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Opportunities in Science

Analyze Explore Automate



Analyze Images to Find Cats
Classification

Localization
Detection

Segmentation

Source: Prabhat



Analyze Simulations to Find Hurricanes
Classification

Localization
Detection

Segmentation

Extending image-based methods to complex, 3D, scientific data sets is non-trivial!
Source: Prabhat



Fairness in Physics 35Overview
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Figure 6. Left: Distributions of signal and background events without selection. Right: Back-
ground distributions at 50% signal e�ciency (true positive rate) for di↵erent classifiers. The un-
constrained classifier sculpts a peak at the W -boson mass, while other classifiers do not.

Figure 7. Decorrelation versus background-rejection power showing that MoDe[0] performs sim-
ilarly to existing state-of-the-art decorrelation methods.

3.2.3 Beyond Decorrelation

Moving beyond decorrelation the 1/JSD metric is no longer relevant. Figure 6 shows that

neither MoDe[1] nor MoDe[2] sculpts a peaking structure in the background, but their

1/JSD values are small since neither seeks to decorrelate from the mass. Therefore, we

replace the 1/JSD metric with the signal bias induced by the classifier selection, which

is what actually matters when searching for resonant new physics. Specifically, we use

the signal estimators obtained by fitting the selected background-only samples to a simple

polynomial function as proxies for the signal biases. These are divided by their uncertainties

such that values of roughly unity are consistent with no bias, while values significantly larger
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O. Kitouni, BPN, C. Weisser, M. Williams, 2010.09745

Real world example: the search for Lorentz-
boosted W bosons at the Large Hadron Collider

W boson 
mass

MoDE[0] enforces independence, [1] is linear, [2] is monotonic quadratic, … 

Background only

LH
C

 s
im

ul
at

io
ns

Separating signal from noise in the search for Lorentz-boosted W bosons at 
Large Hadron Collider

Signal and background events 
without selection. 

O. Kitouni, B. Nachman, C. Weisser, M. Williams, 2010.09745

Back-ground distributions at 50% 
signal efficiency (true positive rate) 
for different classifiers. 



7 Based on 8/12/2016 slide by Joe Lykken at Fermilab

Deep Learning: like adding 4,000 extra 
tons of detectors!



Extracting signals from noisy data: “Visual Microphone”

High speed video will 
play
(imperceptible 

vibrations)

Soundpro
of glass

Abe Davis, M Rubinstein, N Wadhwa, GJ 
Mysore, F Durand, WT Freeman, MIT





First  Image of a Black Hole

This is not replicating human vision



Filtering, De-Noise and Curating Data

Arno Penzias and Robert Wilson discover 
Cosmic Microwave Background in 1965

AmeriFlux & FLUXNET: 750 users access 
carbon sensor data from 960 carbon flux 
data years; Developing ML to denoise 
data.

Gilberto Z. Pastorello, Dario Papale, Housen Chu, Carlo Trotta, Deb 
A. Agarwal, Eleonora Canfora, Dennis D. Baldocchi, M. S. Torn



AI for Natural Language Processing (NLP)

- 11 - AI for Science

Slide source: Steve Farrell



Using NLP on scientific publications

Word2vec’s representation of the 
elements, projected onto two 
dimensions

Analyze 3.3 million abstracts from materials science papers

Vahe Tshitoyan, Leigh Weston, John Dagdelen, Anubhav Jain



Opportunities in Science

Analyze Explore Automate



Generate Videos

Caroline Chan, Shiry Ginosar, Tinghui Zhou, Alexei A. Efros, UC Berkeley



Everybody Dance Now, Caroline Chan, Shiry Ginosar, Tinghui Zhou, Alexei A. Efros



Generate Data from Expensive Experiments

CosmoGAN: Mustafa Mustafa, Deborah Bard, Wahid Bhimji, Zarija Lukić, Rami Al-Rfou, Jan M. Kratochvil

Generate convergence maps of weak gravitational lensing, to help in 
understanding the physical laws governing the universe.



Inverse Design with ML
Designing materials, proteins, and small molecules with ML

High-dimensional 
design using 
machine learning

Clara Fannjiang and Jennifer Listgarten at NeurIPS ‘20

Search for a molecules using an 
autofocusing generative model: 
moves around the design space, 
guided by an oracle



A network with 3D translation- and 3D 
rotation-equivariance

CNNs for Materials with Physical Laws 

TR
A

IN
TE

ST
Slides from Tess Smidt and Risi Condor; E.g., 2018 paper by Thomas, Smidt, Kearnes, Yang, Li, Kohlhoff, Riley

Physics-aware learning



Opportunities in Science

Analyze Explore Automate



Computing and Data 
Facilities

User Community

Embedded Sensors

Experimental 
Facilities

Interconnected facilities 
where data is acquired, 
stored, analyzed and served

Sequencers

Light Sources

Telescopes

Particle 
Detectors

Environmental 
Sensors

Edge Computing and Automation in Science

Edge Computing 
for Science

Microscopes



Streaming Experimental Data

Researchers from Turkey working at the Linac Coherent Light Source at SLAC have used X-ray 
crystallography to capture detailed images of the structure of the SARS-CoV-2 virus.



Automated experiments

Source: CAMERA Project, PI James Sethian
Slide input: Lavanya Ramakrishna

Utilization and robustness
• AI-based autonomous discovery 
• Decisions based on small datasets
• Uncertainty estimates



Digital Twins

• Simulations
• Sensors / data
• Multi-level
• Real-time



Robotics and precision control in science

- 24 - AI for Science

Robot at SYBLIS beamline at ALS

MassSpec robot at JGI

Nanoparticle Robot at the Molecular Foundry



Self-Driving Cars



Self-Driving Laboratories

Automated COVID-19 Testing at the Innovative Genomics Institute at Berkeley



Strateos Cloud Lab

10 YEARS
14K SQUARE FEET
200+ INSTRUMENTS



Emerald Cloud Lab

CMU invests $40M to build an ECL with 
100+ unique scientific instruments

LIQUID TRANSFERS 
SOLID TRANSFERS
ORGANIC SYNTHESIS
SEPARATIONS
SPECTROSCOPY
MASS SPECTROMETRY
BIOASSAYS
CRYSTALLOGRAPHY
SAMPLE PREPARATION
TRANSFER ENVIRONMENT
SAMPLE TRANSPORT
STORAGE CONDITIONS
PROPERTY MEASUREMENT
WATER SOURCES



Why Cloud Lab?

Source: Emerald Cloud Lab



Setting up 

“Plugging an experiment 
into a browser forces 
researchers to translate 
the exact details of every 
step into unambiguous 
code”

https://www.theguardian.com/



ML in Science

Interpret-
ability

Inverse 
Design

Physics-
aware 

Learning

Uncertainty 
Quantifi-
cation

Learning 
across 
scales

Complex, 
3D+, sparse 

data

Transfer 
learning Fairness

Control of 
experiments

Federated 
learning on 

sensors 



Economics of Science

∞
demand

0 profit

expert  
labor

cheap 
labor

high risk





This is not just about replicating 
human capabilities



Is there an ML Advantage in 
science?



2018 ACM Turing Award for Deep Learning
Hinton’s Turing Lecture:
“So I think a lot of the credit 
for deep learning really goes 
to the people who 
collected the big databases 
like Fei Fei Li and the people 
who made the computers 
go fast like David Patterson 
and others.”

Yoshua Bengio Yann LeCun Geoffrey Hinton 
Photo: Facebook                              Photo: Google                       Photo: Botler AI



Where can data+compute yield breakthroughs?

Big Data

Scalable 
Algorithms

Big Iron
Fig. 3. Schematic representation of an MS-D network with w = 2 and
d = 3. Colored lines represent 3 ⇥ 3 dilated convolutions, with each color
representing a different dilation. Note that all feature maps are used for
the final output computation.

architecture uses dilated convolutions. A dilated convolution
Dh,s with dilation s2 Z+ uses a dilated filter h that is nonzero
only at distances that are a multiple of s pixels from the center.⇤
Recently, it was shown that dilated convolutions are able to cap-
ture additional features in DCNNs that use the traditional scal-
ing approach (23). Furthermore, instead of having each layer
operate at a certain scale as in existing DCNNs, in the mixed-
scale approach each individual channel of a feature map within a
single layer operates at different scale. Specifically, we associate
the convolution operations for each channel of the output image
of a certain layer with a different dilation:

gij (zi�1)=

ci�1X

k=0

Dhijk ,sij zki�1. [3]

The proposed mixed-scale approach alleviates many of the dis-
advantages of the standard downscaling and upscaling approach.
First, large-scale information about the image quickly becomes
available in early layers of the network through relatively large
dilations, making it possible to use this information to improve
the results of deeper layers. Furthermore, information at a cer-
tain scale can be used directly to inform decisions at other scales
without having to pass through layers at intermediate scales. Sim-
ilar advantages were recently found when training large multi-
grid architectures (24). No additional parameters have to be
learned during training, since the mixed-scale approach does not
include learned upscaling operations. This results in smaller net-
works that are easier to train. Finally, although dilations sij must
be chosen in advance, the network can learn which combina-
tions of dilations to use during training, making identical mixed-
scale DCNNs applicable across different problems (experi-
ments below).

Dense Connections. When using convolutions with reflective
boundaries, the mixed-scale approach has an additional advan-
tage compared with standard scaling: All network feature maps
have the same number of rows and columns as the input and
output image, i.e., mi =m and ni =n for all layers i , and hence,
when computing a feature map for a specific layer, we are not
restricted to using only the output of the previous layer. Instead,
all previously computed feature maps {z0, . . ., zi�1}, including
the input image x, can be used to compute the layer output zi .
Thus, we change the channel image computation 1 and the con-
volutional operation 3 to

zji = � (gij ({z0, . . ., zi�1}) + bij )

gij ({z0, . . ., zi�1}) =
i�1X

l=0

cl�1X

k=0

Dhijkl ,sij zkl . [4]

⇤Alternatively, dilated convolutions can be defined without using dilated filters by
changing the convolution operation itself; see ref. 23 for a detailed explanation.

Similarly, to produce the final output image y, all feature maps
can be used instead of only those of the last layer. We call this
approach of using all previously computed feature maps densely
connecting a network.

In a densely connected network, all feature maps are maxi-
mally (re)used: If a certain useful feature is detected in a fea-
ture map, it does not have to be replicated in other layers to
be used deeper in the network, as in other DCNN architec-
tures. As a result, significantly fewer feature maps and train-
able parameters are required to achieve the same accuracy in
densely connected networks compared with standard networks.
The smaller number of maps and parameters makes it easier to
train densely connected networks, reducing the risk of overfitting
and enabling effective training with relatively small training sets.
Recently, a similar dense-connection architecture was proposed
which relied on a relatively small number of parameters (25);
however, in ref. 25 the dense connections were used only within
small sets of layers at a single scale, with traditional downscal-
ing and upscaling operations to acquire information at different
scales. Here, we combine dense connections with the mixed-scale
approach, enabling dense connections between the feature maps
of the entire network, resulting in more efficient use of all feature
maps and an even larger reduction of the number of required
parameters.

MS-D Neural Networks. By combining mixed-scale dilated convo-
lutions and dense connections, we can define a DCNN archi-
tecture that we call the MS-D network architecture. Similar to
existing architectures, an MS-D network consists of several lay-
ers of feature maps. Each feature map is the result of apply-
ing the same set of operations given by Eq. 4 to all previous
feature maps: dilated convolutions with 3 ⇥ 3 pixel filters and
a channel-specific dilation, summing resulting images pixel by
pixel, adding a constant bias to each pixel, and finally apply-
ing a ReLU activation function. The final network output is
computed with the same set of operations applied to all fea-
ture maps, using 1 ⇥ 1 pixel filters instead of 3 ⇥ 3 pixel fil-
ters. In other words, channels of the final output image are com-
puted by taking linear combinations of all channels of all feature
maps and applying an application-specific activation function to
the result:

yk =�0

 
X

i,j

wijk zji + b0k

!
. [5]

Different ways of choosing the number of channels per layer are
possible. Here, we use a simple approach with each layer hav-
ing the same number of channels, denoted by the network width
w , and the number of noninput and nonoutput layers of the net-
work denoted by the network depth d . A graphical representa-
tion of an MS-D network with w =2 and d =3 is shown in Fig. 3.
The parameters that have to be learned during training are the
convolution filters hijkl and biases bij of Eq. 4 and the weights

Fig. 4. (A–C) Example of the segmentation problem of the simulated
dataset, with (A) the single-channel input image, (B) the correct segmen-
tation with labels indicated by color, and (C) the output of a trained MS-D
network with 200 layers.

256 | www.pnas.org/cgi/doi/10.1073/pnas.1715832114 Pelt and Sethian



Sequencing continues to improve in cost and quality



De Novo Metagenome Assembly is Hard



Big Science Questions

JGI-NERSC-KBase FICUS projects 

How do microbes change across 17 years?
(25TB)
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Tara Oceans Assembly

Microbial data from all 
oceans, collected from 2009-
13

84 Terabytes, never before  
co-assembled

(Non-automated science)



Terascale Data + HPC Reveals more Genomes and Diversity

42

Metagenome-assembled genomes 
(MAGs)

28 MAGs
4 phyla

307 
MAGs
17 phyla

More Genomes (MAGs), more phyla, coassembly

Co-Assembly of large environmental studies require an 
HPC metagenome assembler, MetaHipMer



Microbiome analysis: Machine Learning Options

Microbial 
community

Contigs

Sequence
Reads

Sample

Binning
Find 
Genes

?

Species Bins

Proteins

ML is everywhere!



Hardware (and Software and 
Algorithms)



Technology Transitions
Application Performance Growth

(Gordon Bell Prizes)

Attack of the
“killer cellphones”?

Specialization 
at end of 
transistor 
scaling

The rest of the 
computing world 
gets parallelism

Attack of the 
“killer micros”

10/1/22 CS194 Lecture 45





Are CNNs the only application?

Cautionary tale from HPL



Top500: Linpack Benchmark

1985: Cray 2

1997: ASCI Red

2008: Roadrunner
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10 Pflop/s

No. 1

2022: Frontier

Expensive, high efficiency:
N3 algorithm on N2 data



Response: sparsity, hierarchy, etc.

Improve runtime
Worse hardware utilization (% peak)



Communication Dominates 

flop (g)

network bandwidth (b)

network latency (a)

memory latency (a2)

DRAM  bandwidth (b2)

Time =
# flops * g +

# message *  a +
# bytes comm  * b +

# diff memory locs * a2  +
#  memory words * b2

Data from Hennessy / Patterson, Graph from Demmel



Learning Relationships with Graphical Models

Koanantakool, Buluc, Morozov, Oliker, Yelick, Oh, AISTAT 2018.

91K x 91K Sample Covariance matrix

Discovering Regions and Co-
Regions of Brain Activity from fMRI



The IPython/Jupyter Notebook

• Rich web client
• Text & math
• Code
• Results
• Share, reproduce.

Transform publishing, research, teaching!



It’s hard to think exponentially



Prediction of Atlas computing +$1B



Thanks, Moore!



What Applications and is Science Different?

https://ml4sci.lbl.gov



Superfacility in Practice
Facility Instrument Location Users Compute Data/Year Bandwidth Timeframe 

ALS Lightsource Berkeley 100s 50M 600TB 10Gb/sec 2025 Upgrade

DESC Telescope France 100s 150M 2000TB 2024

DESI Telescope Arizona 100s 200M 500TB ~10GB/night 2020 

JGI Genomics Berkeley 100s 75M self Continuously 

KSTAR Tokamak Korea 10s 145M 20TB 10GB/hour 1-2 per year

LCLS Lightsource Stanford 100s 12M 1000TB 100 Gb/sec ~bimonthly

LZ Dark Matter South 
Dakota 100s 20M 1000TB 1GB/hour 2021, 24/7

NCEM Electron 
Microscope Berkeley 10s 1M 600TB 100Gb/sec 2021



Exascale Architecture Plans (2008)

100x 
Faster 
clocks

100x 
more  
cores

Accelerators 
(GPUs)



Exascale Architecture Plans (2021)

Pre-exascale
HPE AMD+NVIDIA

Exascale
HPE AMD+AMD

Exascale
HPE Intel+Intel

US DOE Office of Science Systems



Trend Toward Specialization 

Google designs its own 
Tensor Processing Unit 
(TPU)

Intel buys deep 
learning startup, 
Nervana

NVIDIA builds deep 
learning appliance 
with P100 Tesla’s FPGAs in Microsoft cloud

RISC-V is an 
open 

hardware 
platform

Specialization Spectrum

Full 
Custom

Open 
ISA

FPGA FPGA + 
standard ops

Old 
GPU

GPGPUs Simple 
cores

High end 
cores

China (Sunway), Japan (ARM), and Europe/Barcelona (RISC-V) are doing this in HPC



Analytics vs. Simulation Kernels: 
7 Dwarfs of Simulation 7 Giants of Big Data
Particle methods Generalized N-Body
Unstructured meshes Graph-theory
Dense Linear Algebra Linear algebra
Sparse Linear Algebra Optimization
Spectral methods Integrations
Structured Meshes Alignment
Monte Carlo methods Basic Statistics

NRC Report + our paperPhil Colella 

Hashing
Sorting

Yelick, et al. “The Parallelism Motifs of Genomic Data Analysis”, Philosophical Transactions A, 2020



Thanks!



2 Parallelism Models

Bulk synchronous
u Latency: reduce span 

u Log time algorithms

u Bandwidth: reduce volume 
u Iteration space tiling

u (Sparse) matrix abstraction
u For general semiring 

Asynchronous
u Latency: hide cost

u Overlap and minimize overhead

u Bandwidth: maximize utilization
u “All the wires all the time”

u Partitioned Global Address Space
u Application-specific optimizations



Communication-Avoiding Matrix Multiply

x
z

z

y

x
y • 2D algorithm: never chop k dim

• 3D: Assume + is associative; 
chop k, which is à replication 
of C matrix

k

j

i Matrix Multiplication code has a 3D iteration space
Each point in the space is a constant computation (*/+)

for i
for j

for k
B[k,j]  …A[i,k] … C[i,j] …



Be smart about price vs. cost
Factor HPC

Center
Commerci
al Cloud

Utilization (30% private, 90% HPC, 60%? Cloud);
Note: trades off against wait times, elasticity

++

Cost of people, largest machines lowest people 
costs/core

+

Cost of scientific consulting ++
Cost of power, advantage for placement of center, 
bulk

++

Energy efficiency (PUE, 1.1-1.3 is possible; 1.8 typical)
Cost of specialized hardware (interconnect) +
Cost of commodity hardware +
Profit +++

Sophisticated users who spend a lot of money on computing, use commercial clouds only 
when the spot pricing is very low; otherwise it’s too expensive



Government:  8
Economics:  6
Images: 25
Sentiments: 5
Language: 13
Medical: 1

https://medium.com/towards-artificial-intelligence/the-50-best-public-datasets-for-machine-learning-d80e9f030279



Google Computing Platform 1997



NERSC Scientific Computing Center 1996



NERSC 2022

Google 2022

Over 8 years needed 300,000 
times more computing to do 
machine learning!



Supercomputers
NERSC



Learning from sequence + graph structure 

Aditi S Krishnapriyan, Nicolas Swenson, Dmitriy Morozov, Y, Aydin Buluc

Graph 
Structure

Persistence 
NetworkSequence

Function

Model AUPR
— PersGNN 0.82

— GNN 0.75
— PersNet 0.63

— MLP (Baseline) 0.22

Figure 2: Precision-recall curves for predicting molecular function (MF) gene ontology (GO)
terms. Precision-Recall curves for four models: the "baseline" model (a multi-layer perceptron)
trained on protein contact maps, a persistence network (PersNet) trained on the persistence diagrams
created from the 3D atomic coordinates of each protein, a graph neural network (GNN) trained
on protein contact maps, and PersGNN, our model that combines PersNet and the GNN. For each
method, we independently train ten models and ensemble them by computing the average probability
score for each class. Area under the precision-recall curve (AUPR) scores on the test set for each
method are shown to the right, where higher scores indicate better accuracy. Our model, PersGNN,
achieves the highest AUPR score.

3 Results and Discussion155

Our hybrid method, PersGNN, outperforms both GNN and PersNet on their own, and significantly156

outperforms the baseline MLP that is given the same information as the GNN. The performance of157

each method, measured in area under the precision-recall curve (AUPR) for molecular function (MF)158

gene ontology (GO) terms is shown in Figure 2. PersGNN has an AUPR score 9.3% higher than159

the GNN, the next best model. To focus our study on learning from protein structure, we have not160

included highly expressive sequence models, such as BLAST or 1D CNNs, nor did we use language161

models to compute amino acid embeddings. The GNN, however, can learn to embed amino acids162

through a residue’s local neighborhood in the graph structure. PersNet is able to capture further163

topological information through a protein’s 1D and 2D persistence diagrams. When combined, the164

GNN and PersNet capture complementary information as indicated by the higher AUPR score, thus165

creating a more complete representation of the protein structure.166

In Figure 3, we compute average F1 scores aggregated over different GO categories, which are167

grouped at various levels of the MF GO hierarchy. F1 scores are a measure of the model accuracy,168

calculated from the precision and recall, where higher F1 scores indicate that the model was able to169

successfully classify more proteins. As we see in Figure 3, the PersGNN model has consistently high170

F1 scores across GO categories, and performs better than the other methods on every GO category171

and almost every individual GO term.172

Figure 4 shows the effects of training set size (the number of times each GO term appears in the173

training dataset) against model accuracy, again represented via F1 scores. As we see, PersGNN174

achieves high F1 scores even on GO terms with fewer training examples, while other models like the175

MLP perform poorly in this regime. The ability of PersGNN to make accurate predictions even with176

a low training set size is optimistic, as it is indicates the model is making good use of the protein177

structure information. Moreover, while there are millions of raw amino acid sequences, there are far178

fewer available protein structures, meaning achieving high model accuracy with lower amounts of179

data is especially important here.180

Our method, PersGNN, more accurately predicts MF GO terms compared to other structure-based181

methods, including across different categories and with fewer examples. This motivates a further182

investigation into its performance. Future work in this area should study PersGNN’s performance183

on all three GO term categories (Biological Process and Cellular Component). In addition, it is184
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Which proteins are good 
catalysts, bind to small 
molecules, etc.



Experimental Science is Changing

u sdf



Why HPC for Learning?

https://blog.openai.com/ai-and-compute/

A petaflop/s-day      
= 1015neural net 
operations per 
second for one day, 
~= 1020operations

300,000x increase from 2011 (AlexNet) to 2018 (AlphaGoZero)

From 2011-2017 the 
fastest Top500 
machine grew < 10x


