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Post-Exascale Computing

Computing 
demand

Available 
technology 

Disruptions
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Photon ScienceGenomics

Climate

Cancer

Earthquakes

Subsurface

Continue to Rethink Applications

Materials

Chemistry

Carbon CaptureAccelerators Astrophysics

CosmologyNuclear Energy

Manufacturing

Wind Energy

Power Grid

Combustion

Fusion

QCD

Materials

Catalysis

• 24 projects with about 10 people per team
• Rely heavily on hardware features and software teams
• Several new to HPC, all with new capabilities
• We should have another 2 dozen in 10 years!!
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Scientific Computing Circa 2007

Exascale report from 2007 Town Halls 
Entirely focused on modeling and 
simulation

Scientific Computing is often used 
synonymously with Simulation and HPC

Simulation ⊂ Scientific Computing ⊂ HPC
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Runtime of “hero” calculations are too long

Number of 
Nodes

Memory 
Footprint

Wall-Clock 
Time

2400 ~300–400 TB 6 months

4990 ~600 TB 3–4 months

288 ~20 TB 1 month

3250 104 TB 5.8 days

512 32.8 TB 2 months

Iterative design 
does not happen on 
6 month cycles
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Subset of Application Challenges Beyond Exascale

Reentry Complex 
geometry

Combustion Extreme 
Environs
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Digital Twins

• Simulations
• Sensors / data
• Multi-level
• Real-time
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National Academies Study

Finding: The demands for advanced 
computing continue to grow and will 
exceed the capabilities of planned 
upgrades across the NNSA labs.
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New demands for HPC in Science

Simulation
From atoms 

to the 
universe

Data
Images, text, 
to genomes

Learning
Interpret, infer 
and automate
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Prediction of Atlas computing +$1B
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Tara Oceans Microbial data collected 
from 2009-13

84 Terabytes assembled on 9000 
Frontier nodes

HPC changes observational science

Microbial Data in the Environment

13
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Machine Learning Drives Computational Demand

3 Trends
We explain the data we curated in terms of three distinct eras and three distinct trends. In short, there was an era of slow
growth before Deep Learning took off. Around 2010, the trend sped up and has not slowed down since then. Separately,
in 2015 to 2016 a new trend of large-scale models emerged, growing at a similar rate, but exceeding the previous one by
two orders of magnitude (OOMs hereafter). See Figure 1 and Table 2 for a summary.
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Training compute (FLOPs) of milestone Machine Learning systems over time
n = 121

Figure 1: Trends in n = 121 milestone ML models between 1952 and 2022. We distinguish three eras. Notice the change of slope
circa 2010, matching the advent of Deep Learning; and the emergence of a new large-scale trend in late 2015.

Period Data Scale (start to end) Slope Doubling time

1952 to 2010

Pre Deep Learning Trend

All models

(n = 19)
3e+04 to 2e+14 FLOPs

0.2 OOMs/year

[0.1; 0.2; 0.2]

21.3 months

[17.0; 21.2; 29.3]

2010 to 2022

Deep Learning Trend

Regular-scale models

(n = 72)
7e+14 to 2e+18 FLOPs

0.6 OOMs/year

[0.4; 0.7; 0.9]

5.7 months

[4.3; 5.6; 9.0]

September 2015 to 2022

Large-Scale Trend

Large-scale models

(n = 16)
4e+21 to 8e+23 FLOPs

0.4 OOMs/year

[0.2; 0.4; 0.5]

9.9 months

[7.7; 10.1; 17.1]

Table 2: Summary of our main results. In 2010 the trend accelerated along the with the popularity of Deep Learning, and in late 2015
a new trend of large-scale models emerged.

First we will discuss the transition to Deep Learning circa 2010-2012. Then we will discuss the emergence of
large-scale models circa 2015-2016.

We performed some alternative analyses to examine our conclusions from additional perspectives. In Appendix B we
discuss trends in record-setting models. In Appendix C we discuss trends in different ML domains.

3
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Computing Requirements in Machine Learning

https://blog.openai.com/ai-and-compute/

A petaflop/s-
day      = 
1015neural net 
operations per 
second for one 
day, ~= 
1020operations

300,000x increase from 2011 (AlexNet) to 2018 (AlphaGoZero)

From 2011-2018 
the fastest Top500 
machine grew < 
15x

OpenAI estimates 
3.4-month doubling!



Is there parallelism?
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Analytics vs. Simulation Kernels: 

7 Dwarfs of Simulation 7 Giants of Big Data
Particle methods Generalized N-Body
Unstructured meshes Graph-theory
Dense Linear Algebra Linear algebra
Sparse Linear Algebra Optimization
Spectral methods Integrations
Structured Meshes Alignment
Monte Carlo methods Basic Statistics

NRC Report + our paperPhil Colella 

Hashing
Sorting

Yelick, et al. “The Parallelism Motifs of Genomic Data Analysis”, Philosophical Transactions A, 2020
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Weak Scaling has Diminishing Returns

Increase resolution by 10x in each dimension
Increase cores by 1000x

Runtime increases L
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Strong and weak scaling

•Strong scaling
–Most desirable for users
–Harder to find (Amdahl)

•Weak scaling
– Limited for super-linear algorithms
–Needs memory capacity to scale
–Data problems also need I/O

See SIAM News, 9/22 Satoshi Matsuoka and Jens Domke

https://sinews.siam.org/About-the-Author/satoshi-matsuoka
https://sinews.siam.org/About-the-Author/jens-domke
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There is and always will be… 

an insatiable demand for computing in science.

Parallelism may be increasingly difficult to uncover.

HoreKa at Karlsruhe Institute of Technology
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Post-Exascale Computing

Computing 
demand Disruptions Technology
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AI

Quantum

Cloud

0
Disruptions

Implied question: Do these make HPC obsolete?
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AI for Science

Scientific discovery in the age of 
artificial intelligence, 2023
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Analyze Simulations to Find Hurricanes

Classification
Localization

Detection
Segmentation

Extending image-based methods to complex, 3D, scientific data sets is non-trivial!
Source: Prabhat



267 Based on 8/12/2016 slide by Joe Lykken at Fermilab

Deep Learning: like adding 4,000 extra 
tons of detectors!
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A network with 3D translation- and 3D 
rotation-equivariance

Deep Learning with Physical Laws 

TR
A

IN
TE

ST
Slides from Tess Smidt and Risi Condor; E.g., 2018 paper by Thomas, Smidt, Kearnes, Yang, Li, Kohlhoff, Riley

Physics-aware learning
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Automation in Self-Driving Laboratories

E.g., Strateos Cloud Lab
14K square feed
200+ instruments
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Five Stages of AI

Denial

Anger

Bargaining

Depression

Acceptance

And this includes AI researchers!
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AI in Science

Interpret-
ability

Inverse 
Design

Physics-
aware 

Learning

Uncertainty 
Quantifi-
cation

Learning 
across 
scales 

Complex, 
3D+, sparse 

data

Transfer 
learning Fairness

Control of 
experiments

Federated 
learning on 

sensors 

The Computational Science and Engineering community 
(including NNSA) should have a leadership role in 
addressing UQ, safety, alignment, and explainability in 
AI for science and engineering
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Types of Quantum Bits Diversity & Progress

www.sciencedaily.com www.quantumoptics.at

www.qnl.berkeley.edu www.microsoft.com

Dopants in 
Silicon / Diamond

Trapped  
Ions

Topological  
Wires

Superconducting 
Circuits

Photonic
Circuits
www.phys.org



Finding: Quantum technology has the 
potential to improve the fundamental 
understanding of material properties. 

However, breakthroughs in quantum 
algorithms and systems are needed to 
make quantum computing practical for 
multiphysics stockpile modeling. 

Quantum computing is more likely to serve 
as a special-purpose accelerator than to 
replace leading-edge computing.

National Academies Study
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The economic model is key

Cloud Computing
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Lessons Learned from Clouds

•Availability

•Cost vs price

•Higher level programming

Old programming models never die, 
they just get buried under layers!



Follow the money, understand the implications
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“Traditional” computing
(~1.7T$ (USD) aggregate) BAT

Hyperscalers
HPC+AIMarket capitalizations



Finding: Cloud providers are 
engaged in hardware and software 
innovations and will have more 
market influence in technology and 
talent but are not aligned with 
NNSA requirements.

National Academies Study
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HPC community has always punched above its weight
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Post-Exascale Computing

Computing 
demand Disruptions Technology
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From https://www.unite.ai/moores-law/
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https://www.economist.co
m/technology-
quarterly/2016/03/10/hors
es-for-courses
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Dennard Scaling is Long Dead; Moore’s Law Will Follow

M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, C. Batten, and K. Rupp
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Performance Programming pre 2005



45

Exascale Architecture Plans (2008)

Faster 
clocks + 
SIMD

100x 
more  
cores

Accelerators 
(GPUs)

Petascale X 10x more energy X 100x more Performance per Joule = Exascale
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Exascale Era Architectures (US DOE Office of Science)

Pre-exascale
HPE AMD+NVIDIA

Exascale
HPE AMD+AMD

Exascale
HPE Intel+Intel

US DOE Office of Science Systems

1 Architecture (3 GPUs), 1 Integrator!
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First-in-Class HPC Systems (Top500)

First TF First PF First EF
ASCI Red Roadrunner Frontier

Month-Year Jun-97 Jun-08 Jun-22
Best Tech (nm) 500 65 6
Peak (PF/s) 0.001453 1.38 1686
Sustained (PF/s) 0.001068 1.04 1102
Power (MW) 0.85 2.35 21.1
Efficienty (GF/W) 0.00125647 0.44 52.2
Memory (PB) 0.001212 0.04 9.4
FPUs (K) 9 464 534,000
Cabinets 104 296 74
Foorspace (m^2) 150 557 678

Kogge and Dally: Frontier vs the Exascale Report: Why so long? and Are We Really There Yet?
+Wikipedia for ASCI Red
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Energy efficiency didn’t track technology scaling

Rumors of 2nm fabs, but how much will it help?

Kogge and Dally: Frontier vs the Exascale Report: Why so long? and Are We Really There Yet?
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The “Aggressive” Strawman was a bit early, but close to Summit

Kogge and Dally: Frontier vs the Exascale Report: Why so long? and Are We Really There Yet?

Resilience would have 
been a bigger problem 
with a 7x larger Summit
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Post-Exascale Architecture Plans 2024 (Strawperson-v0)

Specialized 
for AI

Specialized for 
SimulationGPUs

Exascale X 2x more energy X 500x more Performance per Joule ??

Influenced to make AI 
better (e.g., sparsity)? Designed by DOE, DoD, …?



51

Another Exponential?

Jensen Huang's Nvidia GTC Keynote
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Specialization: Is deep learning the only application?

Remember when the Linpack Benchmark represented scientific computing?
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Everyone is Making AI Chips

Facebook + Intel
Amazon (Echo, Oculus)
Google (TPU, Pixel)
Apple (SoCs)
Microsoft (“AI chip”)

Graphcore, Nervana Cerebras, Wave Computing, Horizon 
Robotics, Cambricon, DeePhi, Esperanto, SambaNova, Eyeriss, 
Tenstorrent, Mythic, ThinkForce, Groq, Lightmatter

NVIDIA
AMD
Intel
IBM

Traditional 
chip makers

“Software” 
companies

Not everyone is selling those chips!
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Chiplets

Specialization for the masses? 
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Technology and Marketplace: Radically Different!

Beat them
– Design processors for science
    More Co-Design and 
     don’t forget the math and software

Join them
– Leverage AI Hardware
      for AI in Science 
         andSimulation ?

What’s a post-Exascale strategy for the science community?



56

Workforce



• The U.S. national security enterprise 
has benefited enormously from 
inclusion of global talent. 

Finding: The NNSA laboratories face 
significant challenges in recruiting and 
retaining the highly creative workforce that 
NNSA needs, owing to competition from 
industry, a shrinking talent pipeline, and 
challenges in hiring diverse and 
international talent.
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Where are the US Computer Science PhDs student doing?

0 100 200 300 400 500 600 700 800

Computer-Supported Cooperative Work
Social Computing/Social Informatics

Information Science
Scientific/Numerical Computing

Information Systems
High-Performance Computing

Operating Sysyems
Programming Languages/Compilers

Human-Computer Interaction
Robotics/Vision

Informatics: Biomedica/Other Science
Information Assurance/Security

Hardware/Architecture
Graphics/Visualization
Theory and Algorithms

Databases/Information Retrieval
Software Engineering

Networks
Artificial Intelligence

PhDs by Specialty 

Male Female Taulbee Survey 2022



62

STEM Graduates Around the World
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Reasons are Systemic
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Using Scientific Computing (Broadly) to Attract and Retain Talent

Often over 50% women with (relatively) high representation of other historically underserved groups

Saving the World with Computing

Kathy Yelick
Vice Chancellor for Research
Professor of Computer Science
UC Berkeley

Senior Faculty Scientist
Lawrence Berkeley National Laboratory
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Post Exascale Computing: Not Business at Usual

Computing demands continue to grow

The benefits of more weak scaling are limited

Computing technology has hit several “walls”

The computing industry has changed dramatically

AI methods are having huge impacts elsewhere

Quantum computing potential for science still unknown

Cloud computing is dominating the computing industry

Global supply chain issues present uncertainties


