Languages and Compilers for Exascale Science

Kathy Yelick
Professor of Electrical Engineering and Computer Sciences
U.C. Berkeley

Associate Laboratory Director
Computing Sciences
Lawrence Berkeley National Laboratory
State-of-the-art computing for the broad science community — over 7000 users, 700 applications
Exascale computing, combined with state-of-the-art mathematical models, algorithms, software techniques and data will enable breakthrough science.
Exascale Computing Project (US DOE ECP) to Impact Broad HPC landscape

- Vendor exploration of technology for novel architectures
- Apps developed and ported to higher roadmap
- Software to use the new architectures
- Integration through co-design

Years

<table>
<thead>
<tr>
<th>Year</th>
<th>2017</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>2026</th>
<th>2027</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECP enables all future HPC systems to be on this roadmap.

ECP benefits will also flow down to commodity computing.

Today’s HPC roadmap achieves capable exascale 2027.

10X
The Science Challenges at Exascale

- Climate
- Genomics
- Transportation
- Urban
- Environment
- Brain
- Cancer

- Cosmology
- Astrophysics
- Accelerators
- Chemistry
- Carbon Capture
- Materials
- Earthquakes
- Subsurface

Data
Simulation
Multimodal
Multiscale
Multiphysics
Resolution
Data size
Complexity
Data Growth is Outpacing Computing Growth

Graph based on average growth
Berkeley Lab has demonstrated unsurpassed ability to harness the power of advanced mathematics and computer science for high-impact science.
Former cosmology breakthrough (Nobel prize)
More accurate way to measure
Recent cosmology breakthrough in observation

A. Goobar, et al., Science. 2017

This composite image shows the gravitationally lensed type Ia supernova iPTF16geu, about 4 billion light years away as seen with different telescopes. Image credit: Joel Johansson, Stockholm University.
Cosmology observations drive simulations

- **Science**: Dark Energy, Dark Matter, Gravitational Waves, Neutrino Mass
- **Computation**: factor of X_{100} increase in science reach, order of magnitude improvement in modeling accuracy and predictability

Sky Survey

- CMB-S3
- DES
- DESI
- CMB-S4
- LSST

Simulation Requirements

- Large-scale N-body, Medium Hydro Initial sub-grid models
- Large-scale N-body & Hydro Improved sub-grid models
- Extreme scale N-body, Hydro Complex sub-grid models

Required Performance

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200 Pflops</td>
<td>Exaflops</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Precision Cosmology: Simulation Frontiers

Petascale
- 2nd-generation surveys
- Multi-probe simulations
- Few precision probes
- Intermediate accuracy parameter estimation

Exascale
- Next-generation surveys
- End-to-end, multi-probe survey-scale simulations
- Multiple cross-calibrated probes
- UQ-enabled cosmic calibration frameworks

Terascale
- 1st-generation surveys
- Single-probe simulations

Simulation Volume

Fidelity/Complexity
Cosmology at the Exascale

Synthetic galaxy catalog for LSST generated with HACC and Galacticus codes

Simulation of Lyman-Alpha Forest with Nyx, used to estimate neutrino mass and as a standard ruler.

Exascale is needed to model and interpret the latest observations

Improve understanding of Dark Energy, Dark Matter, Primordial Gravitational Waves, Neutrino Mass, and parametrics such as the Hubble Constant
Astrophysics at the Exascale

Less than a second after ignition, the flame breaks through the surface of an expanded white dwarf (using AMR)

Expanding debris from a supernova explosion (red) running over and shredding a nearby star (blue)

Exascale is needed to identify the source of the heaviest elements

Understand rapid neutron capture process (r-process) by simulating scenarios: core-collapse supernovae, neutron star mergers, and accreting black holes
Subsurface Science at the Exascale

Geothermal Energy
Develop enhanced geothermal systems to tap into vast resource potential

Hydrocarbon Resources

Nuclear Energy & Waste
Develop alternative solutions for geologic disposal of radioactive waste

Exascale is needed for impacts of energy extraction and waste storage on subsurface integrity

Simulate an entire field of well bores and their interaction through the reservoir over 100 year timescales. Simulate the evolution of a fracture system in caprock subject to geomechanical and geochemical stresses over scales from pore (micron) to 100 meters
Subsurface science requires modeling across scales
Combining codes to deliver new science capability

Flow driven chemical erosion of a fracture in CaMg(CO$_3$)$_2$ (Chombo-Crunch)

Pore deformation resulting from change in stress loading in a Lagrangian mechanics treatment (GEOS)

Combined model
Exascale is needed to simulate future accelerators

Goal: Model a chain of up to a hundred plasma acceleration stages in a few days, for the design of a 1 TeV electron-positron high-energy collider.
Cancer Analytics at the Exascale

Metastatic cancer classification and genetics improve treatment [Cell 2015]

One third of all cancers caused by mutations in RAS genes

Combinatorial explosion with number of genomic features considered

Exascale is needed to develop cell-specific interventions

Mapping genetic susceptibility to cancer and its outcomes; intracellular molecular signaling in complex mutational backgrounds; combine genetic, genomic, and clinical data
Cancer Analytics at the Exascale

RAS Pathway
- Semi-supervised learning, scalable data analysis and agent based simulations on population scale data
- Unsupervised learning coupled with multi-scale molecular simulations
- Supervised learning augmented by stochastic pathway modeling and experimental design

Scope of CANDLE Deep Learning

Treatment Strategy

Drug Response
Identified extreme climate events using supervise (left) and semisupervised (right) deep learning. Green = ground truth, Red = predictions (confidence > 0.8). [NIPS 2017]

Deep Learning at 15 PF on NERSC Cori (Cray + Intel KNL)

- Trained in 10s of minutes on 10 terabyte datasets, millions of Images
- 9600 nodes, optimized on KNL with IntelCaffe and MKL (NERSC / Intel collaboration)
- Synch + Asynch parameter update strategy for multi-node scaling (NERSC / Stanford)
Genome Science at the Exascale

Thermophilic microbial mat in West Thumb Geyser Basin, Yellowstone National Park

Compact CRISPR systems found in deep underground Crystal Geyser bacteria (Banfield)

Exascale is needed to characterize microbial communities

Metagenome analysis with high performance assembly and machine learning; identify gene clusters for energy, environment, biomanufacturing and health
Environment: orders of magnitude harder than humans

All metagenomes

- Soil
- Marine
- Groundwater
- Bioreactor

De novo genome assembly

- Read multiple times. Chop reads into k-mers
- Histogram k-mers (eliminate errors)
- DFS walk k-mer graph (stored as hash table)
- Various graph operations (more hash tables)
Multi-Node Strong Scaling

- HipMer scales efficiently to 100’s and 1000’s of nodes

Human Genome Results (small problem)
- Minimum aggregate memory required
- Scales linearly on node, KNL (68 cores)
- Requires high injection rate, low latency
- Would benefit from remote hardware atomics
Exascale Science in analytics from embedded sensors

Exascale simulation and combined analytics

- Infrastructure planning
- Scenario analysis, e.g., emergency response
- Behavioral analysis, human in the loop
- Policy and economics
First-ever whole-mantle seismic model from numerical waveform tomography

Finding: Most volcanic hotspots are linked to two spots on the boundary between the metal core and rocky mantle 1,800 miles below Earth's surface.

Makes unsolvable problems solvable!
Data Fusion for Observation with Simulation

- Unaligned data from observation
- One-sided strided updates

Scott French, Y. Zheng, B. Romanowicz, K. Yelick
challenges

Computer Science breakthroughs at the Exascale
End of Transistor Density Scaling

ITRS now sets the end of transistor shrinking to the year 2021
Technology Scaling Trends

The many ends of “Moore’s” Law

- Transistors
- Thread Performance
- Clock Frequency
- Power (watts)
- # Cores

Year

Performance

Source: John Shalf and Kunle Olukotun, Lance Hammond, Herb Sutter, and Burton Smith
Device alternatives require lower clock → more parallelism

Today’s CMOS Technology

Tunneling FET advantage only at low clock rates
Specialization: End Game for Moore’s Law

NVIDIA builds deep learning appliance with P100 Tesla’s

Intel buys deep learning startup, Nervana

Google designs its own Tensor Processing Unit (TPU)
The biggest concern for Exascale application developers is the need to write and maintain multiple versions of their software and the uncertainty over what the architectures will be.
Problem 1: Languages
Why develop new languages?

• **Productivity:** higher level syntax
 – We need a language

• **Correctness:** static analysis can eliminate errors
 – We need a compiler (front-end)

• **Performance:** optimizations
 – We need a compiler (back-end)

• But you need to “know your audience”
 – Need to rewrite installed base of code (anti-productivity)
 – Risk of compiler disappearing (maintainability)
 – Syntax matters (familiarity)

• **Language adoption is often about its libraries**
Real-Time MRI Challenge

Compressed Sensing Approach by Mike Lustig et al
MRI results Wenwen Jiang

Time (min)	Architecture
6.15 | KNL
5.42 | Ivy Bridge
4.47 | Broadwell
4.31 | Kepler
4.12 | Haswell
3.71 | Broadwell
3.16 | Kepler
0.94 | Pascal

Michael Driscoll HPC optimization

3 min goal
Matrix-free (loop optimization) vs. Matrix-full

- **Loops**
 - Operators as loop nests

- **Structured matrices**
 - Operators as matrices with structure that compiler can optimize

- **Matrices**
 - Operators as arbitrary sparse matrices
Python-Based Domain-Specific Language (EDSL)

- Original Numpy code on Haswell: 87 sec/iteration
- Runtime optimization reorganize tree of operators (matrices + FFTs) cognizant of matrix structure
- Library or custom matrix kernels
Problem 2: Compilers
Reports of our death have been greatly exaggerated

Architecture difficulty (related to granularity of parallelism)

Auto-SIMDization
Auto-vectorization for vector processors
Auto-parallelization for SMPs
Auto-parallelism for attached accelerators
Auto-parallelization for HPC

Language difficulty

Autotuner code generation
Domain specific (in degrees of specificity)
General purpose strongly typed
General purpose loosely typed
Programming for diverse (specialized) architectures

- Two “unsolved” compiler problems:
 - dependence analysis and
 - accurate performance models
 ✔ Domain-Specific Languages help with this
 ✔ Autotuning avoids this problem

- Autotuners are code generators plus search

![Graphs comparing performance on Xeon X5550 (Nehalem) and NVIDIA C2050 (Fermi) for various operations and algorithmic intensities.](image-url)

Work by Williams, Oliker, Shalf, Madduri, Kamil, Im, Ethier,...
Stencils are both the most important motifs and a gap in our tools.
The Halide algorithm is developed by domain experts, allowing for flexibility in scheduling.

Halide Schedule
- Auto-generated by autotuning with opentuner
- Or hand created by an optimization expert

Halide performance
- Autogenerated schedule for CPU
- Hand created schedule for GPU
- No change to the algorithm

Example Code

```plaintext
Func Ax_n("Ax_n"), lambda("lambda"), chebyshev("chebyshev"));
Var i("i"), j("j"), k("k");

Ax_n(i,j,k) = a*alpha(i,j,k)*x_n(i,j,k) - b*h2inv*(
  beta_i(i,j,k) * (valid(i-1,j,k)*x_n(i,j,k) + x_n(i-1,j,k)) - 2.0f*x_n(i,j,k))
+ beta_j(i,j,k) * (valid(i,j-1,k)*x_n(i,j,k) + x_n(i,j-1,k)) - 2.0f*x_n(i,j,k))
+ beta_k(i,j,k) * (valid(i,j,k-1)*x_n(i,j,k) + x_n(i,j,k-1)) - 2.0f*x_n(i,j,k))
+ beta_i(i+1,j,k)* (valid(i+1,j,k)*x_n(i,j,k) + x_n(i+1,j,k)) - 2.0f*x_n(i,j,k))
+ beta_j(i,j+1,k)* (valid(i,j+1,k)*x_n(i,j,k) + x_n(i,j+1,k)) - 2.0f*x_n(i,j,k))
+ beta_k(i,j,k+1)* (valid(i,j,k+1)*x_n(i,j,k) + x_n(i,j,k+1)) - 2.0f*x_n(i,j,k)));

lambda(i,j,k) = 1.0f / (a*alpha(i,j,k) - b*h2inv*(
  beta_i(i,j,k) * (valid(i-1,j,k) - 2.0f)
+ beta_j(i,j,k) * (valid(i,j-1,k) - 2.0f)
+ beta_k(i,j,k) * (valid(i,j,k-1) - 2.0f)
+ beta_i(i+1,j,k) * (valid(i+1,j,k) - 2.0f)
+ beta_j(i,j+1,k) * (valid(i,j+1,k) - 2.0f)
+ beta_k(i,j,k+1) * (valid(i,j,k+1) - 2.0f)
));

chebyshev(i,j,k) = x_n(i,j,k) + c1*(
  x_n(i,j,k) - x_nm1(i,j,k))
+ c2*lambda(i,j,k)*(rhs(i,j,k)-Ax_n(i,j,k)));
```

Execution Time

- Original
- Halide CPU
- Halide GPU

The graph shows the execution time for different grid sizes, highlighting the performance benefits of using Halide.
Approach: Small Compiler for Small Language

- **Snowflake: A DSL for Science Stencils**
 - Domain calculus inspired by Titanium, UPC++, and AMR in general

![Stencils](image)

- Complex stencils: red/black, asymmetric
- Update-in-place while preserving provable parallelism
- Complex boundary conditions: key to Adaptive Meshes
• Performance on the HPGMG application benchmark using all the features of Snowflake
• Competitive with hand-optimized performance
• Within 2x of optimal roofline
Open Problem: Compiling for communication optimality...

... with irregular loop nests and sparsity
Data Movement is Expensive

CPU cycle time vs memory access time

Data Movement is Expensive

Hierarchical energy costs.

- 6 pJ: Cost to move data 1 mm on-chip
- 100 pJ: Typical cost of a single floating point operation
- 120 pJ: Cost to move data 20 mm on chip
- 250 pJ: Cost to move off-chip, but stay within the package (SMP)
- 2000 pJ: Cost to move data off chip into DRAM
- ~2500 pJ: Cost to move data off chip to a neighboring node
Surprises:
- Even Matrix Multiply had room for improvement
- Idea: make copies of C matrix (as in prior 3D algorithm, but not as many)
- Result is provably optimal in communication

Lesson: Never waste fast memory
And don’t get hung up on the owner computes rule

Can we generalize for compiler writers?
Deconstructing 2.5D Matrix Multiply
Solomonick & Demmel

Matrix Multiplication code has a 3D iteration space
Each point in the space is a constant computation (*)+/+

for i
 for j
 for k
 C[i,j] ... A[i,k] ... B[k,j] ...
Using .5D ideas on N-body

- n particles, k-way interaction.
 - Molecules, stars in galaxies, etc.
- Most common: 2-way N-body

```plaintext
for t timesteps
 forall i₁, ..., i_k
    force[i₁] += interact(particle[i₁], ..., particle[i_k])
 forall i
    move(particle[i], force[i])
```

- Best algorithm is to divide n particles into p groups??

\[O(n^k) \]

No!
Communication Avoiding 2-way N-body (using a “1.5D” decomposition)

- Divide p into c groups
- Replicate particles across groups
- Repeat: shift copy of n/(p*c) particles to the left within a group
- Reduce across c to produce final value for each particle

Total Communication: \(O(\log(p/c) + \log c) \) messages,
\(O(n^*(c/p+1/c)) \) words
Less Communication..

Cray XE6; n=24K particles, p=6K cores

Execution Time vs. Replication Factor

- Communication (Reduce)
- Communication (Shift)
- Computation

96% reduction in shift time (red)

Down is good
Strong Scaling

Parallel Efficiency on BlueGene/P (n=262,144)

Relative Efficiency vs. One Core

Machine size (# cores)

Up is good

4.4x
Challenge: Symmetry & Load Balance

- Force symmetry ($f_{ij} = -f_{ji}$) saves computation
- 2-body force matrix vs 3-body force cube

- How to divide work equally?

2x save of $O(n^2)$

6x save of $O(n^3)$!
Communication-Avoiding 3-body

- $p=5$ (in colors)
- 6 particles per processor
- 5x5 subcubes

Actual triplets

Equivalent triplets in the big tetrahedron

Communication optimal.
Replication by c decreases
#messages by c^3 and
#words by c^2
3-Way N-Body Speedup

- Cray XC30, 24k cores, 24k particles

The graph shows the execution time per timestep (sec) with different replication factors (c). The speedup is 22.1x for certain replication factors.
Perfect Strong Scaling

BlueGene/Q 16k particles, Strong Scaling

Relative Efficiency vs. One Core

Machine size (# cores)

Up is good

42x
Sparse-Dense Matrix Multiply Too!

- Variety of algorithms that divide in or 2 dimensions
100x Improvement

- $A^{66k \times 172k}$, $B^{172k \times 66k}$, 0.0038% nnz, Cray XC30

![Graph showing Mflops per core vs Machine size (cores)](image)

- Up is good
Linear Algebra is important to Machine Learning too!

- Logistic Regression, Support Vector Machines
- Dimensionality Reduction (e.g., NMF, CX/CUR, PCA)
- Clustering (e.g., MCL, Spectral Clustering)
- Graphical Model Structure Learning (e.g., CONCORD)
- Deep Learning (Convolutional Neural Nets)

Increasing arithmetic intensity

- Sparse Matrix-Sparse Vector (SpMSpV)
- Sparse Matrix-Dense Vector (SpMV)
- Sparse Matrix Times Multiple Dense Vectors (SpMM)
- Sparse - Sparse Matrix Product (SpGEMM)
- Dense Matrix Vector (BLAS2)
- Sparse - Dense Matrix Product (SpDM^3)
- Dense Matrix Matrix (BLAS3)
Problem 3: Runtimes
What we love about Partitioned Global Address Space Programming (PGAS)

- **Convenience**
 - Build large shared structures
 - Read and write data “anywhere” (global), “anytime” (asynchronous) and without the other thread (one-sided)

- **Performance control**
 - Explicit control over data layout, direct use of RDMA hardware

Key: Never cache remote data (trivially coherent)
HipMer is all about the runtime and data structures

1) **K-mer Analysis**
(synchronous) irregular all-to-all

2) **Contig Generation**
asynchronous remote insert (aggregate and overlap) and get

3) **Alignment**
asynchronous remote insert and lookup (software caching)

4) **Scaffolding & Gap Closing**
asynchronous remote insert and lookup (software caching)
Graph algorithms (hash tables) in genome assembly

Graph construction, traversal, and all later stages are written in UPC to take advantage of its global address space

Input: k-mers and their high quality extensions

Read k-mers & extensions

Store k-mers & extensions

Distributed Hash table

Shared

Private

buckets

entries

Key: ATC Val: TG

Key: ACC Val: GA

Key: AAC Val: CF

Key: TGA Val: FC

Key: GAT Val: CF

Key: ATG Val: CA

Key: AAT Val: GF

Key: TCT Val: GA

Key: CCG Val: FA

Key: CTG Val: AT

Key: TGC Val: FA

Global Address Space

Shared

Private

P_0

P_1

P_n

Fine-grained communication & fine-grained locking required
Lessons learned and open problem

• Asynchronous one-sided communication model changes algorithmic intuition

• Machines still require aggregation, even if it’s asynchronous

• Understanding side-effects of usage is key
 – Insert-only phase, lookup-only phase, marking elements but not changing table, etc.
 – Caching of hash table depends on the statics (useful in some phases, not others)

• This model should not be built for each application
Summary

• Exascale computing will deliver science breakthroughs
 – In simulation and data analytics
 – But requires advances in models, algorithms, languages, compilers and runtime systems

• Languages must be matched to user needs
 – Domain specific languages and application level libraries

• Compiler techniques are key to performance
 – Novel delivery mechanisms (runtimes, DLS, libraries,...)

• Runtime systems
 – Lightweight communication still matters, but better synchronization models are needed