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Abstract. Stencil-based kernels constitute the core of many important scientific applications on
block-structured grids. Unfortunately, these codes achieve a low fraction of peak performance, due
primarily to the disparity between processor and main memory speeds. In this paper, we explore
the impact of trends in memory subsystems on a variety of stencil optimization techniques and
develop performance models to analytically guide our optimizations. Our work targets cache reuse
methodologies across single and multiple stencil sweeps, examining cache-aware algorithms as well
as cache-oblivious techniques on the Intel Itanium2, AMD Opteron, and IBM Power5. Additionally,
we consider stencil computations on the heterogeneous multi-core design of the Cell processor, a
machine with an explicitly-managed memory hierarchy. Overall our work represents one of the most
extensive analyses of stencil optimizations and performance modeling to date. Results demonstrate
that recent trends in memory system organization have reduced the efficacy of traditional cache-
blocking optimizations. We also show that a cache-aware implementation is significantly faster than
a cache-oblivious approach, while the explicitly managed memory on Cell enables the highest overall
efficiency: Cell attains 88% of algorithmic peak while the best competing cache-based processor only
achieves 54% of algorithmic peak performance.
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1. Introduction. Partial differential equation (PDE) solvers constitute a large
fraction of scientific applications in such diverse areas as heat diffusion, electromag-
netics, and fluid dynamics. These applications are often implemented using itera-
tive finite-difference techniques, which sweep over a spatial grid, performing nearest
neighbor computations called stencils. In a stencil operation, each point in a multidi-
mensional grid is updated with weighted contributions from a subset of its neighbors
in both time and space — thereby representing the coefficients of the PDE for that
data element. These operations are then used to build solvers that range from simple
Jacobi iterations to complex multigrid and adaptive mesh refinement methods [3].

Stencil calculations perform global sweeps through data structures that are typ-
ically much larger than the capacity of the available data caches. As a result, these
computations generally achieve a low fraction of theoretical peak performance, since
data from main memory cannot be transferred fast enough to avoid stalling the com-
putational units on modern microprocessors. Reorganizing these computations to
take full advantage of memory hierarchies has been the subject of much investigation
over the years. These have principally focused on tiling optimizations [9, 13, 14] that
attempt to exploit locality by performing operations on cache-sized blocks of data
before moving on to the next block. Whereas many tiling optimizations use domain
decomposition to improve spatial locality, more recent studies have focused attention
on exploiting locality in the time dimension [5, 11,15,17].

In this work, we re-examine stencil computations on current microprocessors in
light of the growing performance gap between processors and memory, as well as
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the techniques hardware designers employ to mitigate this problem, including auto-
matic prefetch, large on-chip caches, and explicitly controlled local-store memories.
Through a combination of techniques, including the use of targeted benchmarks, a
parameterized probe, and analytical modeling, we revisit previously successful opti-
mizations and explain their effectiveness (or lack thereof) on the current generation
of microprocessors for three dimensional PDE problems.

First, we examine stencil optimizations across a single iteration — where cache
blocking can only be performed in the spatial dimension — and demonstrate that
this approach is useful under a very limited set of circumstances on modern micro-
processors. Our major observation is that improving cache reuse is no longer the
dominant factor to consider in optimizing these computations. In particular, stream-
ing memory accesses are increasingly important because they engage software and
hardware prefetch mechanisms that are essential to memory performance. Many of
the grid blocking strategies designed to improve cache locality ultimately end up in-
terfering with prefetch policies and thereby counter the advantages conferred by those
optimizations.

Our work next examines optimization strategies for multiple iterations, where the
stencil algorithms can block computation in both space and time to reduce overall
main memory traffic. A unique contribution of our work is the comparative evaluation
of implicit and explicit stencil optimization algorithms, as well as a study of the trade-
offs between implicitly- and explicitly-managed local store memories. We begin by
exploring an explicit cache-aware algorithm known as time skewing [11,15,17], where
the blocking factor is carefully tuned based on the stencil size and cache hierarchy
details. Next, we present a detailed performance model which effectively captures
the behavior of the time skewing algorithm, allowing us to analytically determine a
near-optimal blocking factor.

Our study then explores alternative approaches to stencil optimizations by evalu-
ating the implicit cache oblivious [5] tiling methodology, which promises to efficiently
utilize cache resources without the need to consider the details of the underlying cache
infrastructure. Performance is evaluated on the Intel Itanium2, AMD Opteron, and
IBM Power5 microprocessors, where data movement to on-chip caches is automati-
cally (implicitly) managed by hardware (or compiler-managed software) control. Our
final stencil implementation is written for the non-conventional microarchitectural
paradigm of the recently-released STI (Sony/Toshiba/IBM) Cell processor, whose
local store memory is managed explicitly by software rather than depending on auto-
matic cache management policies implemented in hardware.

Experimental results show that, while the cache oblivious algorithm does indeed
reduce the number of cache misses compared to the näıve approach, it can para-
doxically degrade absolute performance due primarily to sub-optimal compiler code
generation. We also show that, although the time skewed algorithm can significantly
improve performance, choosing the best blocking approach is non-intuitive, requiring
an exhaustive search of tiling sizes or an effective performance model to attain optimal
performance. Finally, we demonstrate that explicitly-managed local store architec-
tures offer the opportunity to fully utilize the available memory system and achieve
impressive results regardless of the underlying problem size.

Overall, our work represents one of most extensive analyses of stencil optimiza-
tions and performance modeling to date, examining a wide variety of algorithmic
approaches and architectural platforms for this important class of computations.
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2. Experimental Setup. This section describes the experimental testbed for
our analysis. First, we present a high-level overview of stencil computations, which
are an important component of many numerical algorithms. We then introduce the
Stencil Probe, a parameterized benchmark that mimics the performance of stencil-
based calculations. Finally, we describe our evaluated architectural platforms and
code development environment.

2.1. Stencil Computations. Stencil computations on regular grids are at the
core of a wide range of scientific codes. In these computations each point in a multi-
dimensional grid is updated with contributions from a subset of its neighbors. These
“sweeps” (updates of all points in the grid according to the computational rule) are
then typically used to build solvers for differential equations. In this work, we ex-
amine the performance of the 3D heat equation shown in Figure 3.1, which uses a
seven-point stencil. It is taken from Chombo [1], a set of tools for computing solutions
of partial differential equations using finite difference methods on adaptively-refined
meshes. We use the kernel from heattut, a simple 3D heat equation solver that does
not use Chombo’s more advanced capabilities. In general, performing several sweeps
through a grid at once is not always possible because many applications perform other
work between stencil sweeps. However, our sample application is not constrained by
this limitation.

2.2. Stencil Probe. The experiments conducted in this work utilize the Stencil
Probe [7], a compact, self-contained serial microbenchmark developed to explore the
behavior of stencil computations on block-structured grids without the complexity of
full application codes. As such the Stencil Probe is suitable for experimentation on
architectures in varying stages of implementation — from production CPUs to cycle-
accurate simulators. By modifying the operations in the inner loop of the benchmark,
the Stencil Probe can effectively mimic the kernels of applications that use stencils
on regular grids. Previous work [6,7] has shown that the Stencil Probe is an effective
proxy for the behavior of larger applications; thus, it can simulate the memory access
patterns and performance of large applications, while testing for potential optimiza-
tions, without having to port or modify the entire application.

2.3. Hardware Platforms. Our study examines three leading microproces-
sor designs used in high performance computing systems: the Itanium2, the AMD
Opteron, and the IBM Power5. Additionally, we examine stencil performance on the
recently-released STI Cell processor, which presents a radical departure from conven-
tional multiprocessors. An overview of each platform’s architectural characteristics is
shown in Table 2.1.

The 64-bit Itanium2 system used in our study operates at 1.4 GHz and is capable
of issuing two FMAs per cycle for a peak performance of 5.6 GFlop/s. The memory
hierarchy consists of 128 FP registers (of which 96 can rotate) and three on-chip data
caches (32KB L1, 256KB L2, and 3MB L3). The Itanium2 cannot store FP data in L1,
making register loads and spills potential sources for bottlenecks; however, a relatively
large register set helps mitigate this issue. The superscalar processor implements the
Explicitly Parallel Instruction set Computing (EPIC) technology where instructions
are organized into 128-bit VLIW bundles.

The primary floating-point horsepower of the 64-bit AMD Opteron comes from its
SIMD floating-point unit accessed via the SSE2 or 3DNow instruction set extensions.
The Opteron utilizes a 128b SIMD FP multiplier and a 128b SIMD FP adder, both of
which are half-pumped. Thus our 2.2 GHz test system can execute two floating-point
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Itanium2 Opteron Power5 Cell SPE
Architecture VLIW super super dual

scalar scalar SIMD
Frequency (GHz) 1.4 2.2 1.9 3.2
Peak (GFlop/s) 5.6 4.4 7.6 1.83
DRAM (GB/s) 6.4 5.2 15∗ 25.6
FP Registers 128 16 32 128
(renamed/rotating) 96 88 120 -
Local Mem (KB) N/A N/A N/A 256
L1 D$ (KB) 32 64 64 N/A
L2 D$ (KB) 256 1024 1920 N/A
L3 D$ (MB) 3 N/A 36 N/A
Introduction 2003 2004 2004 2006
Cores Used 1 1 1 8
Compiler Used Intel 9.0 Pathscale xlc/xlf xlc

Table 2.1
Architectural characteristics of our evaluated platforms.

operations per cycle and deliver peak performance of 4.4 GFlop/s. The L2 cache on
our test system is a 1MB victim cache (allocated on evictions from L1). The peak
aggregate memory bandwidth is 5.2 Gigabytes/sec (either read or write), supplied by
two DDR-266 DRAM channels per CPU.

The IBM Power5 is a superscalar RISC architecture capable of issuing 2 FMAs per
cycle. The 1.9 GHz test system has a 1.9MB on-chip L2 cache as well as a massive
36MB L3 victim cache on the DCM (dual chip module). The peak floating-point
performance of our test system is 7.6 GFlop/s. The memory bandwidth is supplied
by IBM’s proprietary SMI interfaces that aggregate 8 DDR-266 DRAM channels to
supply 10 Gigabytes/sec read and 5 Gigabytes/sec write performance (15 GB/s peak
aggregate bandwidth) per CPU.

STI’s Cell processor is a heterogeneous nine-core architecture that combines con-
siderable floating point resources with a power-efficient software-controlled memory
hierarchy. Instead of using identical cooperating commodity processors, Cell uses a
conventional high performance PowerPC core that controls eight simple SIMD cores,
called synergistic processing elements (SPEs). A key feature of each SPE is the three-
level software-controlled memory hierarchy. Instead of transferring data between the
128 registers and DRAM via a cache hierarchy, loads and stores may only access a
small (256KB) private local store. The Cell processor utilizes explicit DMA operations
to move data from main memory to the local store of the SPE. Dedicated DMA engines
allow multiple concurrent DMA loads to run simultaneously with the SIMD execution
unit, thereby mitigating memory latency overhead via double-buffered DMA loads
and stores. The Cell processor is designed with an extremely high single-precision
performance of 25.6 GFlop/s per SPE (204.8 GFlop/s collectively); however, dou-
ble precision performance lags significantly behind with only 1.8 GFlop/s per SPE
(14.6 GFlop/s collectively), for the 3.2 GHz part. The XDR memory interface on Cell
supplies 25 GB/s peak aggregate memory bandwidth. Thus for Cell, double-precision
performance — not DRAM bandwidth — is generally the limiting factor.

∗The Power5 has a total of 15 GB/s DRAM bandwidth (10 GB/s load, 5 GB/s store).
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2.4. Code Development and Profiling Environment. Our original goal was
to implement all of the codes using the C programming language. However, achieving
the highest possible performance across each platform required several exceptions. No-
tably, the cache-aware (and näıve) Power5 experiments were implemented in Fortran
using xlf to minimize the high penalty of pointer ambiguity of xlc on the Power5.
Additionally, the Cell C implementation included hand-coded SIMD intrinsics to en-
sure effective vectorization and explicit pointer disambiguation (see Section 8.2).

On all three conventional systems, we use the Performance API (PAPI) library [12]
to measure cache misses at the various levels of the cache hierarchy. PAPI enables
us to use a standard cross-platform library to access performance counters on each
CPU. Unfortunately, on the Power5 and Opteron platforms, PAPI cache miss counters
do not include prefetched cache lines, thus preventing the counters from accurately
reflecting overall memory traffic. Therefore, we generally only show Itanium2 cache
miss numbers. Memory traffic is calculated as the product of cache misses and cache
line size. However, on Cell, as all memory traffic is explicit in the code, it can be
computed directly. On the Cell platform, both the SPE decrementers and PowerPC
timebase are used to calculate elapsed time, while on the conventional machines, PAPI
is used to access cycle timers. Performance, as measured in GFlop/s, is calculated
directly based on eight flops per stencil, and one stencil per time step for every point
excluding the boundary.

3. Single Iteration Performance. There has been considerable work in mem-
ory optimizations for stencil computations, motivated by both the importance of
these algorithmic kernels and their poor performance when compared to machine
peak. Cache blocking is the standard technique for improving cache reuse, because
it reduces the memory bandwidth requirements of an algorithm. In this section we
explore single-iteration stencil performance and examine the potential performance
improvement of traditional cache blocking techniques.

3.1. Näıve Implementation. Pseudocode for a 3D näıve non-periodic stencil
is shown in Figure 3.1. The stencil here uses Jacobi iterations, meaning that the
calculation is not done in place; thus the algorithm alternates the source and target
arrays after each iteration.

void stencil3d(double current[], double next[],
int xn, int yn, int zn, int tn)

{
for (int t = 0 to tn)
for (int x = 1 to xn − 1)
for (int y = 1 to yn − 1)
for (int z = 1 to zn − 1)
Xt

x,y,z =a∗Xt−1
x,y,z+b∗(Xt−1

x+1,y,z+Xt−1
x−1,y,zX

t−1
x,y+1,z

+ Xt−1
x,y−1,z+Xt−1

x,y,z+1+Xt−1
x,y,z−1);

}

Fig. 3.1. Pseudocode for the 3D näıve stencil kernel using non-periodic boundary conditions.

Figure 3.2 tries to identify the bottleneck in single-iteration stencil performance
by examining both the (a) percentage of machine peak and (b) the percentage of
peak memory bandwidth achieved on the three commodity architectures in our study.
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(a) (b)

Fig. 3.2. Performance of non-periodic näıve stencil code on the three cache-based architectures
for varying cubic grid dimensions. Figure (a) shows the percent of machine peak achieved, while (b)
shows a lower bound on the percent of peak memory bandwidth achieved.

As seen in Figure 3.2(a), all three architectures achieve below 30% of machine peak.
However, Figure 3.2(b) shows that the fraction of memory bandwidth is almost always
greater than 30% of peak memory bandwidth. In fact, since the memory bandwidth
figure only counts the memory traffic from compulsory cache misses, it actually pro-
vides a lower bound on the fraction of peak memory bandwidth. These results show
that due to the high fraction of memory traffic, there is limited potential for opti-
mization over a single iteration. However, executing across multiple time steps allows
for more optimization opportunities due to increased data reuse, as will be explored
in Section 6.

3.2. Single-Timestep Cache Blocking. We now consider the challenging prob-
lem of improving memory performance within a single sweep. While the potential
payoff for a given optimization is lower than for multiple timesteps, the techniques
are more broadly applicable. In prior work, Rivera and Tseng [13] concluded that
blocking of 2D applications is not likely to be effective in practice. Our analysis in
Section 4.4 agrees with and further quantifies this result, showing that enormous grids
are necessary for 2D cache blocking to be effective on current machines.

Rivera and Tseng [13] also proposed a blocking scheme for 3D stencil problems
that attempts to alleviate the tiny block sizes that result from traditional 2D blocking
schemes when applied to three dimensions. Subdividing a 3D grid into cache blocks
results in many small blocks because blocksize3 doubles must fit in the cache, as
opposed to blocksize2 doubles when blocking in 2D. These small blocking factors
cause poor spatial locality because there are frequent discontinuities in the memory
stream. Rivera and Tseng attempted to sidestep this limitation by blocking in the
two least significant dimensions only (partial 3D blocking). This results in a series of
2D slices that are stacked up in the unblocked dimension, as shown in Figure 3.3(a).

In order to test the effectiveness of partial 3D blocking, we ran problem sizes
up to the largest that would fit in the physical memory of our machines. In Figure
3.3(b) we see the best-case cache-blocked results relative to the unblocked version for
grid sizes of 1283, 2563, and 5123. The partial 3D blocking speeds up our stencil
computation for grid sizes of 5123 on the Itanium2 and the Opteron, while on the
Power5 we obtain no speedups for any of the three grid sizes (due to the the huge L3
cache on the Power5, as quantified in Section 4.4). Observe that in all cases where
blocking confers an advantage, the Ith blocking dimension is equal to the grid size
(i.e. maximized).
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Fig. 3.3. (a) Partial 3-D blocking using a series of 2D slices stacked up in the unblocked
dimension, K, where I is the unit-stride dimension. (b) Speedup results of partial 3D blocking for
1283, 2563, and 5123 grid sizes using optimal block sizes. Note that the Power5 utilized the xlf

compiler to maximize performance.

In order to understand which blocking factors are the most effective for a given
architectural configuration, we construct a simple analytical model to predict the cost
of memory traffic for a stencil-based computation.

4. Modeling Single Iteration Performance. In order to model the perfor-
mance of single-iteration cache blocking, we begin by examining the performance of
a simpler microbenchmark that has a memory access pattern that nearly matches
our cache blocking memory access pattern. We then use the insights gained from the
microbenchmark to construct a performance model for cache blocking.

4.1. Stanza Triad. In this section we explore prefetching behavior of modern
microprocessors using a simple microbenchmark called Stanza Triad. An important
trend in microprocessor architectures is the attempt to tolerate the increased memory
latency relative to clock frequency. Little’s Law [2] asserts that in order to fully
utilize the total available bandwidth of the memory subsystem, the number of data
elements in-flight concurrently must be equal to the product of the bandwidth and
the latency of the memory subsystem. This bandwidth-delay product has increased
dramatically in recent years. The primary remediation strategy for hiding latency is
prefetch – both compiler-inserted and automatic hardware prefetch streams. The goal
of our work is to demonstrate how the requirements for the efficient use of prefetch
can compete with, or even interfere with, traditional strategies employed for cache-
blocking, compromising their effectiveness.

To address this issue, we devised a simple microbenchmark called Stanza Triad,
which is used to evaluate the efficacy of prefetching on various architectures. The
Stanza Triad (STriad) benchmark is a derivative of the STREAM [10] Triad bench-
mark. STriad works by performing a DAXPY (Triad) inner loop for a size L stanza
before jumping k elements and continuing on to the next L elements, until we reach
the end of the array.

Figure 4.1 shows the results of the STriad experiments on the cache-based ar-
chitectures in our study. The total problem size was set to approximately 48 MB in
order to ensure the arrays could not fit in cache. We set k (the jump length) to 2048
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double-precision words, which is large enough to ensure no prefetch between stanzas,
but small enough to avoid penalties from TLB misses and DDR precharge. Each
data size was run multiple times, using a clean cache each time, and we averaged the
performance to calculate the memory bandwidth for each stanza length.
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Fig. 4.1. Performance of STriad on the three evaluated architectures.

On the Opteron system, we see a relatively smooth increase in bandwidth until
STriad reaches peak. In contrast, the Itanium2 and Power5 demonstrate a two-phase
increase in performance. Unfortunately, facilities (such as performance counters) to
directly capture hardware prefetch behavior are not readily available. Lastly, for
historical comparison, we ran STriad on a Pentium 3, a system where prefetch does
not offer a significant benefit — notice that the performance behavior here is flat and
independent of the stanza length. Finally, it can be seen that (as expected) with
increasing stanza lengths, STriad performance asymptotically approaches the “max”
bandwidth, which is measured by running STriad and setting the stanza length equal
to the array size (similar to STREAM Triad∗).

4.2. Memory Model for STriad. Based on the measured STriad performance,
we now formulate a simple model to predict memory access overhead for a given stanza
length. We approximate the cost of accessing the first (non-streamed) cache line from
main memory, Cfirst, by the overhead of performing an STriad with a short (single
cache line) stanza length. Cstream, on the other hand, represents the cost of a unit-
stride (streamed) cache miss, as computed by performing an STriad where the stanza
length is maximized (set to the total array length). Because the prefetching engines
require some number of consecutive cache misses before they ramp up, we also have a
third cost, Cintermediate, which is the cost of accessing a cache line when the prefetch
engines have begun ramping up but are not completely at their peak speed.

Therefore, if:
L = stanza length (in words)

W = cache line size (in words)
Then:

∗The only difference is the loop bound structure.
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Stanza Cache Number of Cost
Miss Order Cache Misses Per Miss

First 1 Cfirst

Second k (k is small) Cintermediate

Third d(L/W )e − k − 1 Cstream

and Total Cost = Cfirst + k ∗ Cintermediate + (d(L/W )e − k − 1) ∗ Cstream.

In other words, we assume that after paying Cfirst to bring in the first cache line
from main memory and Cintermediate for the next k lines (where k is a small value
on the order of several cache lines), the remaining data accesses cost Cstream due to
enabled stream prefetching. Note that this simplified approach does not distinguish
between the cost of loads and stores.

In addition to this three-point model, we also attempted to use just two points
(i.e. by setting k = 0 and assuming all cache misses are either the first miss in a
stanza or are fully-prefetched misses). Results in Figure 4.1 show that our simple
performance model reasonably approximates the memory access behavior on all three
of our architectures, for both the two point and three point models. However, the
three point model more accurately predicts Itanium2 performance at intermediate
stanza lengths. Having modeled the timing of this simple proxy code, we now explore
a more general model for stencil performance using Rivera blocking.

4.3. Cost Model for Cache Blocking. Several studies have analyzed stencil
codes and created metrics to predict performance. Leopold [8] introduced analytic
bounds on capacity misses in stencil codes, but did not study actual application or
benchmark codes. Through the use of an analytic model, Leopold suggested that
rectangular tiles would outperform square tiles, a conclusion supported by the model
we build in this section.

We now build on the prefetch-based memory model developed in Section 4.2 to
capture the behavior of stencil computations using various cache blocking arrange-
ments, as seen in Section 3.2.

Given an N3 grid we first approximate the lower and upper bounds on traffic
between cache and main memory for a given I × J × N blocking. Recall that a 3D
stencil calculation accesses 6 columns in three adjacent planes. The lower bound for
traffic assumes perfect reuse, where all three I × J-sized planes fit in cache — thus
the grid is only transfered twice from/to main memory (one read and one write).
The upper bound (pessimistically) assumes no cache reuse of the I × J planes due
to conflict and capacity misses; therefore, for each sweep of a given plane, the ‘front’
and ‘back’ planes required for the 7-point stencil calculation must be reloaded from
main memory. The upper bound thus requires the grid to be transferred four times
from/to main memory (three reads and one write): twice the cost of the lower bound.
Note that this is not a strict upper bound, since we assume an optimal number of
loads and only consider the costs of memory operations (ignoring registers, ALU,
etc). Additionally, our simplified performance model does not differentiate between
the cost of load and store operations.

Having established lower (2×) and upper (4×) bounds for the grid memory traffic,
we now compute the cost of transferring the appropriate stencil data for a given
I×J ×N blocking. Given a system with W words per cache line, a sweep through an
N3 grid requires a total of Ttotal = d(I/W )eN3

I cache lines. Because the grid is accessed
in a blocked fashion, we compute the number of non-streamed (non-prefetched) cache
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line accesses:

Tfirst =
N3

I
if I 6= N, or

N3

IJ
if I = N 6= J, or

N2

IJ
if I = J = N.

The number of intermediate (partially-prefetched) cache line accesses is the next k
accesses in each stanza. Lastly, the total number of streamed (prefetched) cache lines
is then the remaining number of accesses: Tstream = Ttotal − Tintermediate − Tfirst.

We now apply the cost model derived in Section 4.2, where we established that
non-streamed access to a cache line from main memory requires a higher overhead
(Cfirst) than subsequently streamed cache lines (Cstream), due to the benefits of
prefetching. Thus the total cost of sweeping through a 3D stencil in a blocked fashion
is approximated as

Cstencil = CfirstTfirst + CintermediateTintermediate + CstreamTstream.

The lower bound of the memory cost for the stencil computation is thus 2Cstencil,
while the upper bound is 4Cstencil. Therefore, setting the block size too small will
incur a penalty on memory system performance because prefetch is not engaged or is
only partially engaged.

Figure 4.2 shows the lower and upper bounds of our cost model compared with
the measured results of the Stencil Probe using Rivera blocking across a complete set
(powers of two) of I×J ×N blocking factors. Results show that our analytical model
performs extremely well in capturing the behavior of the stencil computation for all
three evaluated architectures. The actual data does occasionally fall outside of the
computed lower/upper bounds, but it is clear from the overall performance trends
that our methodology is effective in quantifying the tradeoffs between cache blocking
and prefetching efficacy.

In the next section, we discuss trends in modern architectures in light of our
analysis of partial blocking and the impact of automatic prefetching engines.

4.4. Impact of Architectural Trends. It is important to understand our
cache-blocking findings in the context of evolving architectural trends. As silicon
lithography techniques improve, processor architects are able to migrate more levels
of the cache hierarchy onto the same chip as the microprocessor core. In addition
to reducing the latencies for cache misses at each level of the hierarchy, this has also
enabled the designers to operate on-chip caches at the same clock frequency as the
core. In these cases, an on-chip L2 (and in the case of the Itanium, the on-chip L3)
can deliver operands to the core at the same rate as the L1 caches.

Consider that the 360MHz Sun UltraSparc2i platform, studied in the cache tiling
work of Rivera and Tseng [13] (described in Section 3.2), used a 16KB on-chip L1,
but the off-chip L2 operated at half the processor’s cycle time. Likewise, the Pentium
II that was used to demonstrate another effective blocking technique [14] operated
the off-chip L2 at half the clock rate of the on-chip L1. In contrast, all three of the
cache-based processors reviewed in this paper employ a cache hierarchy that is en-
tirely on-chip and operates at the same clock frequency as the core — allowing each
level of the hierarchy to operate at the nearly the same effective bandwidth. Since the
on-chip cache sizes (operating at the same clock rate as the core) have increased dra-
matically in recent processor generations, block-sizes that improve bandwidth locality
have increased correspondingly.

The benchmark data in the previous sections suggests that code optimizations
should focus on creating the longest possible stanzas of contiguous memory accesses in

10



0

1

2

3

4

5

6

7

8

9

10
Rivera Cache Blocking Model (Itanium2 @ 512)

Ti
m

e 
(s

ec
)

 

 

16
x1

6

32
x1

6

16
x3

2

64
x1

6

32
x3

2

16
x6

4

12
8x

16

64
x3

2

32
x6

4

16
x1

28

25
6x

16

12
8x

32

64
x6

4

32
x1

28

16
x2

56

51
2x

16

25
6x

32

12
8x

64

64
x1

28

32
x2

56

16
x5

12

51
2x

32

25
6x

64

12
8x

12
8

64
x2

56

32
x5

12

51
2x

64

25
6x

12
8

12
8x

25
6

64
x5

12

51
2x

12
8

25
6x

25
6

12
8x

51
2

51
2x

25
6

25
6x

51
2

51
2x

51
2

Lower Bound Upper Bound Actual

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
Rivera Cache Blocking Model (Opteron @ 512)

Ti
m

e 
(s

ec
)

 

 

16
x1

6

32
x1

6

16
x3

2

64
x1

6

32
x3

2

16
x6

4

12
8x

16

64
x3

2

32
x6

4

16
x1

28

25
6x

16

12
8x

32

64
x6

4

32
x1

28

16
x2

56

51
2x

16

25
6x

32

12
8x

64

64
x1

28

32
x2

56

16
x5

12

51
2x

32

25
6x

64

12
8x

12
8

64
x2

56

32
x5

12

51
2x

64

25
6x

12
8

12
8x

25
6

64
x5

12

51
2x

12
8

25
6x

25
6

12
8x

51
2

51
2x

25
6

25
6x

51
2

51
2x

51
2

Lower Bound Upper Bound Actual

0

1

2

3

4

5

6

7

8

9
Rivera Cache Blocking Model (Power5 @ 512)

Ti
m

e 
(s

ec
)

 

 

16
x1

6

32
x1

6

16
x3

2

64
x1

6

32
x3

2

16
x6

4

12
8x

16

64
x3

2

32
x6

4

16
x1

28

25
6x

16

12
8x

32

64
x6

4

32
x1

28

16
x2

56

51
2x

16

25
6x

32

12
8x

64

64
x1

28

32
x2

56

16
x5

12

51
2x

32

25
6x

64

12
8x

12
8

64
x2

56

32
x5

12

51
2x

64

25
6x

12
8

12
8x

25
6

64
x5

12

51
2x

12
8

25
6x

25
6

12
8x

51
2

51
2x

25
6

25
6x

51
2

51
2x

51
2

Lower Bound Upper Bound Actual

Fig. 4.2. Comparison between partial 3D-blocking runs and the lower/upper bounds of our
memory model. Results show that our analytical approach is extremely effective in predicting blocked
stencil performance.

11



order to maintain peak performance. These requirements are driven by the behavior
of prefetch engines, which are fully engaged via long stanzas of unit-stride stream
accesses. Thus, in practical terms, stencil computations must be blocked for the
largest level of cache hierarchy that operates at core bandwidth, as was empirically
and analytically demonstrated in Sections 3.2 and 4.3.

Figure 4.3 describes the conditions where tiling may offer a benefit for 2D and
3D stencil computations, based on our analysis. Six microprocessor architectures are
plotted on this graph, based on the the largest tile size that would derive a performance
gain for stencil computations. This is equivalent to the deepest level of cache capable
of communicating with the processor at full bandwidth. Two different generations of
microprocessors are plotted, where the vertical position is based on the on-chip cache
size, while the horizontal position is based on the memory footprint for a given sized 3D
stencil (1283, 2563, and 5123). Any processors that are below the top red line (bottom
blue line) may see a performance benefit from tiling for the 3D (2D) problems. (Note
that there is more opportunity for effective cache-blocking for 3D computations than
for 2D.) Processors above these lines will likely see a performance degradation from
attempts to use a tile-based optimization strategy, since all the appropriate data-sets
already fit in the on-chip caches without blocking. It can be seen clearly from this
graph that the growth of on-chip L2 and L3 caches have dramatically raised the size
of problems that would see any benefit from cache-blocking for stencil computations.
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Fig. 4.3. Conditions where tiling offers a potential benefit for 2D and 3D stencil computations.
The upper red line (lower blue line) shows the cache limit for a given problem size that could benefit
3D (2D) problems. Six microprocessor on-chip cache sizes are plotted. Processors below the line
may benefit from cache blocking for the specified problem sizes (1283, 2563, 5123) whereas those
above a given line will generally not.

The predictions of Figure 4.3 can be compared against the results presented Sec-
tion 3.2. As Figure 3.3(b) shows, the Itanium2 and Opteron clearly benefit from
blocking for 5123 grid sizes, while no benefit is seen on Power5 due to its large 36 MB
L3 cache. These observations were also validated on the PowerPC G5 in a previous
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study [7].
It is also important to understand the range of grid sizes currently being utilized

in large-scale scientific applications. For example, the grid sizes for Cactus [4], a
computational framework for astrophysics, are typically 803 per processor for parallel
General Relativity simulations, and will occasionally be stretched to 1283 per proces-
sor, if the memory is available. Chombo, on the other hand, is an AMR code that
uses adaptive hierarchical meshes to refine the computation where needed. Cells are
selected for refinement on a per-cell basis, which are then aggregated in order to cre-
ate the largest possible grid that can achieve a specified filling ratio of selected cells.
While larger grids can be formed, the typical grid size formed by this strategy is 323

to 643 elements in size. Thus, it is our observation that high-end stencil computations
are currently not run at a grid scale that would benefit from tiling a single sweep, due
to the large on-chip caches of the underlying microprocessors.

5. Multiple Iteration Time Skewing. As seen in Section 4.4, there are limited
opportunities for cache reuse in stencil computations when relying exclusively on
spatial tiling because each point is used a very small number of times. Thus, more
contemporary approaches to stencil optimization are geared towards tiling techniques
that leverage blocking in both the spatial and temporal dimensions of computation, in
order to increase data reuse within the cache hierarchy [5,11,15,17]. In the remainder
of this paper we examine optimization strategies for stencil algorithms that block
computation both in space and time to reduce overall main memory traffic.

A logical extension to single-iteration cache blocking, the time skewing algo-
rithm [11,15,17] blocks in both space and time while respecting stencil dependencies.
The algorithm uses explicitly defined cache block sizes; however in the absence of a
performance model, we typically do not know which block size will execute fastest.
Therefore, for each platform where time skewing is run, one must perform an ex-
haustive search to determine the optimal block size. While the cache block’s x- and
y-dimensions (both non-contiguous in memory) are allowed to vary, the z-dimension
(the unit stride dimension) is left uncut to allow for longer unit-stride memory streams
as demonstrated in Sections 3.2 and 4.3.

5.1. Time Skewing Algorithmic Description. Time skewing is a logical ex-
tension of single-iteration cache tiling to multiple iterations. Figure 5.1 shows a sim-
plified diagram of time skewing for a 3-point stencil where the grid is divided into
cache blocks by several skewed cuts. These cuts are skewed in order to preserve the
data dependencies of the stencil. To clarify this concept, two points in the figure are
shown with blue arrows indicating dependencies. For the green point, all three of its
dependencies lie within the second cache block, and therefore it too can be computed
within the same block. On the other hand, the red point’s dependencies span the
third and fourth cache blocks. In this case, since the last dependency is in the fourth
cache block, the red point must also be computed in that block. In general, as long
as the blocks are executed in the proper order, the algorithm respects the stencil
dependencies.

However, the blocks generated from time skewing do not all perform the same
amount of work, despite equal partitioning in the first step. As time progresses, the
shifting causes the cache blocks at the boundaries to perform unequal work. As shown
in Figure 5.1, the number of points per iteration slowly decreases for the first cache
block, while it slowly increases for the final cache block. The interior cache blocks
perform the same number of stencil operations, since shifting does not change the
number of points per iteration.
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Fig. 5.1. A simplified two-dimensional spacetime diagram of time skewing with a 3-point stencil.
The dotted blue arrows show dependencies for two different points. In order to preserve these
dependencies, the cache blocks need to be executed in the order shown. In addition, the X’s and O’s
indicate which of two arrays is being written to.

There are two potential performance limitations caused by the skewing algorithm.
The first is that extra cache misses may be incurred by shifting, thereby hindering
our efforts to minimize memory traffic. Fortunately, this shift is always towards the
completed portion of the grid, so the needed points are often already resident in cache.
This helps mitigate, if not eliminate, the extra memory traffic.

A second concern is that skewing limits the number of iterations that can be
performed. Specifically, some of the cache blocks along the boundary can be shifted
off the grid as time progresses. Once a cache block is off the grid, any further iterations
will cause dependency violations. This is seen in Figure 5.1, where the first cache block
shifts completely over the boundary after the third iteration. In these cases, we can
perform a time cut (as explained in Figure 7.1(c)) to “restart” the algorithm. After
the time cut, we can either execute the remaining number of iterations or, if needed,
perform another time cut. Of course, this problem can also be addressed by simply
using a larger cache block.

A closer representation to our actual 3D time skewing code is illustrated in Fig-
ure 5.2. By showing how the number of stencil operations performed varies within
each cache block, the diagram sheds light on how time skewing works in higher di-
mensions.

5.2. Time Skewing Performance. We first verify that the per-iteration mem-
ory traffic does in fact decrease with more iterations. These results are only shown
for the Itanium2 since is the only platform in our study with accurate cache miss
counters (see Section 2.4). Figure 5.3(a) confirms that for small block sizes, overall
memory traffic decreases drastically from the first iteration (left) to the fourth (right).
More importantly, during the fourth iteration the memory traffic for the smaller cache
blocks is much lower than for the näıve case (the upper right corner of the graph).
Assuming the code is memory-bound, this suggests that some of these block sizes will
have lower running times than the näıve case.

Figure 5.3(b) shows that this is indeed the case. The fourth iteration exhibits
speedups of up to 60% over the näıve code. Not surprisingly, the block sizes with
the largest reductions in memory traffic also shows the greatest improvements in
performance.
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Number of stencil operations performed in each cache block

Fig. 5.2. Color coded plots of the number of stencils operations performed on a 103 grid using
four iteration time skewing with 5x5x10 cache blocks. There is one plot for each cache block. Blue
halos represent only a single stencil operation for that region, where red blocks show the cores where
the full four stencils operations were performed. When processed in order, the full 103 has completed
four iterations — i.e. a blue cell in four different cache blocks implies one stencil performed in each
cache block or four total.

Table 5.1 shows time skewing performance for 1283, 2563, and 5123 problem
sizes on the Itanium2. Notice that the overall gains in computational speed are not
as dramatic as the savings in memory read traffic. This is because the problem
shifts from being memory bound to being computation bound, at which point further
reductions in memory traffic are no longer useful. However, the overall speedups are
still substantial. The computational speedup is particularly dramatic in the 5123

case, since the näıve code is especially slow at this problem size. The problem is large
enough so that three planes of the source array and one plane of the target array
cannot fit into L3 cache (see [7] for details). Thus, the same point in the source array
needs to be brought into cache several times during a single iteration, resulting in
significant main memory traffic.

Time skewing addresses this problem by processing individual cache blocks one
at a time. This effectively shrinks the size of each plane, allowing all the iterations for
a point to be completed after bringing it into cache only once. The result is a drastic
drop in memory traffic (84%) and consequently a large speedup in performance (1.67).

Figure 5.4 shows the GFlop rates for the Opteron and Power5 in addition to the
Itanium2. The data shown is for the best runtime on each of the platforms for four
iterations, determined by an exhaustive search across all block sizes. As expected,
the graph indicates that for all three platforms, time skewing produces a significant
speedup over the näıve code during later iterations.
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(a)

(b)

Fig. 5.3. Finding the optimal cache block size using time skewing on the Itanium2. Each
cache block’s z-dimension (contiguous in memory) is uncut. The graphs show (a) main memory
read traffic and (b) GFlop rates on the Itanium2 for a 2563 problem with constant boundaries. The
graphs on the left show first iteration data, while the right graphs show data for the fourth iteration.

Speedup over Näıve
Problem Best Block Memory Read Computation

Size Size Traffic Rate
1283 4x4x128 0.29 1.33
2563 16x8x256 0.26 1.27
5123 16x4x512 0.16 1.67

Table 5.1
Time skewing for four iterations of varying problem sizes on the Itanium2.

6. Time Skewing Performance Model. We now develop a performance model
to identify an optimal blocking size for a time skewed stencil calculation. Having an
effective model obviates the need to conduct an exhaustive search across all block
sizes, as was performed in the previous section. Additionally, an analytical model
allows us to gain greater insight into potential bottlenecks and architectural behav-
iors. For instance, identifying whether performance is computation or memory bound
allows the appropriate optimization strategies to be applied.

6.1. Modeling Cache Misses. First, we examine the case where the stencil
code is memory bound, by modeling the number of cache misses resulting from dif-
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Fig. 5.4. GFlop rates for time skewing, where each platform’s best block size was determined by
the fastest running time for four iterations. This is a 2563 problem with constant boundaries. Note
that this chart shows performance per iteration, not average over all iterations, and that Power5
experiments use xlf.

ferent cache block sizes. For each cache block, there are two sources of cache misses:
the misses from initial cache loading, and misses from shifting the block (when per-
forming multiple iterations). Cache misses are mostly compulsory during initial data
loading. Shifting the blocks, however, may cause capacity misses since blocks are
always shifted towards the completed portion of the grid; thus, if the cache is large
enough, these misses can be avoided.

Our performance model categorized cache misses as being streaming or non-
streaming (as described for the STriad microbenchmark in Section 4.1). When stream-
ing through memory, prefetch engines (if present) will retrieve the next cache line in
advance. As a result, loading a successive cache line will typically be a fast op-
eration. Non-streaming cache misses, on the other hand, occur when loading non-
adjacent cache lines. In this case, prefetch engines are usually not useful, and these
misses become more expensive. Our model differentiates between streaming and non-
streaming cache misses, assigning them different costs based on the two-point STriad
microbenchmark. However, both streaming and non-streaming cache misses are equiv-
alent in terms of the volume of memory read traffic.

As explained in Section 3.2, optimized cache blocking strategies do not cut in the
contiguous memory dimension. Our model also assumes that, like in the time skewing
algorithm, all the iterations are completed for one cache block before proceeding to the
next block. In addition, we assume a 7-point 3D stencil on the source grid is written
to a single point in the target grid. Note that the this 7-point stencil simultaneously
utilizes three planes of the source grid.

Based on these assumptions, we can divide the first iteration misses into five
cases, as shown in Figure 6.1. Note that the first three cases are preferable, since they
can reuse data across iterations, while the final two cases cannot benefit from data
reuse. Thus we can optimize performance by choosing block sizes that avoid these
undesirable cases.

In all of the first three cases, there will be compulsory cache misses from initially
loading the current source and target cache blocks. However, the cases vary in how
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Fig. 6.1. The different cases for the time skewing performance model. Each case should be
considered only after the previous (lower-numbered) cases are ruled out. In the diagram, the current
block is indicated by a thick black line surrounding it, and areas that are loaded due to shifting are
indicated by diagonal lines. In addition, the colors represent the following: purple blocks may or
may not be in cache, dark blue blocks must be in cache, red indicates misses in the current block,
green indicates hits in the current block, and the light blue areas have not yet been traversed.

many misses result from the shifting. In the first case, one plane of cache blocks from
each array fits into cache. This scenario results in the fewest cache misses, since two
sides of the source block are still in cache as the current blocks are updated and there
no cache misses from shifting. In the second case, the current and previous blocks
from each array fit into cache. Under these circumstances, only one side of the source
block is still in cache, so shifting only causes cache misses in one direction. In the
third case only the current source and target blocks are kept resident in cache, thus
shifting causes cache misses in two directions.

The final two cases do not reuse data across multiple iterations, thereby defeating
the main thrust of cache blocking. Consequently, these cases should be avoided. The
fourth case occurs when both blocks do not fit into cache, but at least three planes of
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the source block and one plane of the target block do. In this scenario, every point in
each grid will be brought into cache once per iteration. Finally, the fifth case occurs
when three planes of the source block and one plane of the target block do not fit into
cache. This exhibits the worst cache behavior, since each interior point in the source
block needs to be loaded into cache three times per iteration (once for each plane of
the 7-point stencil). Here there is no data reuse within a single iteration, let alone
across multiple iterations.

Having outlined the possible model scenarios, we now validate our model against
the actual memory read traffic. Figure 6.2(a) shows this comparison for the 3D
stencil computation on the Itanium2 using a 2563 problem size for one (top) and four
(bottom) iterations. Note that our memory read traffic model does not incorporate
prefetching, thus to make a fair comparison we deactivated the software prefetch
for the Itanium2 experiments. Additionally, we incorporated conflict misses into our
performance model as a cumulative Gaussian distribution that matched the data from
a simple microbenchmark. Observe that, while not perfect, the performance model
accurately predicts the actual memory read traffic for both one and four iterations of
the stencil computation. We now explore how to extend this memory traffic model to
predict the overall stencil running time.

6.2. Modeling Performance. Having developed a memory traffic model, we
now develop a model for compute-bound stencil computations, as (depending on the
block size) the overall runtime will be a combination of these two factors.

We first normalize by converting the memory read traffic into a running time.
This is done by using the STriad microbenchmark (described in Section 4.1) to deter-
mine the time for both a streaming and non-streaming cache miss. Combining this
with our cache miss model of Section 6.1 allows us to predict running times for stencil
codes that are memory-bound. Next, we develop a model for compute-bound stencils
by running multiple iterations over a small problem that fits into the processor’s L1
cache. Once the problem is loaded into cache during the first iteration, all subsequent
iterations are then processor bound. The computation rate for these processor-bound
iterations represents the maximum compute rate that can be achieved for this code.
The final step is to reconcile the memory-bound and processor-bound models so that
we reasonably predict the running time. For the predicted running time of the first it-
eration, the memory-bound model is always used, since the problem needs to be loaded
into cache. However, for subsequent iterations, the maximum of the two memory- and
compute-model overheads is chosen, since that will be the limiting factor.

Itanium2 results comparing actual and predicted runtimes for one (top) and four
(bottom) iterations are shown in Figure 6.2(b). Overall our model is reasonably
accurate in predicting overall running time for varying block sizes. Note that, as
expected, the runtime model is not as accurate as the memory traffic model. Since
the memory traffic model is used in creating the runtime model, errors present in the
memory model are propagated to the running time model, along with any additional
errors in the running time model itself.

Figure 6.3(a) and (b) presents a comparison of actual and predicted runtime on
the Opteron and Power5 (respectively), for one (top) and four (bottom) iterations.
Observe that our model generally predicts the runtime (and trends) of both systems
under varying blocking factors; although the model’s accuracy is lower on the Opteron
than for the Itanium2.

Turning to the Power5, we see that our performance model very accurately cap-
tures the actual runtime behavior of the stencil computation. However, contrary to
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(a)

(b)

Fig. 6.2. A comparison of the time skewing performance model against reality on the Itanium2.
The graphs show (a) main memory read traffic and (b) running times for a 2563 problem with
constant boundaries. In both pairs of graphs, the top graph shows data for one iteration, while the
bottom graph shows average data over four iterations. On all graphs, the x-axis shows the x and y-
dimensions of each plotted cache block size (the z-dimension, which is contiguous in memory, is not
shown because it is always uncut). The x-axis is ordered such that the block sizes are monotonically
increasing, and the vertical dotted lines divide areas of equal-sized cache blocks.
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(a)

(b)

Fig. 6.3. A comparison of the time skewing performance model against reality on non-Itanium
architectures. The graphs show running times on the (a) Opteron and (b) Power 5 for a 2563 problem
with constant boundaries. In both pairs of graphs, the top graph shows data for one iteration, while
the bottom graph shows average data over four iterations. On all graphs, the x-axis shows the x and
y-dimensions of each plotted cache block size (the z-dimension, which is contiguous in memory, is not
shown because it is always uncut). The x-axis is ordered such that the block sizes are monotonically
increasing, and the vertical dotted lines divide areas of equal-sized cache blocks.
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the other platforms in our study, the Power5 is insensitive to cache blocking for the
time skewed experiments, because here the stencil code is computationally bound.
This is due to the Power5 high memory bandwidth relative to its computational per-
formance (see Table 2.1). Note that, unlike the experiments of Section 3.2 where the
Power5 was sensitive to cache blocking, here we maximize stanza length by not cut-
ting (blocking) in the unit-stride dimension. This approach amortizes loop overheads
and enables more effective prefetching, thus more efficiently utilizing the available
memory bandwidth and increasing code performance.

7. Cache Oblivious Stencil Computations. Having examined and analyti-
cally modeled the well-established time skewing approach, we now explore alternative
methodologies for improving stencil computation performance. Unlike the cache-
aware time skewing approach, the cache oblivious stencil algorithm [5] leverages the
idea of combining temporal and spatial blocking by organizing the computation in a
manner that doesn’t require any explicit information about the cache hierarchy. The
algorithm considers an (n + 1)-dimensional spacetime trapezoid consisting of the n-
dimensional spatial grid together with an additional dimension in the time (or sweep)
direction. We briefly outline the recursive algorithm below; details can be found in [5].

Consider the simplest case, where a two-dimensional spacetime region is composed
of a one-dimensional space component (from x0 to x1) and a dimension of time (from
t0 to t1) as shown in Figure 7.1(a). This trapezoid shows the traversal of spacetime
in an order that respects the data dependencies imposed by the stencil, (i.e. which
points can be validly calculated without violating the data dependencies in spatial
and temporal dimensions).
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Fig. 7.1. (a) 2D trapezoid space-time region consisting of a 1D space component and 1D time
component, and an example of cache oblivious recursive (b) space cut and (c) time cut.

In order to recursively operate on smaller spacetime trapezoids, a cut is performed
in either the space or time dimension. That is, we cut an existing trapezoid either in
time or in space and then recursively call the cache oblivious stencil function to operate
on the two smaller trapezoids. Figure 7.1(b) demonstrates an example of a space cut.
Note that since the stencil spacetime trapezoid itself has a slope (dx0 and dx1), we
must preserve these dependencies when performing a space cut, as demonstrated in
Figure 7.1(b). The two newly-created trapezoids, T1 and T2, can now be further cut
in a recursive fashion. In addition, note that no point in the stencil computation of T1
depends on a point in T2, allowing T1 to be completely calculated before processing
T2.

Similarly, a recursive cut can also be taken in the time dimension, as shown in
Figure 7.1(c). Because the time dependencies are simpler, the cut divides the time
region (t0, t1) into (t0, tn) and (tn, t1) regions which are then operated on recursively.
Again, recall that no point in the T1 computational domain depends on a point in
T2. Note, however, that cutting in time does not in itself improve cache behavior;

22



1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 x 107

Iterations

Ca
ch

e 
M

iss
es

 

 
Cache Oblivious Misses
Naive Cache Misses

Student Version of MATLAB

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5 x 1010

Iterations

Cy
cle

s

 

 
Cache Oblivious Cycles
Naive Cycles

Student Version of MATLAB

Fig. 7.2. Performance of the initial cache oblivious implementation for a 2563 periodic prob-
lem on our Itanium2 test system showing (a) cache misses and (b) runtime cycles. Although the
algorithm reduces cache misses the performance worsens.

instead, it allows the algorithm to continue cutting in the space dimension by creating
two trapezoids that are shaped amenably for space cutting. The recursion calls the
function on smaller and smaller trapezoids until there is only one timestep in the
calculation, which is done in the usual fashion (using a loop from x0 to x1). The
multidimensional algorithm is similar, but attempts to cut in each space dimension
before cutting in time.

7.1. Cache Oblivious Performance. Performance results, in terms of cache
misses and cycles, for our initial implementation of the cache oblivious stencil algo-
rithm (based on the pseudocode in [5]) are shown in Figure 7.2(a) and (b). Although
the implementation successfully reduces the number of cache misses, the overall time-
to-solution is much slower for the cache oblivious code than for the näıve stencil
implementation.

In an attempt to mitigate this problem, we performed several optimizations on
the original version of the stencil code, including:

• Explicit inlining of the kernel. The original cache oblivious algorithm in [5]
performed a function call per point. Instead, we inlined the function.

• Using an explicit stack instead of recursion. Because the algorithm is not
tail-recursive, we could not completely eliminate recursion. Instead, we ex-
plicitly pushed and popped parameters on a user-controlled stack in place of
recursion. However, this did not yield a speedup on any of our test platforms.

• Cut off recursion early. Instead of recurring down to a single timestep, we stop
the recursion when the volume of the 3D trapezoid reaches an arbitrary value.
This optimization results in somewhat greater memory traffic when compared
to the original cache oblivious algorithm yet decreases overall runtime.

• Use indirection instead of modulo. We replaced the modulo in the original
algorithm with a lookup into a preallocated table to obtain indices into the
grid.

• Never cut in unit-stride dimension. Sections 3.2 and 4.3 showed that long
unit-stride accesses were important in achieving good performance. We pre-
serve the long unit-stride accesses by not cutting in space in the unit-stride
dimension. Although this raised total memory traffic, it substantially im-
proved overall performance.
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Fig. 7.3. Performance of optimized (non-periodic) cache oblivious implementation for a 2563

problem. Note that this chart shows average performance over the specified number of iterations.

A summary of the optimized cache-oblivious performance for one to four itera-
tions using constant (non-periodic) boundaries is shown in Figure 7.3. Observe that
on the Opteron, the cache oblivious and näıve implementations show similar perfor-
mance for a single iteration (since the cache oblivious approach essentially executes
the same code as the näıve case when there is a single iteration). At four iterations,
the cache oblivious methodology on the Opteron attains a performance improvement
of 2x compared with the näıve approach.

However, on the Itanium2 and Power5, the compiler-generated code for the cache
oblivious case performs poorly compared with the näıve version. This is apparent in
Figure 7.3, which shows that one iteration of cache oblivious and näıve stencil have
vastly different performance on these two platforms, although they essentially execute
the same source code†. As a result, the overall performance of the cache oblivious
implementation is much worse than the näıve case on the Itanium2 and Power5,
achieving approximately only 60% of the näıve runtime at four iterations, despite
reducing the overall main memory read traffic substantially. These results highlight
the potential limitations of the cache oblivious approach — despite several layers of
optimizations — due to (in part) the compiler’s inability to generate optimized code
for the complex loop structures required by the cache oblivious implementation.

8. Stencil Computations on Cell. Our final stencil implementation is written
for the Cell processor’s unconventional microarchitecture whose local store memory
is managed explicitly by software rather than depending on automatic cache manage-
ment policies implemented in hardware. This approach is in sharp contrast to the
cache oblivious algorithm as both cache blocking and local-store data movement are
explicitly managed by the programmer.

Before implementing the stencil algorithm on a Cell SPE, we examine some of the
algorithmic limitations. First, aggregate memory bandwidth for the Cell processor
is an astounding 25.6 GB/s. As each stencil operation requires at least 8 bytes to
be loaded and 8 bytes stored from DRAM, we can expect that performance will be
limited to at most 12.8 GFlop/s regardless of frequency. Second, we note that double

†The two versions calculate loop bounds slightly differently.
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precision performance is fairly weak. Each adjacent pair of stencil operations (16
flops) will require 7 SIMD floating point instructions, each of which stalls the SPE for
7 cycles. Thus peak performance per SPE will never surpass 1.04 GFlop/s @ 3.2 GHz.
With only 8 SPEs (8.36 GFlop/s), it will not be possible to fully utilize memory band-
width, and thus Cell, in double precision, will be heavily computationally bound when
performing only a single iteration. As a result, there is no benefit for time skewing in
double precision on a single Cell chip even at 3.2 GHz. It should be noted that in sin-
gle precision, the stencil algorithm on the Cell changes from computationally-bound
to memory-bound. This is because the 14x increase in computational performance
overwhelms the benefit of a 2x decrease in memory traffic.

8.1. Local Store Blocking. Any well-performing implementation on a cache-
less architecture must be blocked for the local store size. This paper implements a
more generalized version of the blocking presented in [16]. In this case, six blocked
planes must be stored simultaneously within a single SPE’s local store. Figure 8.1
presents a visualization of cache blocking and plane streaming. As with the previous
implementations discussed in this paper, we chose not to cut in the unit-stride di-
rection, and thus preserved long contiguous streams. A simple algebraic relationship
allows us to determine the maximum dimensions of a local store block:

8bytes ∗ 6planes ∗ (ZDimension + 2) ∗ (BlockSize + 2) < 224KB

For example, if the unit-stride dimension were 254, then the maximum block size
would be 16, and each plane including ghost zones would be 256x18. We found that
on Cell, performance is most consistent and predictable if the unit stride dimension
plus ghost zones are a multiple of 16.

8.2. Register Blocking. For each phase, the stencil operation must be per-
formed on every point in the current local store block. Instead of processing the plane
in “pencils”, we process it in “ribbons” where the ribbon width can easily hide any
functional unit latency. As Cell is heavily computationally bound, it is imperative
that the inner kernel be as fast as possible. As such, our implementation utilizes
SIMD intrinsics. This constituted about 150 lines for a software pipelined four wide
ribbon that is extruded in the unit stride dimension two elements (for SIMDization)
at a time. The resultant code requires about 56 cycles per pair of points. Although
this may sound high, it is important to keep in mind that 49 stall cycles are con-
sumed by double precision instructions. Thus, each pair of points only requires 7
cycles of overhead. It should be noted that for optimal performance, register blocking
necessitates that the y-dimension of the grid be divisible by four and the unit stride
dimension be even (neither of which is unreasonable).

8.3. Parallelization. Using the threaded approach to parallelization, we ob-
serve that each local store block is completely independent and presents no hazards
aside from those between time steps. Therefore assigning batches of local store blocks
to SPEs allows for simple and efficient parallelization on the Cell architecture. If,
however, the selected maximum block dimension leaves one or more SPEs heavily or
lightly loaded, the code will attempt to select the smallest block size (a single ribbon)
in order to minimize load imbalance. Thus for best performance, the y-dimension of
the grid should be divisible by four times the number of SPEs the code is run on.

8.4. Cell Performance. Cell results are detailed in Table 8.1, attaining im-
pressive performance of approximately 7 GFlop/s for the 3.2 GHz test system. Note
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Stream out planes to
target grid

Stream in planes
from source grid

Fig. 8.1. Cell’s blocking strategy is designed to facilitate parallelization, as such a single domain
is blocked to fit in the local store and have no intra-iteration dependencies. Planes are then streamed
into a queue containing the current time step, processed, written to a queue for the next time step,
and streamed back to DRAM.

that as unit stride dimension grows, the maximum local store block width shrinks.
However an inter-block ghost zone must be maintained. As such the ratio of bytes
transferred to stencils performed can increase significantly. Conversely, the explicitly
managed memory allows for the elimination of cache misses associated with writing
to the target grid (i.e. one less double must be loaded for each stencil operation).
Results show that Cell is heavily computationally bound even when performing just
one iteration at a time, and the potential impact of inefficient blocking is completely
hidden by the significantly improved memory efficiency and vastly improved memory
bandwidth. Comparing performance between the 2.4 GHz and 3.2 GHz machines
shows nearly linear scaling (relative to clock speed), confirming our the assertion that
the stencil code on the Cell is indeed computationally bound. It should be noted that
at 3.2 GHz, each tiny, low power SPE delivers 0.92 GFlop/s, which compares very
favorably to the far larger, and power hungry, Power5 processor.

GFlop/s GFlop/s Read memory traffic
Problem size @2.4GHz @3.2GHz per stencil (in bytes)
126x128x128 5.36 6.94 9.29
254x256x256 5.47 7.35 9.14
510x512x64* 5.43 N/A 12.42

Table 8.1
Performance characteristics using 8 SPEs. *There was insufficient memory on the prototype

blade to run the full problem, however performance remains consistent on the simulator.

8.5. Time Skewing. As described in Section 8 the stencil calculation is com-
putationally bound in double precision but memory bound in single precision. A four
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step time skewed version similar to the blocking algorithm developed by Sellappa and
Chatterjee [14] was demonstrated in [16]. Unlike the time skewing implementation
described earlier in this paper, the version on Cell was simplified to allow for paral-
lelization. In the 1D conceptualization, the Cell version overlaps trapezoids, where the
optimized version utilizes non-overlapping parallelograms. Although this is somewhat
less efficient since work is duplicated, the Cell delivers an impressive 49.1 GFlop/s at
2.4 GHz and a truly astounding 65.8 GFlop/s at 3.2 GHz for single precision stencils.

Our experiments have not yet explored the Cell blade, which consists of two
NUMA chip (16 SPE). In this configuration, each chip may access the DRAM di-
rectly attached to it at 25.6 GB/s (51.2 combined), but communication between chips
is substantially slower via the I/O bus. Thus, if memory affinity cannot be guaran-
teed (i.e. a single thread per blade), effective memory bandwidth will suffer greatly,
becoming the bottleneck. This may therefore presents an opportunity to fully utilize
the blade by performing two time skewing steps, and will be the subject of future
investigation.

9. Conclusion. Stencil-based computations are an important class of numerical
methods that are widely used in high-end scientific applications. Although these codes
are characterized by regular and predictable memory access patterns, the low compu-
tational intensity of the underlying algorithms results in surprisingly poor performance
on modern microprocessors. It is therefore imperative to effectively maximize cache
resources by tiling in both the spatial and temporal dimensions when possible.

In this paper we explored the impact of trends in memory subsystems on a variety
of stencil optimization techniques and developed performance models to analytically
guide our optimizations. Our work first examined stencil computations where, due
to computation between stencil sweeps, blocking is restricted to a single iteration
(i.e. only in the spatial direction). Results show that modern processors contain
relatively large on-chip caches in comparison to main memory size, meaning that
single-iteration cache blocking is now effective only for very large (sometimes unreal-
istic) problem sizes. We also observe that prefetching, both in hardware and software,
improves memory throughput for long stride-1 accesses, but also makes performance
more sensitive to discontinuities in the access patterns. Finally, we devised a sim-
ple analytical model for partial 3D blocking on stencil grids, which demonstrates the
importance of avoiding cache-blocking in the unit stride direction.

Our work then focused on optimizations that improve cache reuse by merging
together multiple sweeps over the computational domain, enabling multiple stencil
iterations to be performed on each cache-resident portion of the grid. These op-
timizations may be used on blocked iterative algorithms and other settings where
there is no other computation between stencil sweeps. We explored a combination of
software optimizations and hardware features to improve the performance of stencil
computations, including cache oblivious algorithms, (cache-aware) time skewed opti-
mizations, and the explicitly managed local-store of the Cell processor. Additionally,
we developed accurate performance models to analytically identify the optimal block-
ing schemes on cache-based architectures, without the need for exhaustively searching
the tile space.

A summary of our multiple-iteration results is presented in Figure 9.1(left). Ob-
serve that the cache oblivious approach is only effective at improving performance on
the Opteron. The poor results are partly due to the compiler’s inability to generate
optimized code for the complex loop structures required by the cache oblivious imple-
mentation. The performance problems remain despite several layers of optimization,
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Fig. 9.1. (left) GFlop rates and (right) percentage of algorithmic peak, for a 2563 problem with
constant boundaries. “Time Skewing (1 Iteration)” data is essentially space-only cache blocking.

Read Memory Traffic
Stencil Version Per Stencil (bytes)
Näıve 20.0
Cache Oblivious (4 Iter) 8.21
Time Skewed (1 Iter) 17.28
Time Skewed (4 Iter) 5.14
Cell 9.14

Table 9.1
Total main memory traffic per point for näıve, cache oblivious, and time skewing on the Ita-

nium2 as well as for Cell for a 2563 problem.

which include techniques to reduce function call overhead, eliminate modulo opera-
tions for periodic boundaries, take advantage of prefetching, and terminate recursion
early. Cache-aware algorithms that are explicitly blocked to match the hardware are
more effective, as can be seen in Figure 9.1(left) where time skewing consistently
outperforms the cache oblivious approach.

Another surprising result of our study is the lack of correlation between main
memory traffic and wallclock run time. Although cache oblivious algorithms reduce
misses (as seen in Table 9.1), they do not generally improve the overall run time.
Furthermore, some of the lower-level optimizations we implemented, such as never
cutting the unit-stride dimension, increase memory traffic while actually reducing the
time to solution. These optimizations, while reducing cache reuse, can prove advan-
tageous because they more effectively utilize the automatic hardware and software
prefetch facilities.

The most striking results in Figure 9.1(left) are for the Cell processor. Cell has a
higher off-chip bandwidth than the cache-based microprocessors (nearly 2× compared
to Power5), although Cell cannot take full advantage of that bandwidth due to the
handicapped double precision performance of the chip. Still, the explicit management
of memory through DMA operations on Cell proves to be a very efficient mechanism
for optimizing memory performance. For example, code that is written to explicitly
manage all of its data movement can eliminate redundant memory traffic due to
cache misses for stores. The performance of Cell relative to the other systems is
up to 7× faster and is limited by floating point speed rather than bandwidth. In
terms of percentage of algorithmic peak, Cell approaches an incredible 90% of peak,
as shown in Figure 9.1(right), while the best set of optimizations on the cache-based
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architectures are only able to achieve 54% of algorithmic peak. Thus Cell’s improved
performance is not just a result of higher peak memory bandwidth, but is also due
to the explicit control the programmer has over memory access as well as explicit
SIMDization via intrinsics.

Future work will continue our investigation of predictive performance models and
optimization techniques, with the long-term goal of developing automatic performance
tuners for a wide variety of stencil-based computations.
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