

A Superfacility Model for Science

Kathy Yelick

Associate Laboratory Director for Computing Sciences Lawrence Berkeley National Laboratory Professor of Electrical Engineering and Computer Sciences University of California at Berkeley

Science is poised for transformation

Old School Scientists: The Lone Scientist

Team Science

New Scientists

17-year-old Brittany Wegner creates breast cancer detection tool that is 99% accurate on a minimally invasive, previously inaccurate test. Machine Learning + Online Data + Cloud Computing

Experimental Science is Changing

JAX® MICE & SERVICES

JAX[®] Mice are the highest quality and mostpublished mouse models in the world. Take advantage of our large inventories of common inbred strains and the convenience of having your breeding and drug efficacy needs met by the leading experts in mouse modeling.

Old School Scientific Workflow

Computing, experiments, networking and expertise in a "Superfacility" for Science

Data Growth is Outpacing Computing Growth

HPC: It's not just for simulation

HPC: It's not just for simulation

Integration of Simulation and Observational Science

Intermediate Palomar Transient Factory with DESI, CMB-S4 and LSST coming

Simulations aid in interpreting data

A. Goobar, P. Nugent, et al (2017) Science

Image subtraction, machine learning in minutes

- 12 -

Real-Time MRI Challenge

3 min goal (1 sec/iteration)

Michael Driscoll HPC optimization

Compressed Sensing Approach by Mike Lustig et al MRI results Wenwen Jiang

Old School Scientific Data Search

🗯 Safari	File	Edit	View	History	Bookmarks	Window	Help	-	
	• 🖭		>		gle.com/search?	tbs=sbi:A	MhZZiu-Ft	1o4xXiJhVJc	LUv_1GtY_1M9gV_1h
	in species	Google M	010000000000000000000000000000000000000	CAPPER DE L'ALES	ws v Popular	123,797,270 A.S			
Berkeley I			TeamSna		Google		CalMail	- You	Search Results
+You Searc		ages M	ail Driv	e Calendar	Sites Group	s More -		CalMail - Yo page.	u must be logged in to
Goog	le	AI	ntineutri	inos.jpg \times				_	1 0
		Web	Imag	jes Map	os Shoppin	g Mor	e⊤ Se	earch tools	
Tip: Try entering a descriptive word in the search box. Image size: 153 × 133 No other sizes of this image found.									
		Visua		ilar image	<u>S</u> - Report imag	es			
				1				M	
		111	in the work		Ē 📖		athal	兩百	MMM

Automated Search, Meta-Data Analysis, and On-Demand Simulation

Jobs submitted by "bots" based on queries; algorithms extract informatics for design Automated metadata extraction using machine learning

Computing and Networking Facilities need to adapt

ESnet: Exponential data growth drives capacity

Science DMZ to deliver bandwidth to the end users OSCARS for bandwidth reservation

100 Exabytes/year by 2024!

Bringing the Computer to the Experiment

Instruments and facilities require high-speed data network architectures like ScienceDMZ

End-to-end, multi-domain network orchestration

Defines Service Perimeter/Boundary SDN for end-to-end Network @ Exascale (SENSE) project led by Monga @ESnet with ANL, Caltech, FNAL, NERSC, MAX/UMD

ESnet6 plans for superfacility support

"Hollow" Core optimized for performance

- **Programmable** to allocate bandwidth and monitor status
- **Scalable** Leverage latest technology (e.g. FlexGrid spectral partitioning, tunable wave modulation)
- Resilient Protection and restoration functions using next generation Traffic Engineering (TE) protocols

Services Edge optimized for flexibility

- Programmable to manage edge router/switch and retrieve telemetry information
- Flexible programmable switches (e.g. FPGA, NPU)
- **Dynamic** instantiation of services driven by SDN paradigms (e.g., virtualization, service chaining).

Systems configured for data-intensive science

NERSC Cori has data partition (Haswell) and pre-exascale (KNL) NVRAM file system with close to 2 PB at 2 TB/sec WAN-to-Cori optimized for streaming data: 100x faster from LCLS to Cori and Globus to CERN

Containers for HPC Systems

- Data analysis pipelines are often large, complex software stacks
- NERSC Shifter (with Cray), supports containers for HPC systems
- Used in HEP and NP projects (ATLAS, ALICE, STAR, LSST, DESI)

Real-time queue prototyped at NERSC

- In 1998 dedicated hardware; now prototype queue on Cori
- <1% of NERSC allocation
- Cryo-Em, Mass spec, Telescopes, Accelerator, Light sources

Cryo-EM: Image classification Nogales Lab

PTF: Image subtraction pipeline

ALS: 3D Reconstruction, rendered on SPOT web portal

Research challenges are substantial

Software implementations at scale in pipeline

MicroCT imaging

Segmentation

Topological Analysis

Visualization

Interactive Analytics using Jupyter

In [10]: # overlaying the small H&E and MS images

registered_ms_image = ird.transform_img_dict(my_images[2], result) big_registered_ms_image = imresize(registered_ms_image, optical_image.shape, interp='bicubic')

cut out low intensity region of MS image for easy viewing of underlying H&E
masked_big_ms_image = np.ma.masked_where(big_registered_ms_image < 100, big_registered_ms_image)</pre>

plot the two images overlayed f = plt.figure(1, figure(20, 20)) plt.imshow(optical_monochrome, alpha=0.7, cmap=cm.Greys_r) plt.imshow(manked_big_ms_image, alpha=0.3, cmap=cm.jet) plt.axee().set_axis_oft()

Science notebooks through Jupyter (iPython)

- Widely used in science
- Interactive HPC LDRD

Deployed at NERSC:

>100 users pre-production

Productive Programming

Speed

Run programs up to 100x faster than Hadoop MapReduce in memory, or 10x faster on disk.

- High failure rate
- Slow network
- Fast (local) disk

And Spark is still 10x+ slower than MPI

SPARK Analytics on HPC

SPARK on HPC vs. clusters

- Network, I/O, and virtualization all key to performance
- Increased scale from O(100) to O(10,000) cores

Chaimov, Malony, Iancu, Ibrahim, Canon, Srinivasan

CAMERA: Math for the Facilities

CAMERA: Mathematics for Facilities

Machine Learning for Science

Images in cosmology, light sources, etc.

Biology

Climate

Accelerators

Cosmology simulation

Chemistry

Data Complexity > Interpretability > Performance and Scale

Architectures for Data vs. Simulation

Different architectures for simulation? Can simulation use data architectures?

Analytics vs. Simulation Kernels:

7 Giants of Data	7 Dwarfs of Simulation
Basic statistics	Monte Carlo methods
Generalized N-Body	Particle methods
Graph-theory	Unstructured meshes
Linear algebra	Dense Linear Algebra
Optimizations	Sparse Linear Algebra
Integrations	Spectral methods
Alignment	Structured Meshes

Machine Learning Mapping to Linear Algebra

Aydin Buluc

Random Access Analytics

- Genome assembly "needs shared memory"
 - **Global Address Space** Low overhead communication
- Remote atomics

• Partitions for any structure

Scales to 15K+ cores Under 10 minutes for human First ever solution

E. Georganas, A. Buluc, J. Chapman, S. Hofmeyr, C. Aluru, R. Egan, L. Oliker, D. Rokhsar, K. Yelick

Specialization: End Game for Moore's Law

NVIDIA builds deep learning appliance with P100 Tesla's

Intel buys deep learning startup, Nervana

FPGAs

Google designs its own Tensor Processing Unit (TPU)

Data processing with special purpose hardware

- General trend towards specialization for performance
- Data processing (on raw data) will be first in DOE

Particle Tracking with Neuromorphic chips

Computing in Detectors

Deep learning processors for image analysis

FPGAS for genome analysis

Filtering, De-Noise and Compressing Data

AmeriFlux & FLUXNET: 750 users access carbon sensor data from 960 carbon flux data years

Arno Penzias and Robert Wilson discover Cosmic Microwave Background in 1965

Superfacility Vision

Extreme Data Science

The scientific process is poised to undergo a radical transformation based on the ability to access, analyze, simulate and combine large and complex data sets.

Superfacility: Integrated network of experimental and computational facilities and expertise

