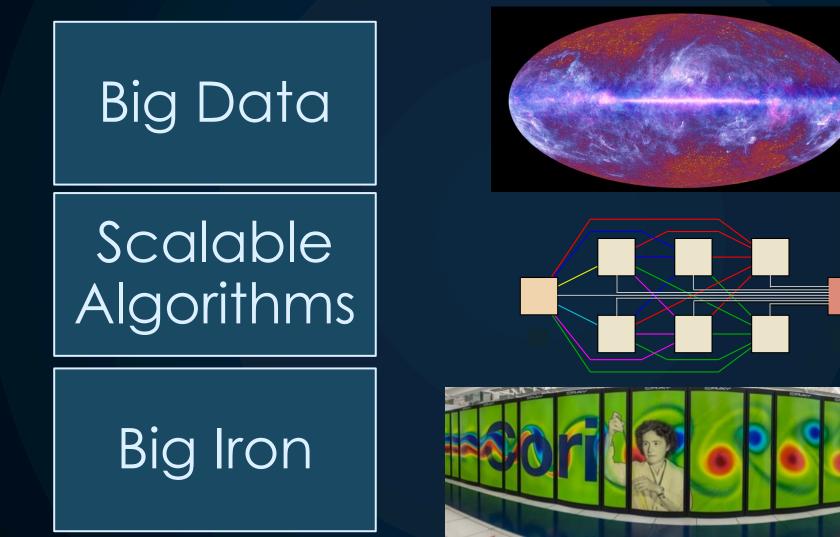


Hinton's Turing Lecture: "So I think a lot of the credit for deep learning really goes to the people who collected the big databases like Fei Fei Li and the people who made the computers go fast like David Patterson and others."



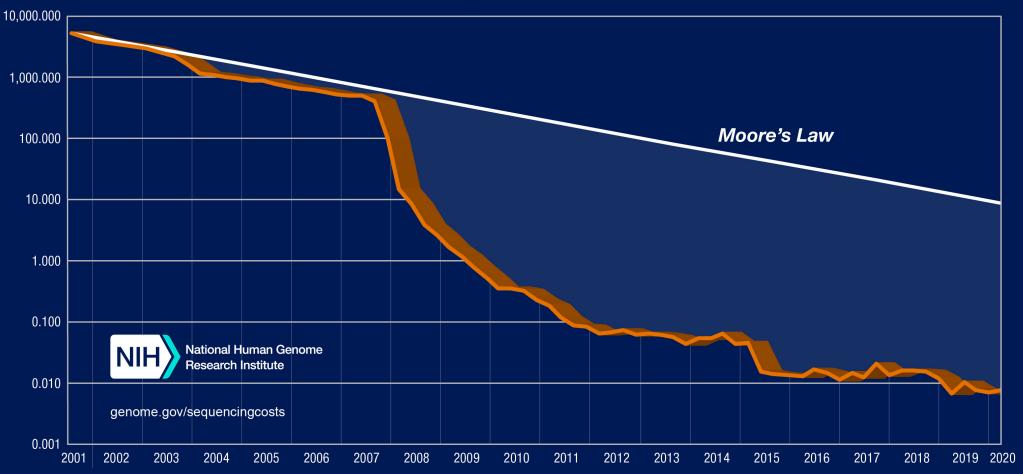
Photo: Facebook

### Where can data+compute yield breakthroughs?



### Sequencing continues to improve in cost and quality





### De Novo Metagenome Assembly is Hard



How do microbes change across 17 years?

### (Non-automated science)

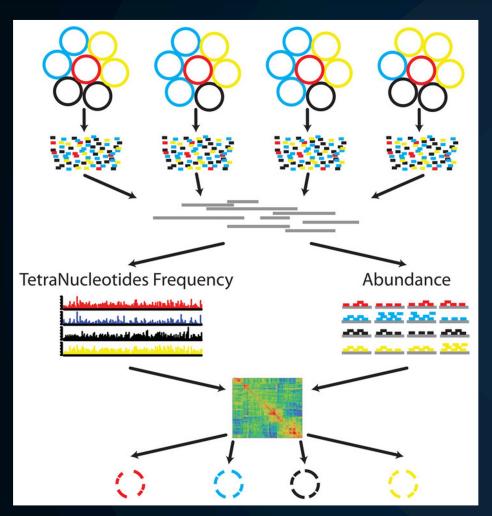
raoc

### Tara Oceans Assembly

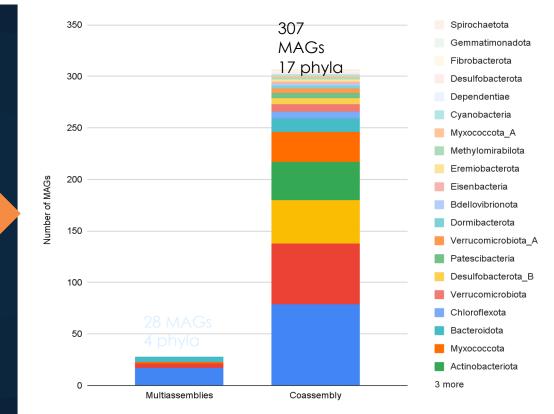
Microbial data from all oceans, collected from 2009-13

84 Terabytes, never before co-assembled

### Terascale Data + HPC Reveals more Genomes and Diversity



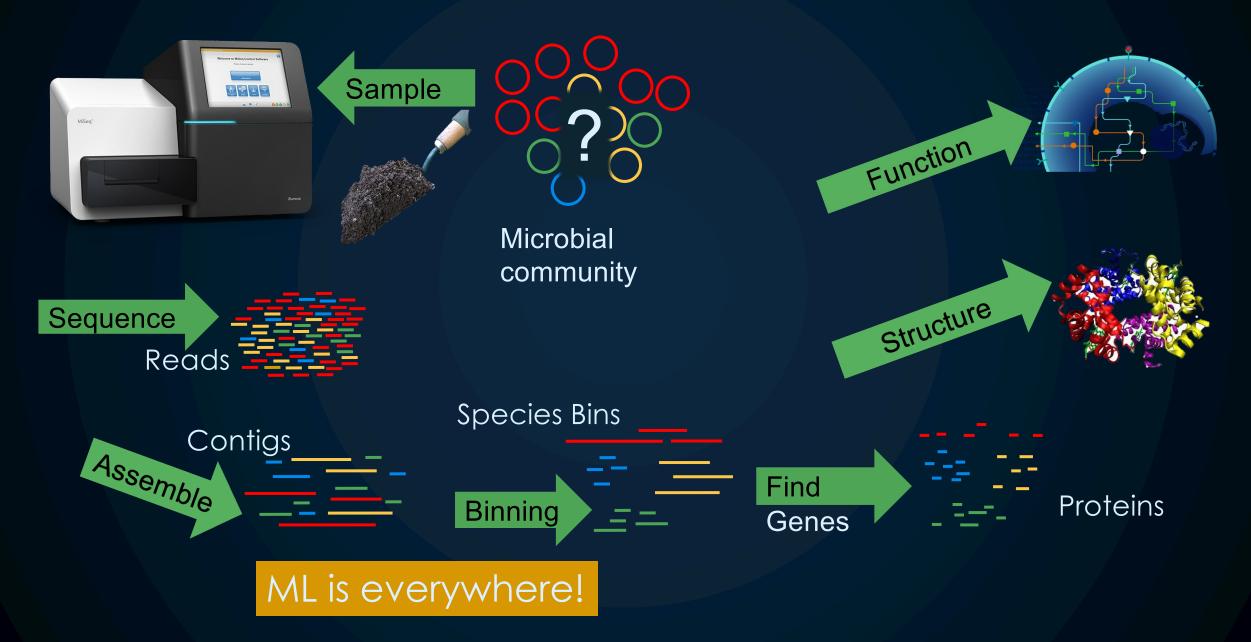
More Genomes (MAGs), more phyla, coassembly



o-Assembly of large environmental studies require an PC metagenome assembler, MetaHipMer

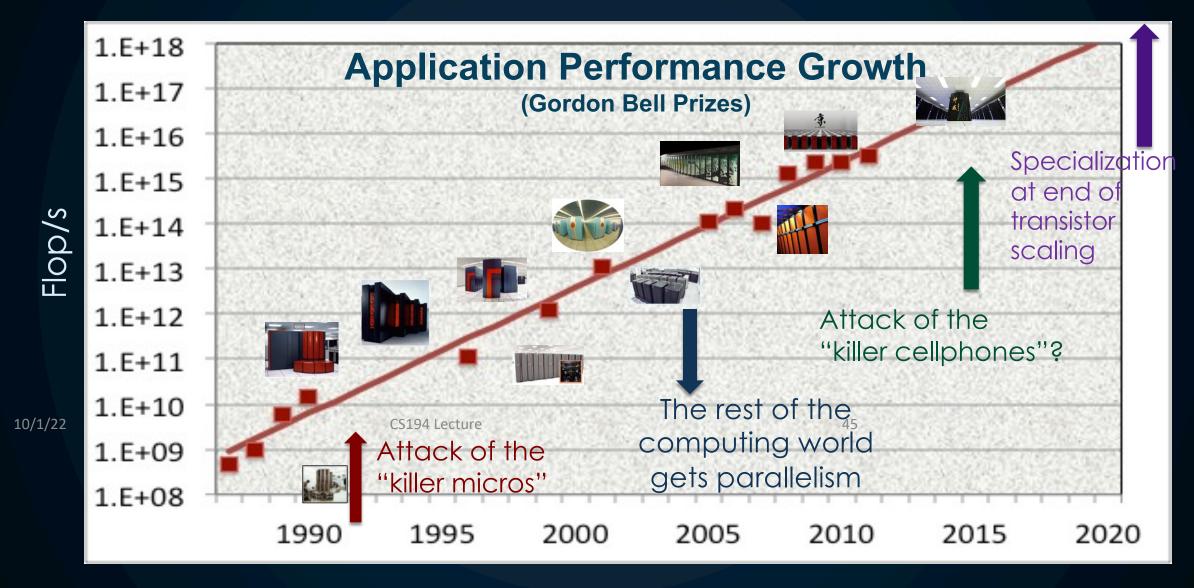
Metagenome-assembled genomes (MAGs)

### **Microbiome analysis: Machine Learning Options**



# Hardware (and Software and Algorithms)

# **Technology Transitions**



### **Al Chip Landscape**

More on https://basicmi.github.io/AI-Chip/



### Are CNNs the only application?

# Cautionary tale from HPL

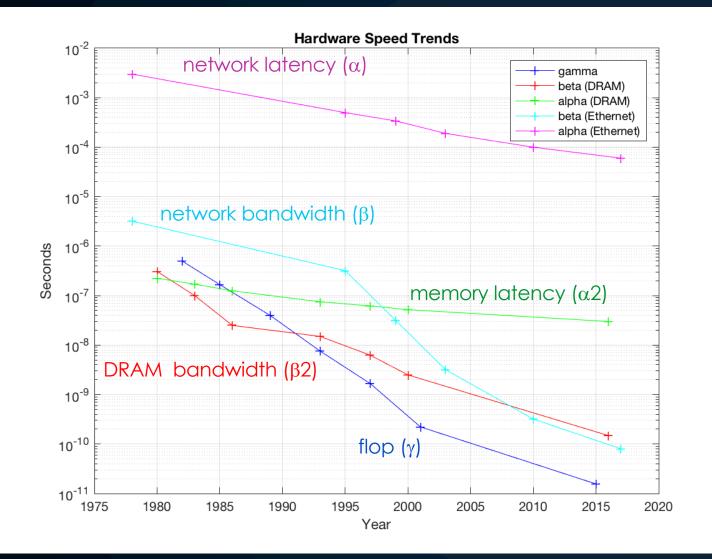
# Top500: Linpack Benchmark



### Response: sparsity, hierarchy, etc.

# Improve runtime Worse hardware utilization (% peak)

### **Communication Dominates**



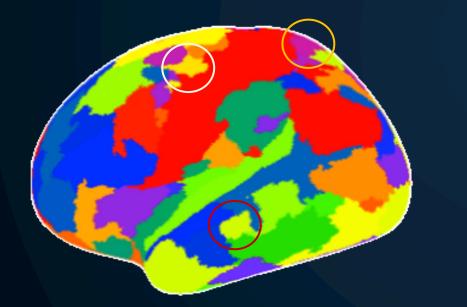
Time = # flops \*  $\gamma$  + # message \*  $\alpha$  + # bytes comm \*  $\beta$  + # diff memory locs \*  $\alpha$ 2 + # memory words \*  $\beta$ 2

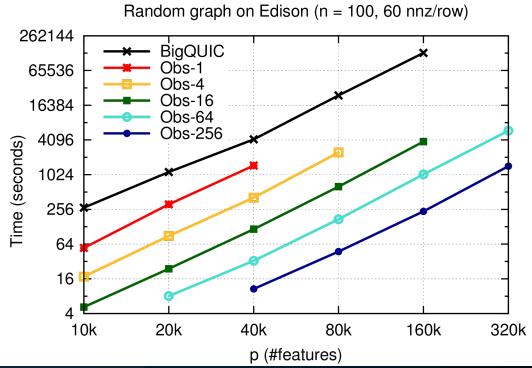
Data from Hennessy / Patterson, Graph from Demmel

### Learning Relationships with Graphical Models

### Discovering Regions and Co-Regions of Brain Activity from fMRI





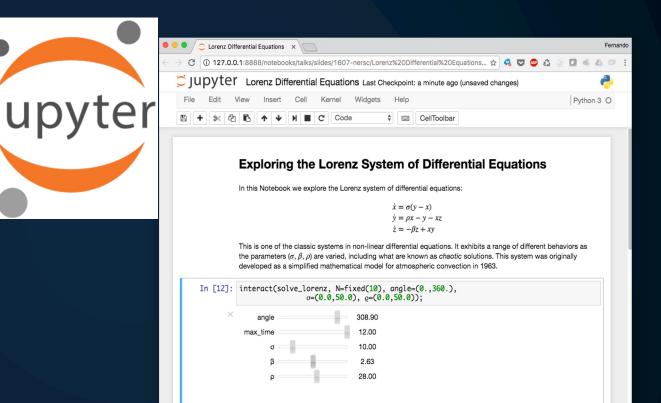


Koanantakool, Buluc, Morozov, Oliker, Yelick, Oh, AISTAT 2018.

# The IPython/Jupyter Notebook

- Rich web client
- Text & math
- Code
- Results
- Share, reproduce.

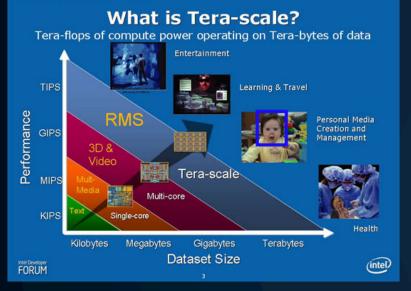
Transform publishing, research, teaching!





# It's hard to think exponentially

### Tera-scale definition and Motivation



Chapman & Hall CRC **Computational Science Series** PETASCALE COMPUTING ALGORITHMS AND APPLICATIONS LOCID BY DAVID A. BADER Chapman & Hat/ORD

### Scientific Grand Challenges

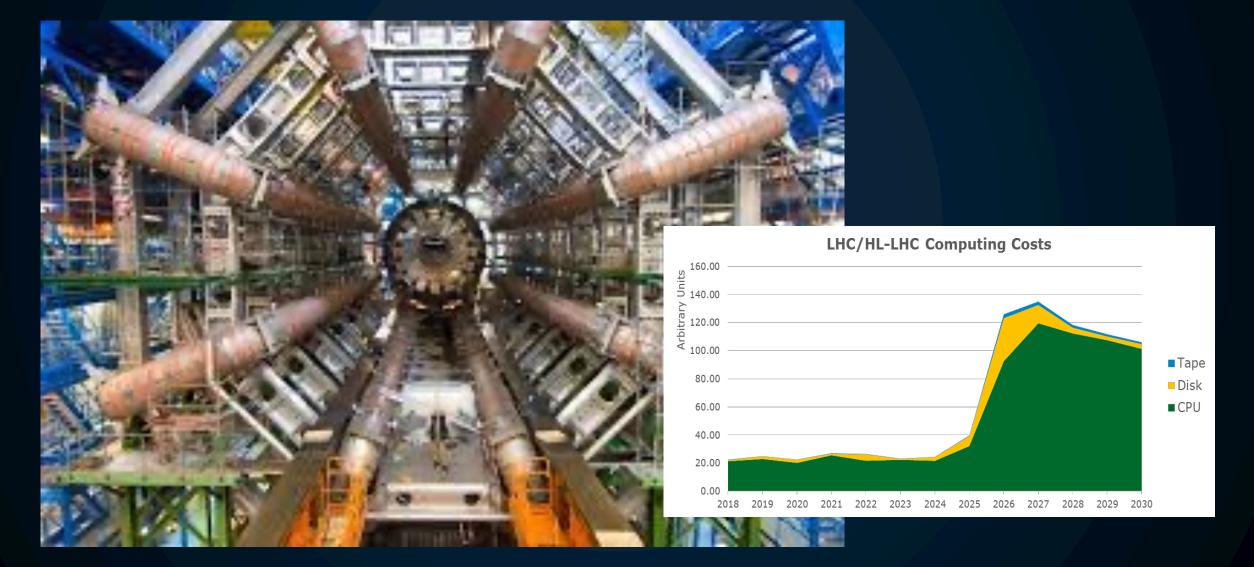
CROSSCUTTING TECHNOLOGIES FOR COMPUTING AT THE EXASCALE

February 2-4, 2010 • Washington, D.C.



Sponsored by: Office of Advanced Scientific Computing Research, Office of Science Office of Advanced Simulation and Computing, National Nuclear Security Administration

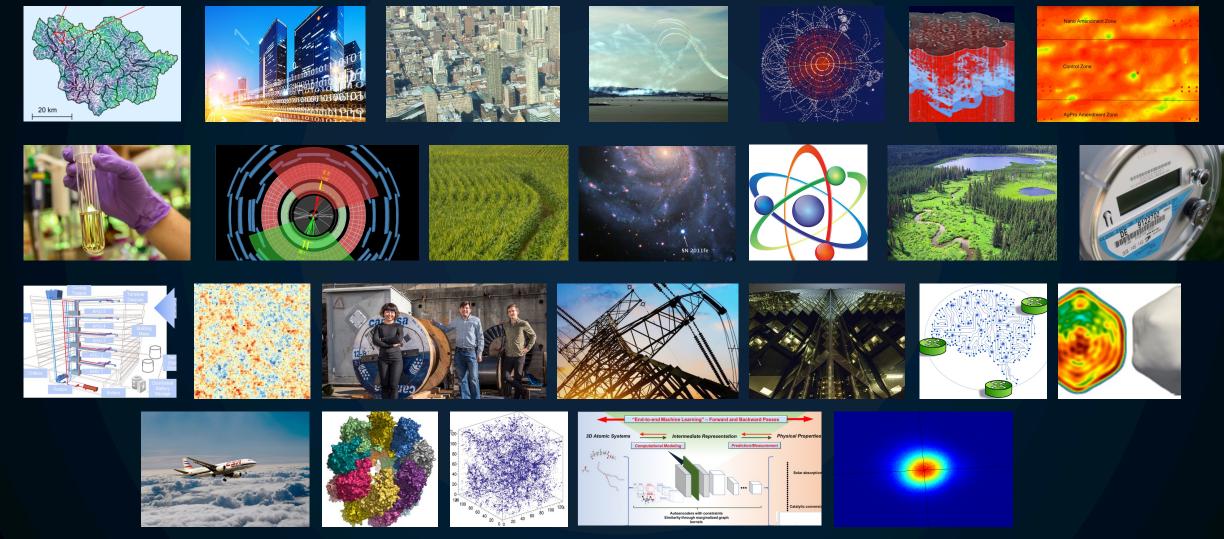
### Prediction of Atlas computing +\$1B





### Thanks, Moore!

### What Applications and is Science Different?



https://ml4sci.lbl.gov

### **Superfacility in Practice**

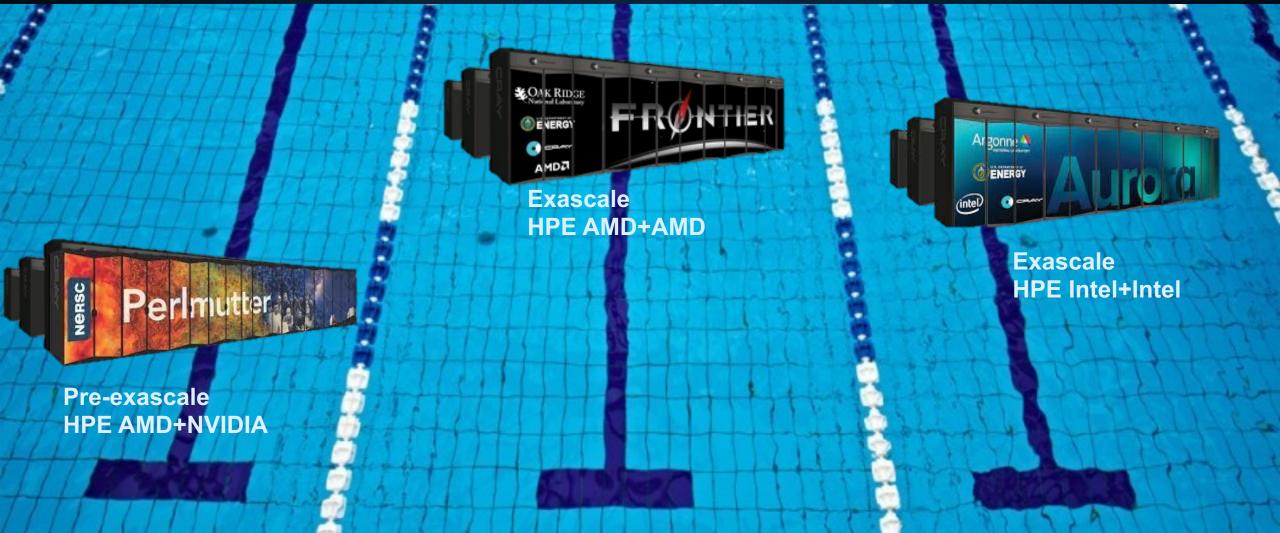
| Facility | Instrument             | Location        | Users | Compute | Data/Year | Bandwidth   | Timeframe    |
|----------|------------------------|-----------------|-------|---------|-----------|-------------|--------------|
| ALS      | Lightsource            | Berkeley        | 100s  | 50M     | 600TB     | 10Gb/sec    | 2025 Upgrade |
| DESC     | Telescope              | France          | 100s  | 150M    | 2000TB    |             | 2024         |
| DESI     | Telescope              | Arizona         | 100s  | 200M    | 500TB     | ~10GB/night | 2020         |
| JGI      | Genomics               | Berkeley        | 100s  | 75M     | self      |             | Continuously |
| KSTAR    | Tokamak                | Korea           | 10s   | 145M    | 20TB      | 10GB/hour   | 1-2 per year |
| LCLS     | Lightsource            | Stanford        | 100s  | 12M     | 1000TB    | 100 Gb/sec  | ~bimonthly   |
| LZ       | Dark Matter            | South<br>Dakota | 100s  | 20M     | 1000TB    | 1GB/hour    | 2021, 24/7   |
| NCEM     | Electron<br>Microscope | Berkeley        | 10s   | 1M      | 600TB     | 100Gb/sec   | 2021         |

### Exascale Architecture Plans (2008)

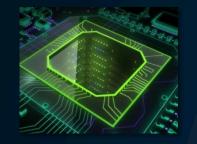


# Exascale Architecture Plans (2021)

US DOE Office of Science Systems



# **Trend Toward Specialization**



NVIDIA builds deep learning appliance with P100 Tesla's



### FPGAs in Microsoft cloud



Full

Custom



FPGA

Open

ISA



Intel buys deep learning startup, Nervana

Specialization Spectrum

FPGA +

standard ops



Google designs its own Tensor Processing Unit (TPU)

Simple

cores

High end

cores

GPGPUs

China (Sunway), Japan (ARM), and Europe/Barcelona (RISC-V) are doing this in HPC

Old

GPU

# Analytics vs. Simulation Kernels:

| 7 Dwarfs of Simulation                                         | 7 Giants of Big Data   |  |  |
|----------------------------------------------------------------|------------------------|--|--|
| Particle methods                                               | Generalized N-Body     |  |  |
| Unstructured meshes                                            | Graph-theory           |  |  |
| Dense Linear Algebra                                           | Linear algebra         |  |  |
| Sparse Linear Algebra                                          | Sorting                |  |  |
| Spectral methods                                               | Hashing                |  |  |
| Structured Meshes                                              | Alignment              |  |  |
| Monte Carlo methods                                            | Basic Statistics       |  |  |
| Phil Colella<br>Yelick, et al. "The Parallelism Motifs of Gend | NRC Report + our paper |  |  |

### Thanks!

# 2 Parallelism Models

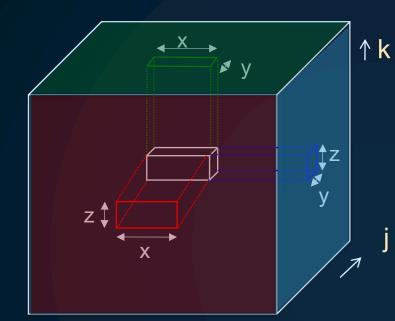
### **Bulk synchronous**

- Latency: reduce span
  - Log time algorithms
- Bandwidth: reduce volume
  - Iteration space tiling
- (Sparse) matrix abstraction
  For general semiring

### Asynchronous

- Latency: hide cost
  - Overlap and minimize overhead
- Bandwidth: maximize utilization
  - "All the wires all the time"
- Partitioned Global Address Space
  Application-specific optimizations

### **Communication-Avoiding Matrix Multiply**



- 2D algorithm: never chop k dim
- 3D: Assume + is associative;
  chop k, which is → replication
  of C matrix

Matrix Multiplication code has a 3D iteration space Each point in the space is a constant computation (\*/+)

for i for j for k C[i,j] ... A[i,k] ... B[k,j] ...

# Be smart about price vs. cost

| Factor                                                                                             | HPC<br>Center | Commerci<br>al Cloud |
|----------------------------------------------------------------------------------------------------|---------------|----------------------|
| Utilization (30% private, 90% HPC, 60%? Cloud);<br>Note: trades off against wait times, elasticity | ++            |                      |
| Cost of people, largest machines lowest people costs/core                                          |               | +                    |
| Cost of scientific consulting                                                                      | ++            |                      |
| Cost of power, advantage for placement of center, bulk                                             |               | ++                   |
| Energy efficiency (PUE, 1.1-1.3 is possible; 1.8 typical)                                          |               |                      |
| Cost of specialized hardware (interconnect)                                                        |               | +                    |
| Cost of commodity hardware                                                                         |               | +                    |
| Profit                                                                                             | +++           |                      |

Sophisticated users who spend a lot of money on computing, use commercial clouds only when the spot pricing is very low; otherwise it's too expensive

 $y_{n} \neq 0 \iff y_{n} \neq 0$   $N \rightarrow R \neq 0$   $\int_{1}^{n} \int_{1}^{n} \int_{1}^{n$ 

 $\mathcal{T}_n: \mathcal{N} \to \mathcal{R}$ 

 $\geq n_0: (x_0 - q) <$ 

 $=5\left(\frac{n+1}{n}\right)\left\{x_{n}\right\}CR$ 

### The Best Public Datasets #n+9n}; 13 for Machine Learning (xn+9n); 13 for Machine Learning (xn-9n); 13

https://medium.com/towards-artificial-intelligence/the-50-best-public-datasets-for-machine-learning-d80e9f030279

x, flim

lim"

VneNxneyn ZZn

n + x

lim (1+ T.

frick S

 $f(x), f(x)) \leq 0$ 

13-13

# **Google Computing Platform 1997**



# **NERSC Scientific Computing Center 1996**





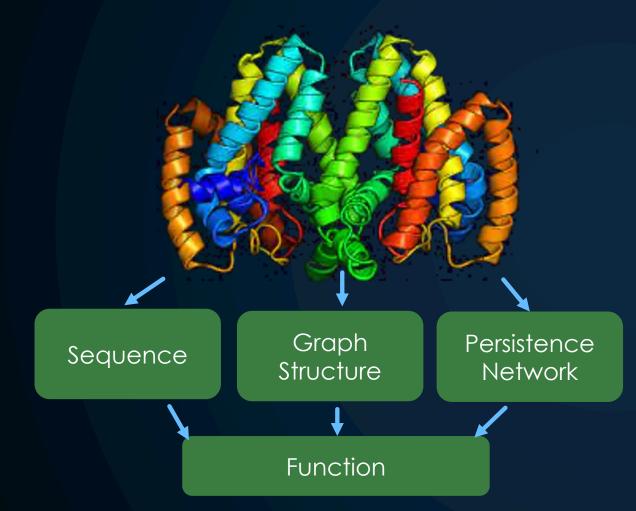


### Google 2022

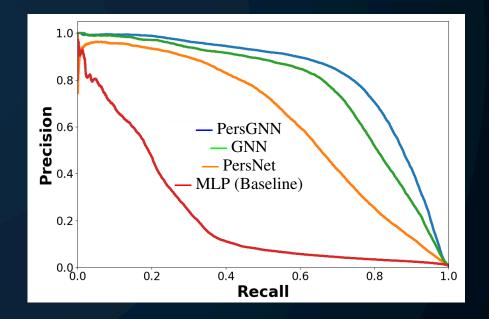
Over 8 years needed 300,000 times more computing to do machine learning!



### Learning from sequence + graph structure



Which proteins are good catalysts, bind to small molecules, etc.



Aditi S Krishnapriyan, Nicolas Swenson, Dmitriy Morozov, Y, Aydin Buluc

### **Experimental Science is Changing**

### By using our website you agree to our use of cookies in accordance with our cookie policy.

### PRIVACY POLICY +

### **JAX® MICE & SERVICES**



JAX<sup>®</sup> Mice are the highest quality and mostpublished mouse models in the world. Take advantage of our large inventories of common inbred strains and the convenience of having your breeding and drug efficacy needs met by the leading experts in mouse modeling.

### Search for Mice

### Advanced Mice Search

Q

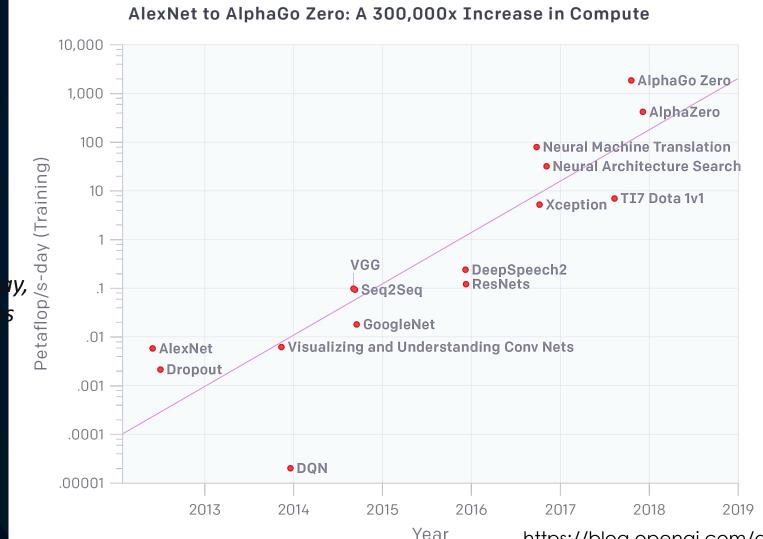
Search for mice by strain, stock, gene, allele and synonyms

### Breed Your Mouse

Test Your Drug

Cryopreserve Your Mouse

### Why HPC for Learning? 300,000x increase from 2011 (AlexNet) to 2018 (AlphaGoZero)



From 2011-2017 the fastest Top500 machine grew < 10x

https://blog.openai.com/ai-and-compute/