Beyond Exascale Computing

Kathy Yelick

Vice Chancellor for Research and Robert S. Pepper Professor of Electrical Engineering and Computer Sciences U.C. Berkeley

> Senior Faculty Scientist Computing Sciences Lawrence Berkeley National Laboratory

National Academies Study

Kathy Yelick (Chair) John Bell **Bill Carlson** Fred Chong **Dona Crawford** Jack Dongarra Mark Dean Ian Foster Charlie McMillan Dan Meiron **Daniel Reed** Karen Willcox

(report at <u>www.cstb.org</u>)

NATIONAL ACADEMIES

Charting a Path in a Shifting Technical and Geopolitical Landscape

Post-Exascale Computing for the National Nuclear Security Administration

Consensus Study Report

DOE ASCR Report

Jack Dongarra (Chair) Ewa Deelman (Vice Chair) Tony Hey Satoshi Matsuoka Vivek Sarkar **Greg Bell** lan Foster David Keyes Dieter Kranzlmeuller Bob Lucas Lynne Parker John Shalf **Dan Satanzione Rick Stevens** Katherine Yelick

(report at www.osti.gov/)

Can the United States Maintain Its Leadership in High-Performance Computing?

A report from the ASCAC Subcommittee on American Competitiveness and Innovation to the ASCR office

Post-Exascale Computing

Continue to Rethink Applications

Nuclear E

- Rely heavily on hardware features and software teams
- Several new to HPC, all with new capabilities
- We should have another 2 dozen in 10 years!!

Scientific Computing Circa 2007

Exascale report from 2007 Town Halls Entirely focused on modeling and simulation

Scientific Computing is often used synonymously with Simulation and HPC

Simulation \subset Scientific Computing \subset HPC

Modeling and Simulation at the Exascale for Energy and the Environment

Horst Simon Lawrence Berkeley National Laboratory April 17-18, 2007 Thomas Zacharia Oak Ridge National Laboratory May 17-18, 2007 Rick Stevens Argonne National Laboratory May 31-June 1, 2007

Co-Chairs:

Runtime of "hero" calculations are too long

Number of Nodes	Memory Footprint	Wall-Clock Time	
2400	~300–400 TB	6 months	Iterative design
4990	~600 TB	3–4 months	does not happen or 6 month cycles
288	~20 TB	1 month	
3250	104 TB	5.8 days	
512	32.8 TB	2 months	

Subset of Application Challenges Beyond Exascale

Reentry

Complex geometry

Combustion

Extreme Environs

Digital Twins

- Simulations
- Sensors / data
- Multi-level
- Real-time

National Academies Study

Finding: The demands for advanced computing continue to grow and will exceed the capabilities of planned upgrades across the NNSA labs.

NATIONAL ACADEMIES

Charting a Path in a Shifting Technical and Geopolitical Landscape

Post-Exascale Computing for the National Nuclear Security Administration

Consensus Study Report

New demands for HPC in Science

Simulation From atoms to the universe

Data

Images, text, to genomes

Learning Interpret, infer and automate

Prediction of Atlas computing +\$1B

Microbial Data in the Environment

Tara Oceans Microbial data collected from 2009-13

> 84 Terabytes assembled on 9000 Frontier nodes

HPC changes observational science

Machine Learning Drives Computational Demand

Computing Requirements in Machine Learning

300,000x increase from 2011 (AlexNet) to 2018 (AlphaGoZero)

A petaflop/sday = 10¹⁵neural net operations per second for one day, ~= 10²⁰operations

https://blog.openai.com/ai-and-compute/

Is there parallelism?

Always has been

Wait, it's all linear algebra?

imgflip.com

Analytics vs. Simulation Kernels:

7 Dwarfs of Simulation	7 Giants of Big Data
Particle methods	Generalized N-Body
Unstructured meshes	Graph-theory
Dense Linear Algebra	Linear algebra
Sparse Linear Algebra	Hashing
Spectral methods	Sorting
Structured Meshes	Alignment
Monte Carlo methods	Basic Statistics
Phil Colella	NRC Report + our paper

Yelick, et al. "The Parallelism Motifs of Genomic Data Analysis", Philosophical Transactions A, 2020

Weak Scaling has Diminishing Returns

Increase resolution by 10x in each dimension Increase cores by 1000x

Strong and weak scaling

- Strong scaling
 - Most desirable for users
 - -Harder to find (Amdahl)
- Weak scaling
 - Limited for super-linear algorithms
 - -Needs memory capacity to scale
 - Data problems also need I/O

See SIAM News, 9/22 Satoshi Matsuoka and Jens Domke

There is and always will be...

an insatiable demand for computing in science.

Parallelism may be increasingly difficult to uncover.

HoreKa at Karlsruhe Institute of Technology

Post-Exascale Computing

Disruptions

Implied question: Do these make HPC obsolete?

AI for Science

AI FOR SCIENCE

RICK STEVENS VALERIE TAYLOR Argonne National Laboratory July 22–23, 2019

JEFF NICHOLS ARTHUR BARNEY MACCABE Oak Ridge National Laboratory August 21–23, 2019

KATHERINE YELICK DAVID BROWN Lawrence Berkeley National Laboratory September 11-12, 2019

ENERGY CENERG

Advanced Research Directions on **AI FOR SCIENCE, ENERGY, AND** SECURITY

Report on Summer 2022 Workshops

Jonathan Carter Lawrence Berkeley National Laborator

John Feddema Sandia National Laboratories

Doug Kothe Oak Ridge National Laboratory

Rob Neely Lawrence Livermore National Laboratory

Jason Pruet Los Alamos National Laboratory

Rick Stevens Argonne National Laboratory

ANL-22/9

Analyze Simulations to Find Hurricanes

Classification

Localization

Extending image-based methods to complex, 3D, scientific data sets is non-trivial! Source: Prabhat

Deep Learning: like adding 4,000 extra tons of detectors!

Based on 8/12/2016 slide by Joe Lykken at Fermilab

Deep Learning with Physical Laws

Physics-aware learning

A network with 3D translation- and 3D rotation-equivariance

Slides from Tess Smidt and Risi Condor; E.g., 2018 paper by Thomas, Smidt, Kearnes, Yang, Li, Kohlhoff, Riley

Automation in Self-Driving Laboratories

E.g., Strateos Cloud Lab 14K square feed 200+ instruments

Five Stages of Al

And this includes AI researchers!

AI in Science

The Computational Science and Engineering community (including NNSA) should have a leadership role in addressing UQ, safety, alignment, and explainability in Al for science and engineering

> Federated learning on sensors

Types of Quantum Bits Diversity & Progress

Photonic Circuits

www.phys.org

Dopants in Silicon / Diamond www.sciencedaily.com

Superconducting Circuits www.qnl.berkeley.edu

Trapped lons www.quantumoptics.at

Topological Wires www.microsoft.com High-fidelity parallel entangling gates on a neutralatom quantum computer

A series of fast-paced advances in Quantum Error Correction

National Academies Study

Finding: **Quantum technology** has the potential to improve the fundamental understanding of material properties.

However, breakthroughs in quantum algorithms and systems are needed to make quantum computing practical for multiphysics stockpile modeling.

Quantum computing is more likely to serve as a **special-purpose accelerator** than to replace leading-edge computing. Charting a Path in a Shifting Technical and Geopolitical Landscape

Post-Exascale Computing for the National Nuclear Security Administration

NATIONAL ACADEMIES Medicine

Consensus Study Report

Cloud Computing

Lessons Learned from Clouds

- Availability
- Cost vs price
- Higher level programming

Old programming models never die, they just get buried under layers!

Follow the money, understand the implications

Source: Reed, Gannon, Dongarra

National Academies Study

Finding: Cloud providers are engaged in hardware and software innovations and will have more market influence in technology and talent but are not aligned with NNSA requirements. NATIONAL ACADEMIES

Charting a Path in a Shifting Technical and Geopolitical Landscape

Post-Exascale Computing for the National Nuclear Security Administration

Consensus Study Report

HPC community has always punched above its weight

Post-Exascale Computing

122 YEARS OF MOORE'S LAW

https://www.economist.co m/technologyquarterly/2016/03/10/hors es-for-courses

Faith no Moore

Selected predictions for the end of Moore's law

Sources: Intel; press reports; *The Economist* Economist.com

Dennard Scaling is Long Dead; Moore's Law Will Follow

Performance Programming pre 2005

Exascale Architecture Plans (2008)

Petascale X 10x more energy X 100x more Performance per Joule = Exascale

Accelerators (GPUs)

Faster clocks + SIMD 100x more cores

Exascale Era Architectures (US DOE Office of Science)

First-in-Class HPC Systems (Top500)

	First TF	First PF	First EF
	ASCI Red	Roadrunner	Frontier
Month-Year	Jun-97	Jun-08	Jun-22
Best Tech (nm)	500	65	6
Peak (PF/s)	0.001453	1.38	1686
Sustained (PF/s)	0.001068	1.04	1102
Power (MW)	0.85	2.35	21.1
Efficienty (GF/W)	0.00125647	0.44	52.2
Memory (PB)	0.001212	0.04	9.4
FPUs (K)	9	464	534,000
Cabinets	104	296	74
Foorspace (m^2)	150	557	678

Kogge and Dally: Frontier vs the Exascale Report: Why so long? and Are We Really There Yet? +Wikipedia for ASCI Red

Energy efficiency didn't track technology scaling

Gate Length (nm)	65	32	16	6
Metal 1 pitch (nm)	180	100	64	40
Energy ⁻¹	1	1.8	2.8	4.5
Area ⁻¹	1	3.2	7.9	20.3

Rumors of 2nm fabs, but how much will it help?

Kogge and Dally: Frontier vs the Exascale Report: Why so long? and Are We Really There Yet?

The "Aggressive" Strawman was a bit early, but close to Summit

	Strawman	Summit
Year	2015	11/2018
Best Tech	32nm	16nm
Peak (PF/s)	2,000	201
Sustained (PF/s)	1,000	148
Power (MW)	67.7	9.8
Efficiency (GF/W)	14.9	14.7
Memory (PB)	3.5	2.8
Bandwidth/flop (B/F)	0.08	0.13
Mem BW (PB/s)	158	27
Bisection(TB/s)	210	105
FPUs (M)	664	144
Cabinets	583	256
Floorspace (m^2)	1195	520

Resilience would have been a bigger problem with a 7x larger Summit

Kogge and Dally: Frontier vs the Exascale Report: Why so long? and Are We Really There Yet?

Post-Exascale Architecture Plans 2024 (Strawperson-v0)

Exascale X 2x more energy X 500x more Performance per Joule ??

GPUs

Influenced to make Al better (e.g., sparsity)?

Specialized for Al

Specialized for Simulation

Designed by DOE, DoD, ...?

Another Exponential?

1000X AI Compute in 8 Years

Jensen Huang's Nvidia GTC Keynote

Specialization: Is deep learning the only application?

Remember when the Linpack Benchmark represented scientific computing?

Everyone is Making AI Chips

Not everyone is selling those chips!

Graphcore, Nervana Cerebras, Wave Computing, Horizon Robotics, Cambricon, DeePhi, Esperanto, SambaNova, Eyeriss, Tenstorrent, Mythic, ThinkForce, Groq, Lightmatter

Specialization for the masses?

Technology and Marketplace: Radically Different! What's a post-Exascale strategy for the science community?

Beat them

Design processors for science
More Co-Design and
don't forget the math and software

Join them

– Leverage AI Hardware for AI in Science andSimulation ?

Workforce

Finding: The NNSA laboratories face significant challenges in recruiting and retaining the highly creative workforce that NNSA needs, owing to competition from industry, a shrinking talent pipeline, and **challenges in hiring diverse and international talent**.

• The U.S. national security enterprise has benefited enormously from inclusion of global talent.

NATIONAL ACADEMIES Sciences Engineering Medicine

Charting a Path in a Shifting Technical and Geopolitical Landscape

Post-Exascale Computing for the National Nuclear Security Administration

Consensus Study Report

Where are the US Computer Science PhDs student doing?

PhDs by Specialty

Taulbee Survey 2022

STEM Graduates Around the World

Top 10 Countries by Population

Reasons are Systemic

Less likely to have access to	Among those in STEM jobs who are • White • Asian • Hispanic • Black	U.S. adults
quality education to prepare the for these fields	em 50% 🌑 🔹 73%	42%
Face discrimination in recruitm hiring and promotions	ent, 27 💿 🔹 72	31
Not encouraged to pursue these subjects from an early age	e 44 • • • • 67	41
Less likely to think they would succeed in these fields	35 ● ● 44	33
Lack of black and Hispanic role models in these fields	31 ••• 42	27
More are being trained in these fields, but the process is slow	22 • • • 37	22
Just less interested in STEM fields than others	18 14 •• •	22
	0 20 40 60 80	100

Wide racial and ethnic gaps among STEM employees on why so few blacks and Hispanics work in the field

% of those in science, technology, engineering and math jobs who say each of the following is a **major reason** why blacks and Hispanics are underrepresented in STEM jobs in this country

Note: Whites, blacks and Asians are non-Hispanic only; Hispanics are of any race. Respondents who gave other responses or who did not give an answer are not shown. Source: Survey of U.S. adults conducted July 11-Aug. 10, 2017. "Women and Men in STEM Often at Odds Over Workplace Equity"

PEW RESEARCH CENTER

Using Scientific Computing (Broadly) to Attract and Retain Talent

CS10 The Beauty and Joy of Computing

Lecture #23 : Limits of Computing

UC Berkeley EECS Lecturer SOE Dan Garcia 2011-11-23

4.74 DEGREES OF SEPARATIO

Researchers at Facebook and the University of Milan found that the avg # of "friends" separating any two people in the world was < 6.

http://www.nytimes.com/2011/11/22/technology/between-you-and-me-4-74-degrees.html

Saving the World with Computing

Kathy Yelick Vice Chancellor for Research Professor of Computer Science UC Berkeley

Senior Faculty Scientist Lawrence Berkeley National Laboratory

Often over 50% women with (relatively) high representation of other historically underserved groups

Post Exascale Computing: Not Business at Usual

Computing demands continue to grow

The benefits of more weak scaling are limited

Computing technology has hit several "walls"

The **computing industry** has changed dramatically

Al methods are having huge impacts elsewhere

Quantum computing potential for science still unknown

Cloud computing is dominating the computing industry

Global supply chain issues present uncertainties