Genomic Analysis at Scale: Mapping Irregular Computations to Advanced Architectures

> Kathy Yelick Robert S. Pepper Distinguished Professor of EECS Vice Chancellor for Research UC Berkeley

Senior Faculty Scientist Lawrence Berkeley National Laboratory

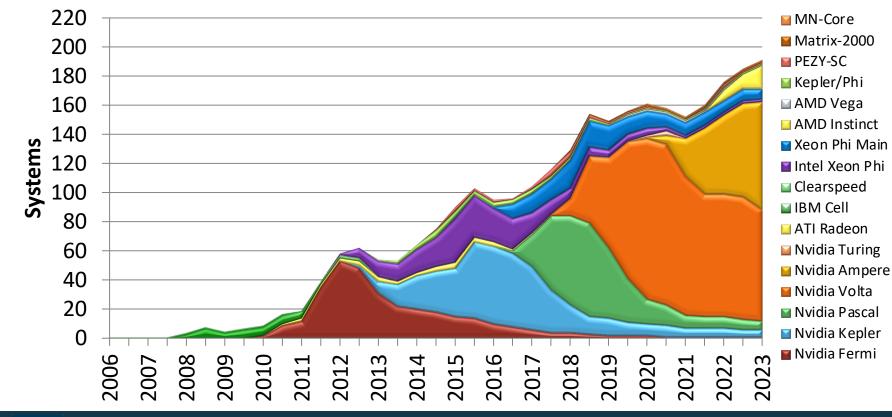
2018 ACM Turing Award for Deep Learning

Hinton's Turing Lecture: "So I think a lot of the credit for deep learning really goes to the people who collected the big databases like Fei Fei Li and the people who made the computers go fast like David Patterson and others."

Photo: Facebook

Other areas where big data + big machines win?

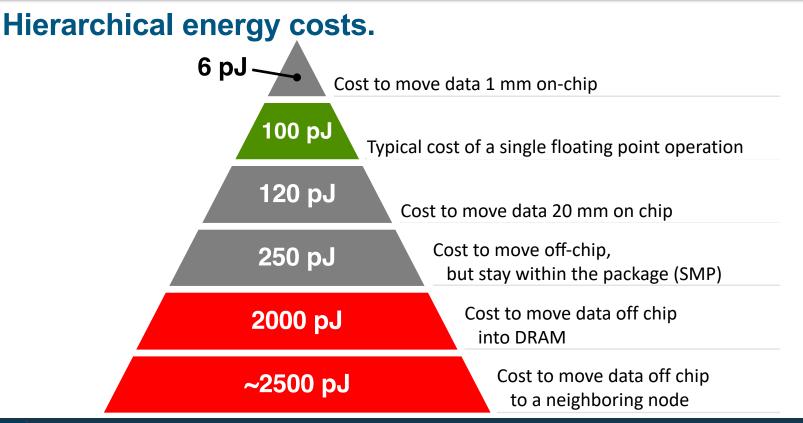
Accelerators



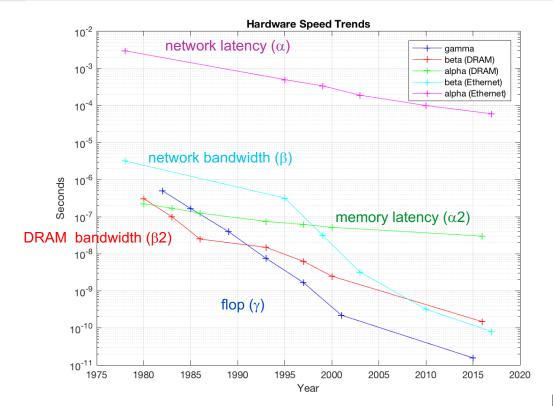
BERKELEY LAB

Image: http://glideplayer.com/slide/7541288/

Data Movement is Expensive



Communication Dominates: Dennard was too good



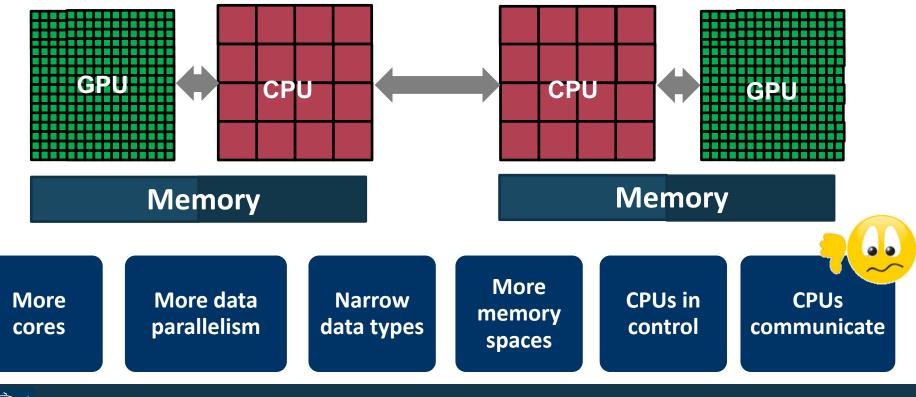
Time = # flops * γ + # message * α + # bytes comm * β +

> # diff memory locs * α 2 + # memory words * β 2

Data from Hennessy / Patterson, Graph from Demmel

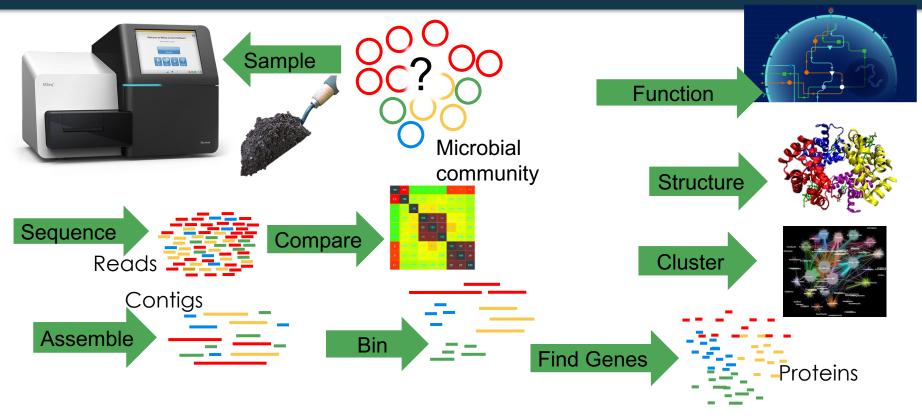
Put the GPUs in Charge

BERKELEY LAB



Other areas where big data + big machines win?

ExaBiome: Exascale Solutions for the Microbiome



MetaHipMer: De Novo Metagenome Assembler

What happens to microbes after a wildfire? (1.5Terabtyes - completed)

Michael J. Wilkins, Colorado State University, Pl

ersc

How do carbon and metabolism in freshwater lakes change across 17 years? (26TB)

Katherine McMahon, U Wisconsin, PI

Tara Oceans

Showing the invisible life of the ocean
2009–2013 expeditions
35000 samples from all oceans

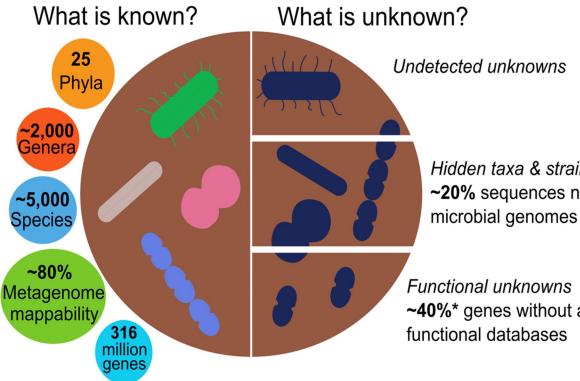
100

•

•

- TB (71 TB unique) of data!
- Assembled in 94 mins
- Using 36,000 GPUs on Frontier
 - Using a Berkeley-designed language

The Human Microbiome



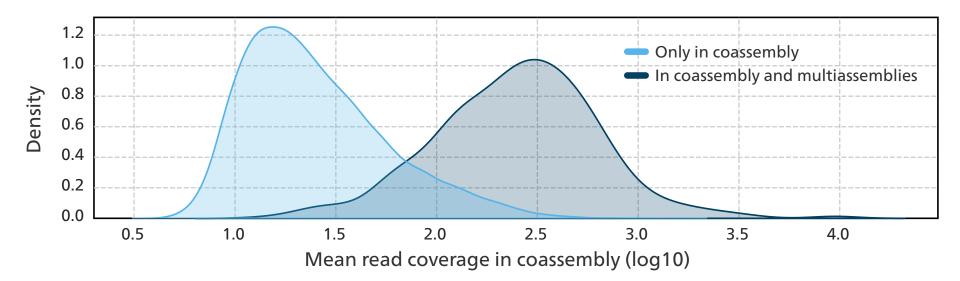
100 TB of data!

Hidden taxa & strain-level diversity ~20% sequences not matching

~40%* genes without a match in

Thomas, A.M., Segata, N. Multiple levels of the unknown in microbiome research. BMC Biol 17, 48 (2019).

Co-Assembly vs. Multiassembly: better science



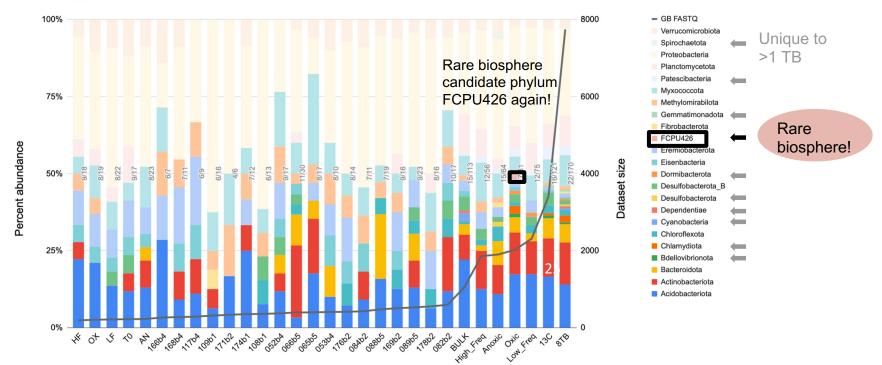
- Multiassembly (usual approach): Assemble each sample on a shared memory machine
- CoAssembly (MetaHipMer): Assemble everything at once on a supercomputer.

 Riley, el al, "Terabase-Scale Coassembly of a Tropical Soil Microbiome" Microbiol Spectr. 2023

More taxonomic diversity

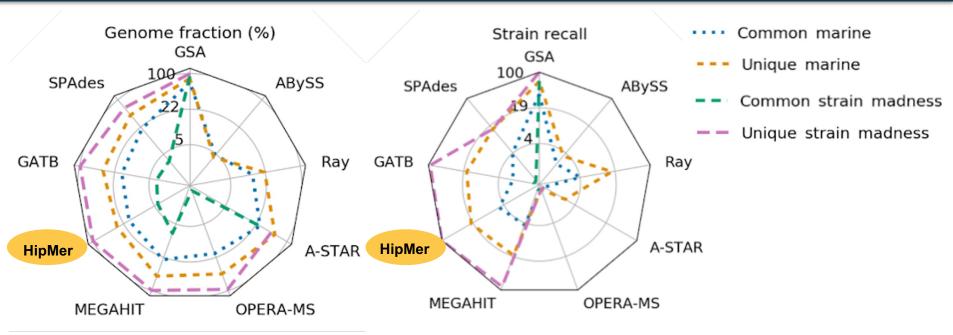
GRE taxonomic abundance (phylum level)

bar labels = n phyla / n MAGs



Great Redox Experiment led by Jennifer Pett-Ridge at LLNL; with Robert Riley et al at JGI and ExaBiome

Ensuring High Quality Assemblies



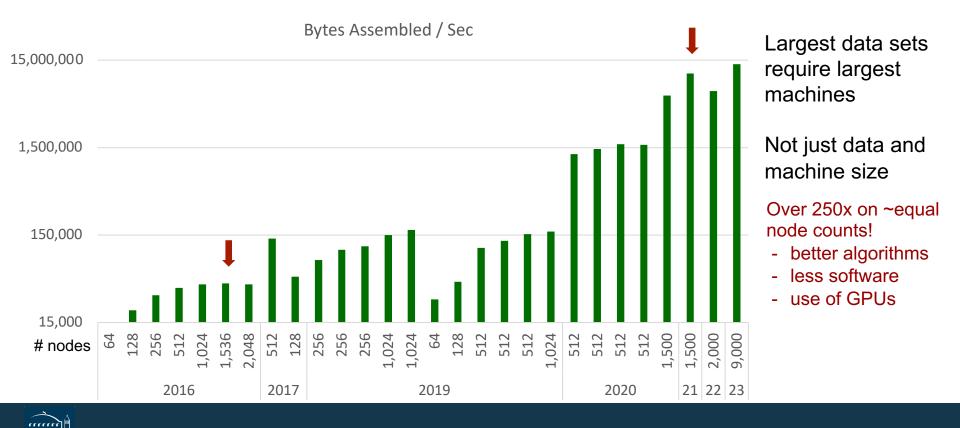
"... we analyze 5,002 results by 76 program versions...

The best ranking method across metrics and all datasets was [Meta]HipMer...."

BERKELEY LAB

F. Meyer et al, *Critical Assessment of Metagenome Interpretation - the second round of challenges, Nature Methods* '22

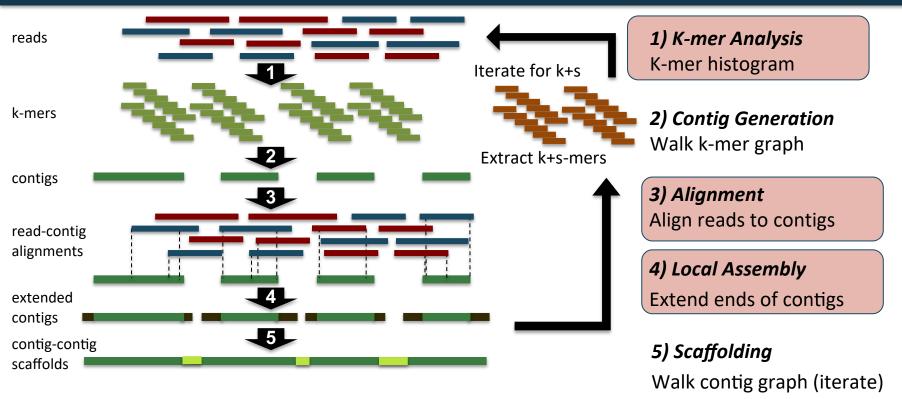
Assembly Rate on Science Data



BERKELEY LAE

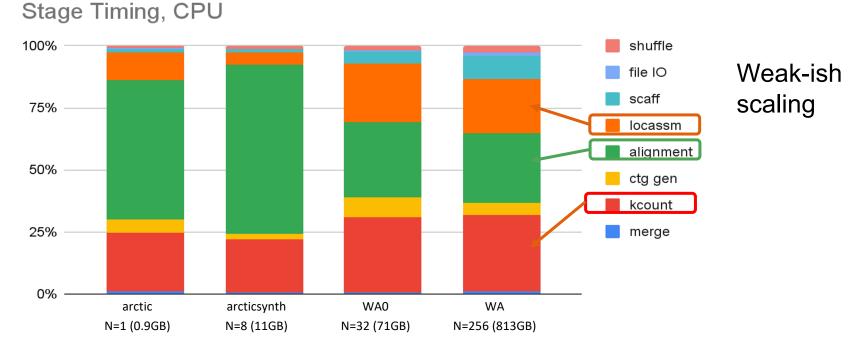
Genomic Analysis at Scale

MetaHipMer Assembly Pipeline (UPC++)



Actual pipeline is more complex, simplified for purpose of presentation

MetaHipMer Time Breakdown



dataset * CPU time for alignment slower than "normal" due to SIMD Power9 issues

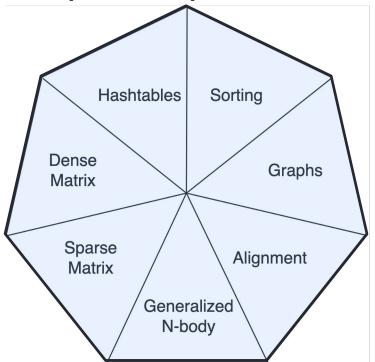
Simulation Vs. Data Motifs

7 Dwarfs of Simulation	7 Giants of Big Data
Particle methods	Generalized N-Body
Unstructured meshes	Graph-theory
Dense Linear Algebra	Linear algebra
Sparse Linear Algebra	Hashing
Spectral methods	Sorting
Structured Meshes	Alignment
Monte Carlo methods	Basic Statistics
Phil Colella	NRC Report + our paper

Yelick, et al. "The Parallelism Motifs of Genomic Data Analysis", Philosophical Transactions A, 2020

Matifs of Conomic Data Analysis

Computational patterns that dominate ExaBiome



Examples

- Hash all k-mers (k-length strings)
- Count k-mer frequency

aact ctgt gtca

Identify connected components

- Find all pairwise alignments
- Average neighbors on graph

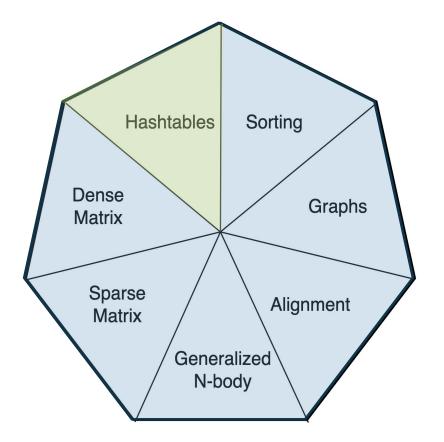
Yelick, et al. "The Parallelism Motifs of Genomic Data Analysis", Philosophical Transactions A, 2020

A Tale of Two Programming Models

Partitioned Global Address Space (UPC++)	GraphBLAS and MPI
Asynchronous, fine-grained	Bulk Synchronous
Distributed data	Sparse matrix with semiring operations
Logically shared, physically distributed	Local view, distributed

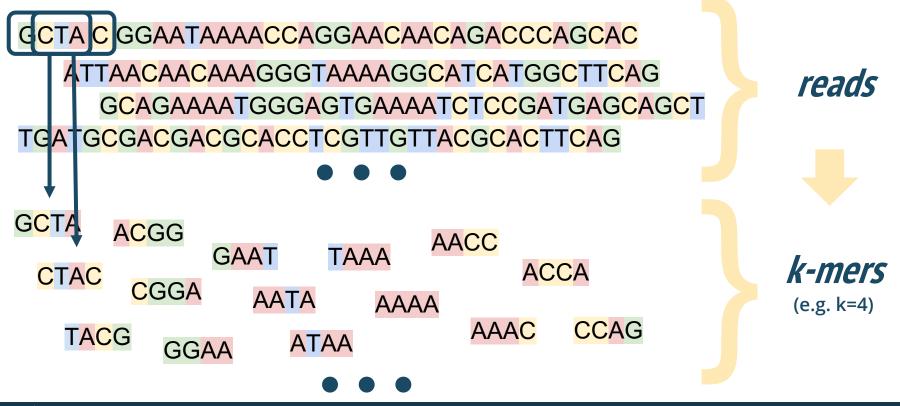
MetaHipMer, KmerProf

PASTIS, HipMCL, diBELLA, ELBA



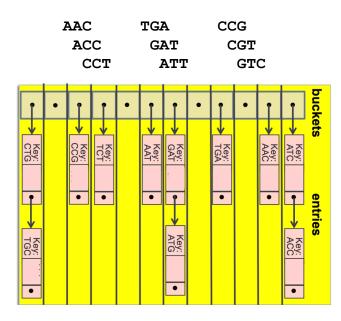
Hashing

Counting K-mers to Remove Errors



Distributed Hash Tables of K-Mers

Make hash table of k-mers



1-sided communication to insert / lookup

Keys are fixed-length strings:

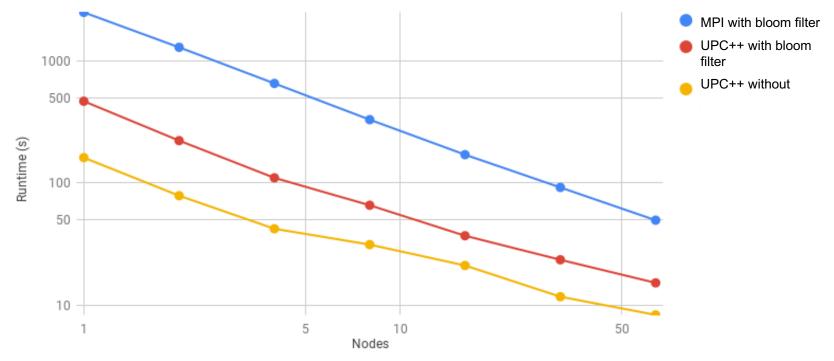
Values depend on application:

• A count to remove singletons

Close to k-times memory blowup

- Use Bloom filter to reduce space
- Asynchronous insert with UPC++

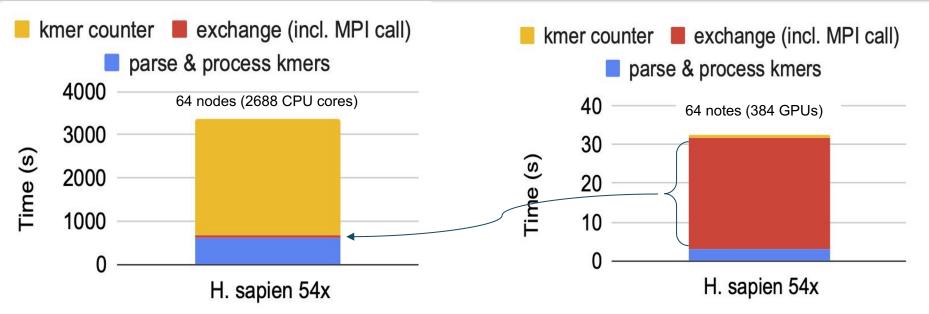
K-mer counting: All the Wires All the Time



Bulk-synchronous MPI vs Asynchronous 1-sided UPC++ (w/ and w/out Bloom Filter)

Steve Hofmeyr, Rob Egan, Evangelos Gerganas, leads on MetaHipMer software

K-mer Counting: Finding Data Parallelism

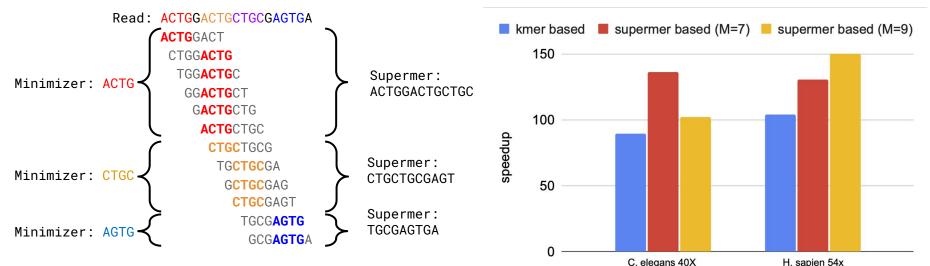


- K-mer counter on Summit. (Note scales -- red k-mer exchange time is roughly equal.)
- Reduce CPU/GPU communication by parsing as well as processing on GPU

BERKELEY LA

Over 100x speedup!!

K-mer Counting: Reducing Communication



Reduce communication with "Supermers"

- Multiple contiguous k-mers (k=7, minimizer=4)
- map to the same process ID with minimizer-based hashing
- Saves volume (bandwidth) and number of messages (latency)

Speedup on 64 Summit nodes

- 6 GPUs / node
- baseline: 42 cores / node

Universal Filter for GPUs

Filter	Insert		Query		Delete		Count	
	Point	Bulk	Point	Bulk	Point	Bulk	Point	Bulk
GQF	\checkmark							
TCF	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
BF	\checkmark	\checkmark	\checkmark	\checkmark				
SQF		\checkmark		\checkmark		\checkmark		
RSQF		\checkmark		\checkmark				

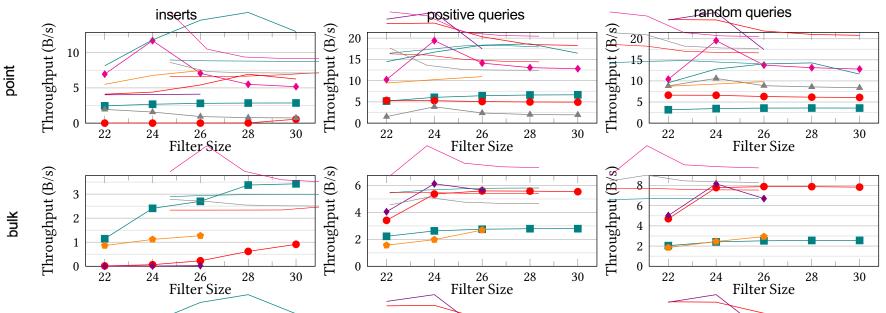
- Our GPU Quotient Filter (GPU) is fully featured:
- Deletions and Counts

BERKELEY LA

• Individual element operations (Point) and aggregate (Bulk)

GQF Performance on Multi-GPUs

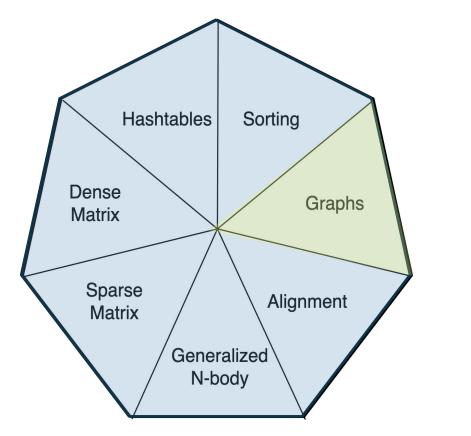
 \blacksquare TCF \blacksquare GQF \blacksquare Bloom \blacksquare Blocked Bloom



- Saves ½ of peak memory usage in MetaHipMer relative to no filter
- Saves ½ of communication in K-mer counting phase relative to bloom filter

McCoy, et al. "High-Performance Filters for GPUs" PPoPP '23

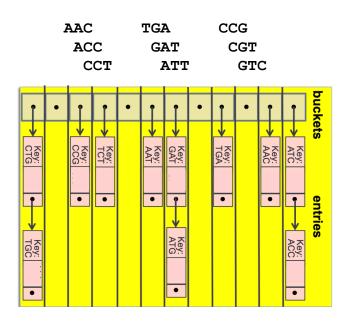
BERKELEY LAI



Graphs

K-Mer Hash Tables Viewed as a Graph

Make hash table of k-mers



1-sided communication to insert / lookup

Keys are fixed-length strings

Values

- Remove branches
- Find connected component "contigs"

Graph walk with poor locality

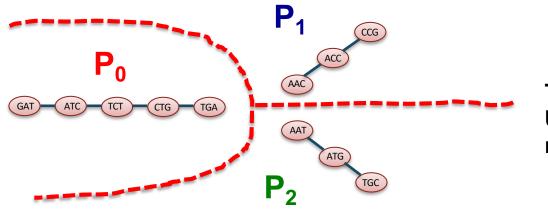
• Asynchronous lookup with UPC++

Avoiding Communication in Graph Walk

Next step in this assembler is a DFS on the k-mer graph (edges are k-1 overlaps)

Caching for temporal locality (reuse): if few large items, so lookups will repeat

Layout for spatial locality: if we have an "oracle" that approximate final genome

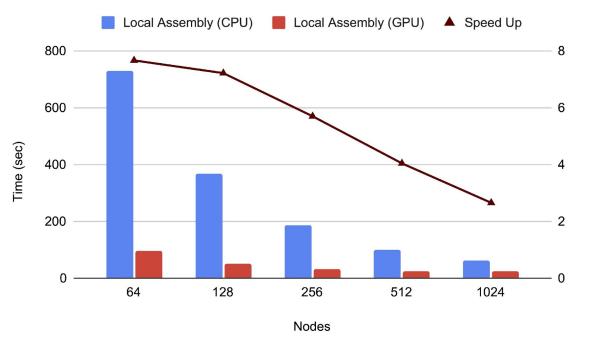


Traversal is up to 2.8x faster! Up to 76% reduction of offnode communication !

Georganas PhD Thesis and SC18 paper

Local Assembly on Summit

CPU vs GPU

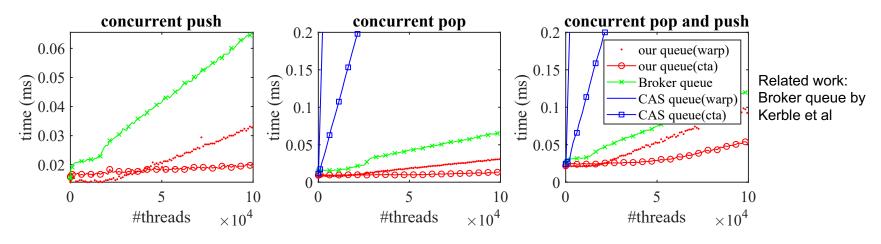


- Speedup of 7x on 64 Summit nodes.
- Lower as expected as machine scales (strong scaling)

Speed Up

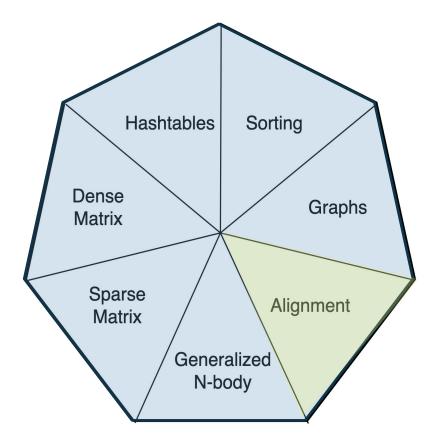
Muuz Awan et al, "Accelerating Large Scale de Novo Metagenome Assembly Using GPUs" SC'21

Asynchronous Parallelism on GPUs



- Warp-size or Thread-group (CTA)-size workers
- Locking vs Compare-And-Swap (CAS) implementations
- Avoid level-by-level synchronization
- Use persistent threads as an option

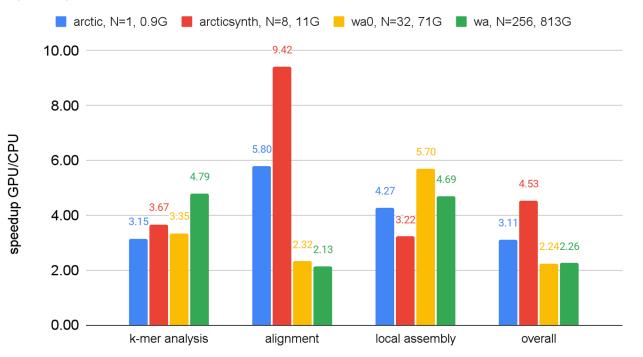
Yuxin Chen, B. Brock, S. Porumbescu, A. Buluc, K. Yelick, John Owns, ICPP '22



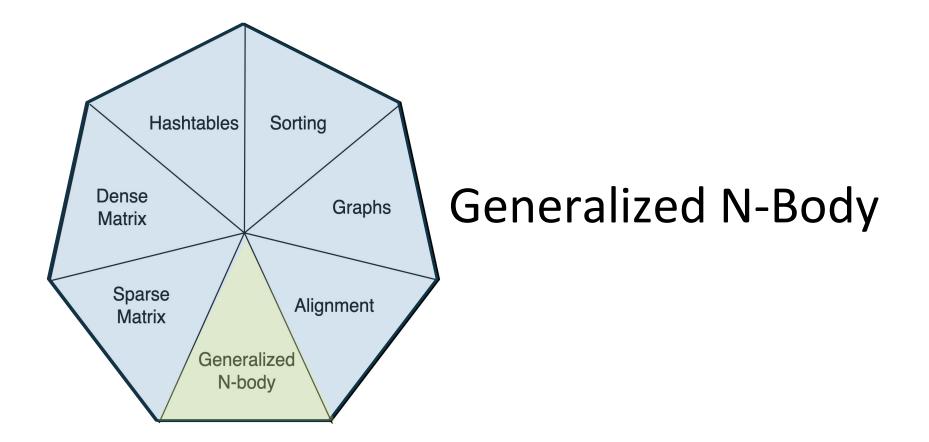
Alignment

GPU Optimizations

Speedups from GPUs



GPU optimizations are complex (hash tables, graphs, etc.)

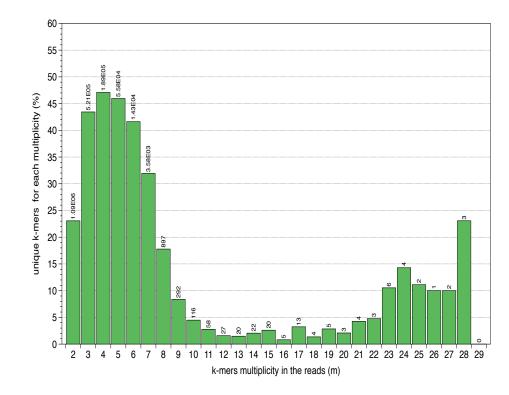


ELBA: Long Read Assembler; Different Approach

Long reads (PacBio, etc.)

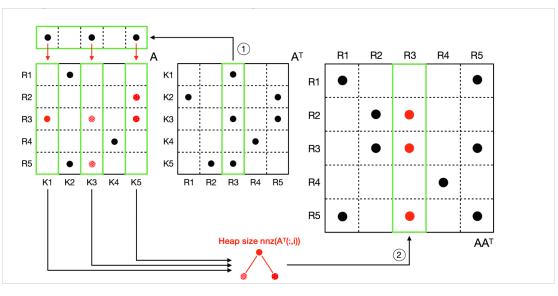
- Longer alignments
- More compute-intensive
- More GPU friendly

Only align pairs of reads that have a common k-mer

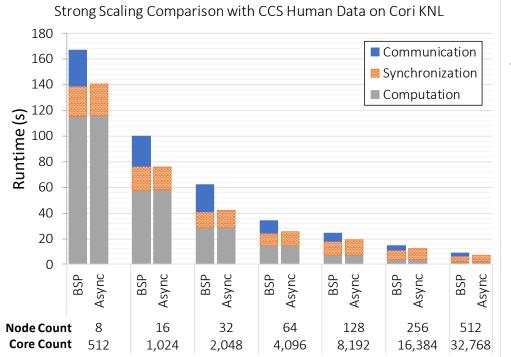


Set Alignment is a Sparse All-to-All

Run expensive alignment on all pairs with a common k-mer



Bulk-Synchronous vs 1-sided Asynchronous



Asynchronous communication

- Hides latency and uses less memory in general
- Uses "All the wires, all the time"
- But uses linear communication, not log-p complexity collectives

Avoid Communication, Maximize Parallelism

Compute on all pairs of particles or strings, or...

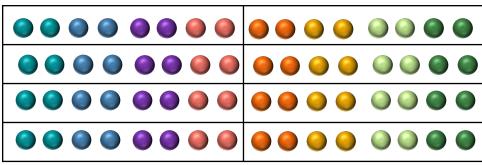
Obvious solution

16 particles on 8 processors Pass all particles around (p steps)

Decreases

- #messages by factor c²
- #volume sent by factor c

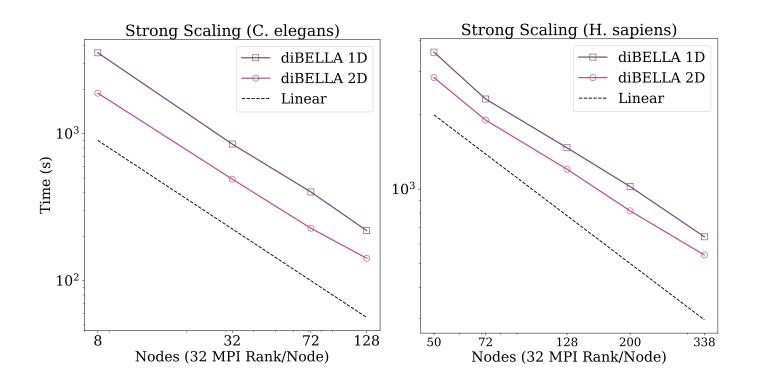
Better solution



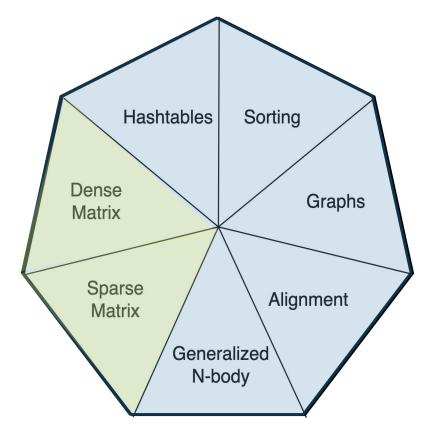
c = 4 copies of particles 8 particles on each

Michael Driscoll et al, "A Communication-Optimal N-Body Algorithm for Direct Interactions" IPDPS '13

1D vs 2D Algorithm on DNA "overlap"



G. Guidi, O. Selvitopi_†, M. Ellis, L. Oliker, Y, A. Buluc (IPDPS '21)



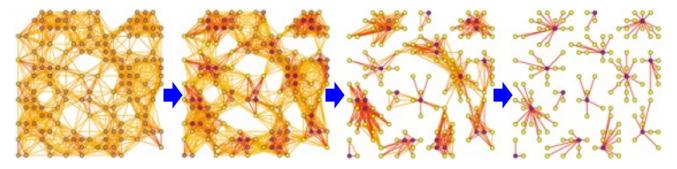
Sparse and Dense Matrices

(machine learning)

Protein Clustering with Sparse Matrices

Input: Adjacency matrix A (sparse)

Image source: http://micans.org/mcl/

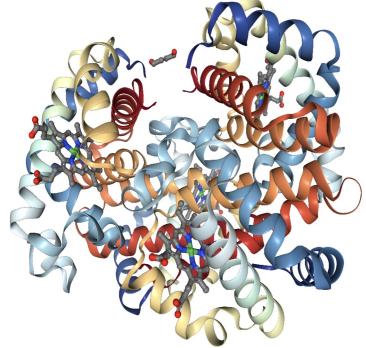


- Similarity Matrix: "Many-to-many" protein alignment
- Expansion: Square matrix, pruning small entries, dense columns
- Inflation: element-wise powers

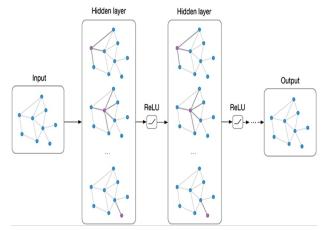
PASTIS + HipMCL

Learning protein funding using GNNs

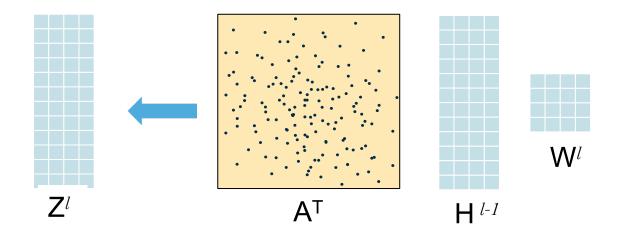
Exploit structure and sequence to understand the function



of protein-coding genes

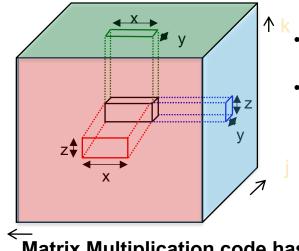


Bottleneck in GNN Training



- A^TH¹⁻¹ sparse-dense matmul (SpMM)
- (A^TH^{l-1}) W^l dense-dense matmul (DGEMM)
- SpMM is the bottleneck, not DGEMM!

Communication-Avoiding Matrix Multiply

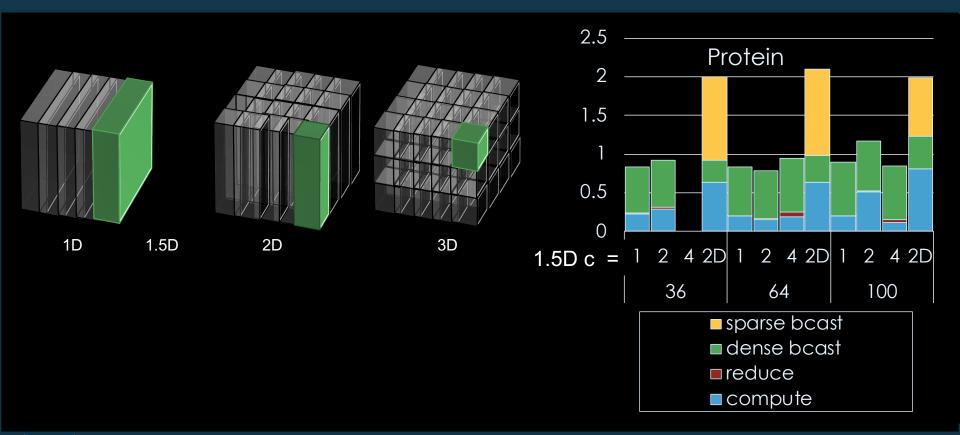


- 2D algorithm: never chop k dim
- 3D: Assume + is associative; chop k, which is → replication of C matrix

Matrix Multiplication code has a 3D iteration space Each point in the space is a constant computation (*/+)

for i for j for k C[i,j] ... A[i,k] ... B[k,j] ...

Avoiding Communication in GNNs



Tripathy, Yelick, Buluc, Reducing Communication in Graph Neural Network Training, SC'20

Take-Aways Messages

- Applications
 - More data, more compute \rightarrow more insights
 - ~7 motifs of data analytics
- Programming models
 - Use of PGAS for irregular, fine-grained problems
 - Can still map GPUs
- Algorithms
 - Use memory to reduce data (volume)
 - Use all the wires all the time
- Hardware
 - Integrate communication on accelerators

The ExaBiome Team

Muaaz Awan	Ariful Azad	Nick Battacharya	Aydin Buluc	Patrick Chain	Brandon Cook	Alex Copeland	Alicia Clum	Rob Egan
	8							
Marquita Ellis	E. Georganas	E. Goltsman	Giulia Guidi	Steve Hofmeyr	Taufique Hussain	Richard Lettich	Nikos Kyrpides	J. Madson
			TA D(del)					
Hunter McCoy	Russell Neches	Israt Nisa	Lenny Oliker	P. Pandey	Robert Riley	Dan Rokhsar	Gabriel Raulet	Oguz Selvitopi
					BERKELEY LAB	-Los Ala NATIONAL LAB		
Migun Shakya	Nick Swenson	Andrew Tritt	Kathy Yelick	Brett Youtsey		►• •)	(1663) (1663)	

BERKELEY LAB

