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Science is poised for transformation

Part 1



Old School Scientists: The Lone Scientist



Team Science



New Scientists

17-year-old	Bri.any	Wegner	creates	breast	cancer	detec6on	tool	that	is	99%	
accurate	on	a	minimally	invasive,	previously	inaccurate	test.	
									Machine	Learning	+		Online	Data	+	Cloud	Compu9ng	



Experimental Science is Changing

•  sdf	



Old School Scientific Workflow



Computing, experiments, networking and expertise 
in a “Superfacility” for Science
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HipGISAXS & RMC	

GISAXS	
	
	
	
	
Slot-die	prin.ng	of		
Organic	photovoltaics		

Liu	et	al,	“Fast	prin.ng	
and	in	situ	morphology	
…”.	Adv	Mater.	2015		



Data Growth is Outpacing Computing Growth
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HPC: It’s not just for simulation

Experimenta.on	 Theory	

Simula.on	
Data	Analysis	

Compu.ng	
10	



HPC: It’s not just for simulation

Experimenta.on	 Theory	

Simula.on	Data	Analysis	

Compu.ng	

Growth	in	Sequencers,	
CCDs,	sensors,	etc.		
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Integration of Simulation and Observational Science
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CMB-S4	and	LSST	coming	

A.	Goobar,	P.	Nugent,	et	al	
(2017)	Science	

Image	subtrac.on,	machine	
learning	in	minutes	



Real-Time MRI Challenge

Compressed	Sensing	Approach	by	Mike	Lus.g	et	al	
MRI	results	Wenwen	Jiang	

3	min	goal	(1	
sec/itera.on)	
Michael	Driscoll	HPC	op.miza.on	



Old School Scientific Data Search



Automated Search, Meta-Data Analysis, and On-
Demand Simulation 
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Figure 1: Conceptual System Overview. The figure shows the interaction of various system components
of ScienceSearch.

Challenge 2: Search needs to account for scale and lineage of data and the I/O challenges of future sys-
tems. Data search capabilities need to address scalability at various levels: a) machine learning algorithms
must generate metadata at the rate and scale of the data volumes being generated; b) the metadata generation
process must address the I/O challenges of the future exascale systems and, c) the metadata storage layer
needs to address scalability.
Challenge 3: The complexities and intricacies of scientific data, as well as, machine and deep learning
algorithms require a careful consideration of the human factors. Machine learning techniques can help
with learning about the data and generating metadata. However, this is not sufficient for scientific data, since
the complexity of the data often requires specialized domain knowledge and understanding. Automated
metadata generated from machine learning algorithms will likely need to be curated by humans to ensure
accuracy. Additionally, the machine learning model needs to understand the terms or signals that might
arise from a user’s query. Thus, it is important to understand how people interact and want to interact with
scientific data search and machine-generated metadata labels.
Project Objectives: Designing a data integration ecosystem. Our proposed techniques bring together
a unique blend of skills that includes machine learning, human-computer interaction, and experience with
scientific domains and users at facilities. Our goal is to make data a first-class discoverable resource at
supercomputing centers through the powerful concept of search.

Figure 1 shows the conceptual system architecture that will be enabled by the research proposed in this
proposal. The ScienceSearch framework has three key components: a) metadata generation, b) the Ground
[38] metadata storage framework, and c) an interface layer. The metadata generation framework uses a
variety of machine learning techniques to generate the context of the data from both application data, as
well as system level information. Ground is a data context service that provides the metadata storage layer.
The interface layer allows the users to interact with the system to verify and validate automated metadata
generated.

We envision the ScienceSearch framework will be available at supercomputing centers and users can
make their data available to the system. The ScienceSearch framework will use the data sets and, ecosystem
artifacts associated with the data (e.g., proposals, workflow and system logs, publications) to learn and
generate metadata labels. The ScienceSearch framework will use active learning to surface the metadata
labels to users for feedback. The users can validate, add, delete or edit labels. Similarly, we anticipate that

2

Jobs	submiaed	by	“bots”	based	
on	queries;	algorithms	extract	
informa.cs	for	design	

Automated	metadata	extrac.on		
using	machine	learning		



Computing and Networking 
Facilities need to adapt 

Part 2



ESnet: Exponential data growth drives capacity
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IP	Routed	
LHC	Overlay	
Point	to	Point	big	data	

100 Exabytes/year by 2024! 

Traditional IP 
Transatlantic 
Big science data 

Science	DMZ	to	deliver	bandwidth	to	the	end	users	
																																																					OSCARS	for	bandwidth	reserva.on		

Science	DMZ	



Bringing the Computer to the Experiment
LCLS/NERSC/Esnet	Superfacility	demo	for	Photosystem	II		

3x	increase	in	ESnet	load	
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End-to-end, multi-domain network orchestration

Defines Service 
Perimeter/Boundary 

Orchestrator	Role	

Resource	Manager	Role	
SENSE-RM	
(DTN)	

SENSE-RM	
(Network)	SENSE-RM	

(Other)	

SENSE-RM	
(Network)	

SENSE-RM	
(Network)	

SENSE-RM	
(Network)	 SENSE-RM	

(Network)	 SENSE-RM	
(Other)	

SENSE-RM	
(DTN)	

SDN	for	end-to-end	Network	@	Exascale	
(SENSE)	project	led	by	Monga	@ESnet	with	
ANL,	Caltech,	FNAL,	NERSC,	MAX/UMD	

Network	is	a	‘first	class’	resource	for	
a	Superfacility	workflow	

Authen.ca.on	and	iden.ty	
management	across	domains	



Compute 
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ESnet6 (“Hollow-Core”) Conceptual Architecture Overview 

Services Edge optimized for flexibility 
•  Programmable to manage edge router/switch and retrieve 

telemetry information 
•  Flexible programmable switches (e.g. FPGA, NPU)  
•  Dynamic instantiation of services driven by SDN paradigms 

(e.g., virtualization, service chaining). 

ESnet6 plans for superfacility support

Services Edge 
Programmable, Flexible, Dynamic 

“Hollow” Core optimized for performance 
•  Programmable to allocate bandwidth and monitor status  
•  Scalable –Leverage latest technology (e.g. FlexGrid 

spectral partitioning, tunable wave modulation) 
•  Resilient – Protection and restoration functions using 

next generation Traffic Engineering (TE) protocols 

Open Line System 

Optical Services 
Transponder 
Platform 

Core 
Switch 
Router 

“Hollow” Core 
Programmable, Scalable, Resilient	



Systems configured for data-intensive science

NERSC	Cori	has	data	par..on	(Haswell)		and	pre-exascale	(KNL)	
NVRAM	file	system	with	close	to	2	PB	at	2	TB/sec		
WAN-to-Cori	op.mized	for	streaming	data:	100x	faster	from	LCLS	to	Cori	and	Globus	to	CERN	



Containers for HPC Systems
•  Data	analysis	pipelines	are	ooen	large,	complex	sooware	stacks	
•  NERSC	Shioer	(with	Cray),		supports	containers	for	HPC	systems	
•  Used	in	HEP	and	NP	projects	 	 	 	 	 	 	 	 	

	(ATLAS,	ALICE,	STAR,	LSST,	DESI)	

-	23	-	

NSHIFTERStartup	Time	



Real-time queue prototyped at NERSC

-	24	-	

•  In	1998	dedicated	hardware;	now	prototype	queue	on	Cori	
•  <1%	of	NERSC	alloca9on	
•  Cryo-Em,	Mass	spec,	Telescopes,	Accelerator,	Light	sources	

Cryo-EM:	Image	classifica.on	
Nogales	Lab	

ALS:	3D	Reconstruc.on,	
rendered	on	SPOT	web	portal	

PTF:	Image	subtrac.on	pipeline	



Research challenges are 
substantial

Part 3



Software implementations at scale in pipeline
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Interactive Analytics using Jupyter

Science notebooks through 
Jupyter (iPython)

•  Widely used in science
•  Interactive HPC LDRD

Deployed at NERSC:
•  >100 users pre-production



Fernando	Perez	et	al	



Productive Programming

•  High	failure	rate	
•  Slow	network	
•  Fast	(local)	disk	

Speed	
Run	programs	up	to	100x	faster	than	Hadoop	
MapReduce	in	memory,	or	10x	faster	on	disk.	

And	Spark	is	s9ll	10x+	
slower	than	MPI	



SPARK Analytics on HPC
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SPARK	on	HPC	vs.	clusters	
•  Network,	I/O,	and	virtualiza.on	all	key	to	performance	
•  Increased	scale	from	O(100)	to	O(10,000)	cores	

Chaimov,	Malony,	Iancu,	Ibrahim,	Canon,	Srinivasan	

Weak	scaling	(fixed	problem	size	per	node):	Power	Itera9on	Benchmark	

Perfect	scaling	



Designing	
mathema.cal	

algorithms	to	allow		
real-.me	analysis	next	
to	the	equipment	

New	algorithms	to	
transform		manual		into	
automa.c		analysis	

Inven.ng	new	math	
and	models	to	match	

new	acquisi.on	
technologies					

Robust	and	reliable	
codes	and	data	flow:		

workflow	environments	

	Cultural	and	
Sociological	Challenges	

Compare	and	integrate	
mul.ple	analysis	tools		

Mul.-modal:	Building	
the	math	that	fuses	
informa.on	from	

mul.ple	experiments		

CAMERA:	Math	for	the	Facili9es	

Fluctua.on	
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single	par.cle	
imaging		for		the	
LCLS	

Automa.c	image	
processing	for	the	
ALS/GE	

Real-.me	streaming	
ptychography—ALS,	delivered	
to	NSLS2,	LANL,	BESSY,		

Workflow	and	
access	to	remote	
supercomputers:	
XiCAM	for	ALS,	
SSRL,	APS,	NSLS2	

SFM/TEM	+	GISAXS	

CAMERA	
workshop	on	
Tomography:	
Joint	with	APS,	
ESRF,	
DIAMOND,	
LNLS,	LLNL,	
SSRL,….,		



	Discrete	mathema9cs/	
Computa9onal	geometry	
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	Spectral	analysis	
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	Constrained	op9miza9on	

	New	mathema9cal	modeling	
		

Machine	learning,	feature	
detec9on,	persistent	homology		

Fast	PDE	solvers:	(Level	Set,	DG,…)	

			

Linear	Algebra	(Selected	inversion,		
fast	pseudoinverse	approxima9on,...)	

Materials	Design	(Zeo++)	

Electronic	Structure	(PEXSI)	

Image	Analysis/Tomography		(QuantCT,F3D)	

Ptychography	(SHARP)	

Fluctua9on/Single	Par9cle	
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CAMERA:	Mathema9cs	for	Facili9es	



Machine Learning for Science
Automated detection and analysis of particle beams in laser-plasma accelerator simulations 375

(a) (b)

Fig. 5. Comparison of particle selection with/without MVEE: extracting the orientation and
the axes of an enclosing ellipse from (a) produces (b), increasing the number of particles from
173 to 263. Colors indicate the density of particles, using only (x,y)-coordinates, and black
dots show potential particles to belong to the beam, according to the different methods.

maximum (beam candidate region) per time step. In addition, this is a way of accruing more
samples and detecting secondary beams when these are almost as prominent as the primary
beam, associated to the maximum of f .

During the searching for values that are approximately equal to max( f ), we keep not only
the maximum, but all bins where f ≥ u ∗ max( f ), where u is an uncertainty or tolerance pa-
rameter, here empirically set to 0.85. While this value enables the detection of the main and
the secondary beams (when present), lower values of u could be used to control the amount
of particles to be selected at a lower accuracy of beam position. From this point, we refer to
the subset of particles conditioned to u ∗ max( f ) and its adjacency, calculated for each time
step, as “beam candidates”.

Figure 4 (top) presents projections of Figure 3.b with their calculated beam candidates em-
phasized in red. These are the result of our first attempt to improve particle selection by using
an algorithm known as minimum volume enclosing ellipsoid as in Khachiyan & Todd (1993),
which is able to enclose previously selected particles and to include others based on a geo-
metrically defined polytope. Figure 5 illustrates the algorithm when applied to LWFA data,
showing the selected particles as black dots; these particles are not in the most dense region
(red) once the colors refers to (x,y)-density calculation. When including compactness in px,
the most dense region happens further ahead. As distinct from calculating center of mass
and forcing an ad hoc diameter or semi-major/minor axes, the minimum volume enclosing
ellipsoid (MVEE) algorithm [Khachiyan & Todd (1993); Kumar & Yildirim (2005); Moshtagh
(2009)] takes the subset of points and prescribes a polytope model to extrapolate a preliminary
sub-selection to other particles likely to be in the bunch. The MVEE algorithm is a semidefinite
programming problem and consists of a better approximation to the convexity of subsets of

www.intechopen.com

Accelerators	

Climate	
Biology		
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Images	in	cosmology,	
light	sources,	etc.	
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Cosmology	simula.on	 Brain	

Data	Complexity	 Interpretability	 Performance	and	Scale	



Architectures for Data vs. Simulation

Separate	
Jobs	

Compute	
Intensive	

Nearest	
Neighbor	

All-to-All		 Random	
Access	

Different	architectures	for	simula9on?		Can	
simula9on	use	data	architectures?			



Analytics vs. Simulation Kernels: 

7	Giants	of	Data	 7	Dwarfs	of	Simula9on	
Basic	sta.s.cs Monte	Carlo	methods	
Generalized	N-Body	 Par.cle	methods	
Graph-theory	 Unstructured	meshes	
Linear	algebra	 Dense	Linear	Algebra	
Op.miza.ons	 Sparse	Linear	Algebra	
Integra.ons	 Spectral	methods	
Alignment	 Structured	Meshes	
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Aydin	Buluc	



Random Access Analytics
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•  Genome	assembly	“needs	shared	memory”	

•  Low	overhead	communica9on	
•  Remote	atomics	
•  Par99ons	for	any	structure	

Global	Address	Space	

Scales	to	15K+	cores	
Under	10	minutes	for	human	
First	ever	solu9on	

E.	Georganas,	A.	Buluc,	J.	Chapman,	S.	Hofmeyr,	C.	Aluru,	R.	Egan,	L.	Oliker,	D.	Rokhsar,	K.	Yelick		



Specialization: End Game for Moore’s Law

Google	designs	its	own	
Tensor	Processing	Unit	(TPU)	

Intel	buys	deep	learning	
startup,	Nervana	

NVIDIA	builds	deep	
learning	appliance	with	
P100	Tesla’s	

FPGAs	



Data processing with special purpose hardware

38!

•  General	trend	towards	specializa.on	for	performance	
•  Data	processing	(on	raw	data)	will	be	first	in	DOE	

Par.cle	Tracking	with	Neuromorphic	chips	

Compu.ng	in	Detectors	
FPGAS	for	genome	analysis	

Deep	learning	processors	for	image	analysis	



Filtering, De-Noise and Compressing Data

Arno	Penzias	and	Robert	Wilson	discover	
Cosmic	Microwave	Background	in	1965	

AmeriFlux	&	FLUXNET:	750	
users	access	carbon	sensor	data	
from	960	carbon	flux	data	years	



Detectors	send	terabit	
data	streams.	

Advanced	algorithms	
and	specialized	

hardware	near	detectors	

Real-.me	feedback	to	
adjust	telescopes	or	shot	
setup	for	experiments	

Data	is	archived	and	
retrieval	through	

automated	metadata	 Combine	with	simula.on	to	
interpret	data,	improve	models	

Distributed	facility	provides	
resilience,	accessibility	

Terabit	detectors	

In	situ	analysis	

Automa.on	and	control	

Offline	analysis	
Archive,	sharing,	and	reuse	

Programmable	Networks	

Superfacility Vision

High	performance	memory	
and	storage	systems	

Data	platorms	



Extreme Data Science

The	scien9fic	process	is	poised	to	undergo	a	
radical	transforma9on	based	on	the	ability	
to	access,	analyze,	simulate	and	combine	

large	and	complex	data	sets.					



Computing and 
Data Facilities 

Expertise 

User Community 

Experimental 
Facilities 

Superfacility: Integrated network of experimental and 
computational facilities and expertise

A single interconnected 
“facility” where data is 
acquired, stored, analyzed 
and served 

Methods, models, analytics, and software 

Sequencers 

Light Sources 

Telescopes 

Particle 
Detectors 

Microscopes 

Execution plan: one 
science area at a time 


