Beyond Exascale Computing

Kathy Yelick

Vice Chancellor for Research and Robert S. Pepper Professor of Electrical Engineering and Computer Sciences U.C. Berkeley

> Senior Faculty Scientist Computing Sciences Lawrence Berkeley National Laboratory

NATIONAL Engineering ACADEMIES Medicine

Charting a Path in a Shifting Technical and Geopolitical Landscape

Post-Exascale Computing for the National Nuclear Security Administration

Consensus Study Report

Can the United States Maintain Its Leadership in High-Performance Computing?

A report from the ASCAC Subcommittee on American Competitiveness and Innovation to the ASCR office

Chair Jack Dongarra, University of Tennessee, Knoxville & Oak Ridge National Laboratory

Vice Chair Ewa Deelman, University of Southern California

Subcommittee Members Tony Hey, Rutherford Appleton Laboratory, Science and Technology Facilities Council, Harwell Satoshi Matsuoka, RIKEN & Tokyo Institute of Technology Vivek Sarkar, Georgia Institute of Technology Greg Bell, Corelight Ian Foster, Argonne National Laboratory & University of Chicago David Keyes, King Abdullah University of Science and Technology Dieter Kranzlmueller, Leibniz Supercomputing Centre & Ludwig Maximilian University of Munich Boh Lucas Apsys Dieter Kranzimueller, Leibniz Supercomputing Centre & Ludwig Maximilian University of Munic Bob Lucas, Ansys Lynne Parker, University of Tennessee, Knoxville John Shaft, Lawrence Berkeley National Laboratory Dan Stanzione, Texas Advanced Computing Center Rick Stevens, Argonne National Laboratory & University of Chicago Katherine Yelick, University of California, Berkeley & Lawrence Berkeley National Laboratory

Post-Exascale Computing

Continue to Rethink Applications

Nuclear E

- Rely heavily on hardware features and software teams
- Several new to HPC, all with new capabilities
- We should have another 2 dozen in 10 years!!

Scientific Computing Circa 2007

Exascale report from 2007 Town Halls Entirely focused on modeling and simulation

Simulation ≠ Scientific Computing ≠ HPC

Modeling and Simulation at the Exascale for Energy and the Environment

Co-Chairs: Horst Simon Lawrence Berkeley National Laboratory April 17-18, 2007 Thomas Zacharia Oak Ridge National Laboratory May 17-18, 2007 Rick Stevens Argonne National Laboratory May 31-June 1, 2007

New demands for HPC in Science

Simulation From atoms to the universe

Data

Images, text, to genomes

Learning Interpret, infer and automate

Digital Twins

- Simulations
- Sensors / data
- Multi-level
- Real-time

Prediction of Atlas computing +\$1B

Microbial Data in the Environment

Tara Oceans Microbial data collected from 2009-13

> 84 Terabytes assembled on 9000 Frontier nodes

HPC changes observational science

Machine Learning Drives Computational Demand

Is there parallelism?

Always has been

Wait, it's all linear algebra?

imgflip.com

Analytics vs. Simulation Kernels:

7 Dwarfs of Simulation	7 Giants of Big Data
Particle methods	Generalized N-Body
Unstructured meshes	Graph-theory
Dense Linear Algebra	Linear algebra
Sparse Linear Algebra	Hashing
Spectral methods	Sorting
Structured Meshes	Alignment
Monte Carlo methods	Basic Statistics
Phil Colella	NRC Report + our paper

Yelick, et al. "The Parallelism Motifs of Genomic Data Analysis", Philosophical Transactions A, 2020

Weak Scaling has Diminishing Returns

Increase resolution by 10x in each dimension Increase cores by 1000x

Strong and weak scaling

- Strong scaling
 - Most desirable for users
 - -Harder to find (Amdahl)
- Weak scaling
 - Limited for super-linear algorithms
 - -Needs memory capacity to scale
 - Data problems also need I/O

See SIAM News, 9/22 Satoshi Matsuoka and Jens Domke

There is and always will be...

an insatiable demand for computing in science.

Parallelism may be increasingly difficult to uncover.

HoreKa at Karlsruhe Institute of Technology

Post-Exascale Computing

Disruptions

Implied question: Do these make HPC obsolete?

AI for Science

AI FOR SCIENCE

RICK STEVENS VALERIE TAYLOR Argonne National Laborato July 22–23, 2019

JEFF NICHOLS ARTHUR BARNEY MACCABE Oak Ridge National Laboratory August 21–23, 2019

KATHERINE YELICK DAVID BROWN Lawrence Berkeley National Laboratory September 11-12, 2019

ENERGY CENERG

ADVANCED RESEARCH DIRECTIONS ON AI FOR SCIENCE, ENERGY, AND SECURITY

Report on Summer 2022 Workshops

Jonathan Carter Lawrence Berkeley National Laboratory

John Feddema Sandia National Laboratories

Doug Kothe Oak Ridge National Laboratory

Rob Neely Lawrence Livermore National Laboratory

Jason Pruet Los Alamos National Laboratory

Rick Stevens Argonne National Laboratory

ANL-22/91

	AI for science			
	Observations	Experiments	+	Hypotheses
\bigcirc	Weather forecasting		8	Rare event selection in particle collisions
•••	Battery design optimization		Jole	Language modelling for biomedical sequences
	Magnetic control of nuclear fusion reacto	rs		High-throughput
	Planning chemical synthesis pathway			Navigation in the
444	Neural solvers of differential equations			hypothesis space
9	Hydropower station location planning			Super-resolution 3D live-cell imaging
ō	Synthetic electronic health record generat	ion	$\hat{\Lambda}$	Symbolic regression
Sci art	Scientific discovery in the age of artificial intelligence, 2023			

Analyze Simulations to Find Hurricanes

Classification

Localization

Extending image-based methods to complex, 3D, scientific data sets is non-trivial! Source: Prabhat

Precision: like adding 4,000 extra tons of detectors!

Based on 8/12/2016 slide by Joe Lykken at Fermilab

Design with Physical Laws

Physics-aware learning

A network with 3D translation- and 3D rotation-equivariance

Slides from Tess Smidt and Risi Condor; E.g., 2018 paper by Thomas, Smidt, Kearnes, Yang, Li, Kohlhoff, Riley

Automation in Self-Driving Laboratories

A-Lab at LBNL

Five Stages of Al

And this includes AI researchers!

AI in Science

The Computational Science and Engineering community should have a leadership role in addressing UQ, safety, alignment, and explainability in AI for science and engineering

> Federated learning on sensors

Exciting Progress ... But we don't yet have the IC Transitor

Dopants in Silicon / Diamond www.sciencedaily.com

Photonic Circuits

www.phys.org

Superconducting Circuits www.qnl.berkeley.edu

Trapped lons www.quantumoptics.at

Topological Wires www.microsoft.com High-fidelity parallel entangling gates on a neutralatom quantum computer

A series of fast-paced advances in Quantum Error Correction

Cloud Computing

Lessons Learned from Clouds

- Cost vs price
- Availability and resilience
- Higher level programming

Old programming models never die, they just get buried under layers!

	JO	S	
	C Lorenz Di	Differential Equations ×	lupyter
	C 🛈 127.0.	0.0.1:8888/notebooks/talks/slides/1607-nersc/Lorenz%20Differential%2	20E
1	jupyte	Corenz Differential Equations Last Checkpoint: a minute	agr
	File Edit	View Insert Cell Kernel Widgets Help	
	B + % 4		bar
		Exploring the Lorenz System of Diffe	erential Equations
		In this Notebook we explore the Lorenz system of differential equa	tions:
		$\dot{x} = \sigma(v - x)$	
		$\dot{y} = \rho x - y - xz$	
		$\dot{z} = -\beta z + xy$	
		This is one of the classic systems in non-linear differential equatior the parameters (σ , β , ρ) are varied, including what are known as ch developed as a simplified mathematical model for atmospheric cor	Is. It exhibits a range of different behaviors as aotic solutions. This system was originally nvection in 1963.
	In [12]:	: interact(solve_lorenz, N=fixed(10), angle=(0.,360	.),
	×	angle 308.90	
		max_time 12.00	
		σ 10.00	
		β 2.63	
		ρ 28.00	

Follow the money, understand the implications

Source: Reed, Gannon, Dongarra

HPC community has always punched above its weight

Post-Exascale Computing

122 YEARS OF MOORE'S LAW

Faith no Moore

Selected predictions for the end of Moore's law

Sources: Intel; press reports; The Economist

Economist.com https://www.economist.com/technology-quarterly/2016/03/10/horses-for-courses

Dennard Scaling is Long Dead; Moore's Law Will Follow

Performance Programming pre 2005

Exascale Architecture Plans (2008)

Petascale X 10x more energy X 100x more Performance per Joule = Exascale

Accelerators (GPUs)

100x more cores

Faster clocks + wider SIMD

Exascale Era Architectures (US DOE Office of Science)

First-in-Class HPC Systems (Top500)

	First Teraflop First Petaflop First Ex		First Petaflop		kaflop	
	ASCI Red	Roadrunner		Frontier		
Year	1997	2008		202	22	
Best Tech (nm)	500	10x →	65	10x →	6	
Power (MW)	0.9	$2x \longrightarrow$	2.4	10x →	21.1	
Efficienty (GF/W)	0.001	400x→	0.4	100x→	52	
Memory (PB)	0.001	40x →	0.04	200x→	9	
FPUs (K)	9	100x →	464	1000x→ 5	34,000	
Foorspace (m^2)	150	4x →	557	1x →	678	

Kogge and Dally: Frontier vs the Exascale Report + Wikipedia for ASCI Red

Energy efficiency didn't track technology scaling

Gate Length (nm)	65	32	16	6
Metal 1 pitch (nm)	180	100	64	40
Energy ⁻¹	1	1.8	2.8	4.5
Area ⁻¹	1	3.2	7.9	20.3

Rumors of 2nm fabs, but how much will it help?

Kogge and Dally: Frontier vs the Exascale Report: Why so long? and Are We Really There Yet?

Post-Exascale Architecture Plans 2024 (Strawperson-v0)

Exascale X 2x more energy X 500x more Performance per Joule ??

GPUs

Influenced to make Al better (e.g., sparsity)?

Specialized for Al

Specialized for Simulation

Designed by "us"...?

Another Exponential?

1000X AI Compute in 8 Years

Jensen Huang's Nvidia GTC Keynote

Specialization: Is deep learning the only application?

Remember when the Linpack Benchmark represented scientific computing?

Everyone is Making AI Chips...Not everyone is selling them!

Startups

Graphcore, Nervana Cerebras, Wave Computing, Horizon Robotics, Cambricon, DeePhi, Esperanto, SambaNova, Eyeriss, Tenstorrent, Mythic, ThinkForce, Groq, Lightmatter

Specialization for the masses?

Technology and Marketplace: Radically Different than 2008! What's a post-Exascale strategy for the science community?

Beat them

Design processors for science
More Co-Design and
don't forget the math and software

Join them

- Leverage Al Hardware for Al in Science and Simulation ?

Post Exascale Computing: Not Business at Usual

Computing demands continue to grow

The benefits of more weak scaling are limited

Computing technology has hit several "walls"

The **computing industry** has changed dramatically

Al methods are having huge impacts elsewhere

Quantum computing potential for science still unknown

Cloud computing is dominating the computing industry

Global supply chain issues present uncertainties