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ABSTRACT
We are witnessing a dramatic change in computer architecture due
to the multicore paradigm shift, as every electronic device from cell
phones to supercomputers confronts parallelism of unprecedented
scale. To fully unleash the potential of these systems, the HPC
community must develop multicore specific optimization method-
ologies for important scientific computations. In this work, we
examine sparse matrix-vector multiply (SpMV) – one of the most
heavily used kernels in scientific computing – across a broad spec-
trum of multicore designs. Our experimental platform includes
the homogeneous AMD dual-core and Intel quad-core designs, the
heterogeneous STI Cell, as well as the first scientific study of the
highly multithreaded Sun Niagara2. We present several optimiza-
tion strategies especially effective for the multicore environment,
and demonstrate significant performance improvements compared
to existing state-of-the-art serial and parallel SpMV implementa-
tions. Additionally, we present key insights into the architectural
tradeoffs of leading multicore design strategies, in the context of
demanding memory-bound numerical algorithms.

1. INTRODUCTION
Industry has moved to chip multiprocessor (CMP) system design

in order to better manage trade-offs among performance, energy ef-
ficiency, and reliability [5, 9]. However, the diversity of CMP so-
lutions raises difficult questions about how different designs com-
pare, for which applications each design is best-suited, and how to
implement software to best utilize CMP resources.

In this paper, we consider these issues in the design and im-
plementation of sparse matrix-vector multiply (SpMV) on several
leading CMP systems. SpMV is a frequent bottleneck in scientific
computing applications, and is notorious for sustaining low frac-
tions of peak processor performance. We implement SpMV for
one of the most diverse sets of CMP platforms studied in the exist-
ing HPC literature, including the homogeneous multicore designs
of the dual-socket × dual-core AMD Opteron X2 and the dual-
socket× quad-core Intel Clovertown, the heterogeneous local-store
based architecture of the STI Cell single-socket PlayStation 3 (PS3)
and dual-socket QS20 Cell Blade (containing six and eight cores
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per socket respectively), as well as the first scientific study of the
hardware-multithreaded single-socket × eight-core Sun Niagara2.
We show that our SpMV optimization strategies — explicitly pro-
grammed and tuned for these multicore environments — attain sig-
nificant performance improvements compared to existing state-of-
the-art serial and parallel SpMV implementations [20].

Additionally, we present key insights into the architectural trade-
offs of leading multicore design strategies, and their implications
for SpMV. For instance, we quantify the extent to which memory
bandwidth may become a significant bottleneck as core counts in-
crease, motivating several algorithmic memory bandwidth reduc-
tion techniques for SpMV. We also find that using multiple cores
provides considerably higher speedups than single-core code and
data structure transformations alone. This observation implies that
— as core counts increase — CMP system design should empha-
size bandwidth and latency tolerance over single-core performance.
Finally, we show that, in spite of relatively slow double-precision
arithmetic, the STI Cell provides significant advantages in terms
of absolute performance and power-efficiency, compared with the
other multicore architectures in our test suite.

2. SPMV OVERVIEW
SpMV dominates the performance of diverse applications in sci-

entific and engineering computing, economic modeling and infor-
mation retrieval; yet, conventional implementations have histori-
cally been relatively poor, running at 10% or less of machine peak
on single-core cache-based microprocessor systems [20]. Com-
pared to dense linear algebra kernels, sparse kernels suffer from
higher instruction and storage overheads per flop, as well as indirect
and irregular memory access patterns. Achieving higher perfor-
mance on these platforms requires choosing a compact data struc-
ture and code transformations that best exploit properties of both
the sparse matrix — which may be known only at run-time — and
the underlying machine architecture. This need for optimization
and tuning at run-time is a major distinction from the dense case.

We consider the SpMV operation y ← y + Ax, where A is
a sparse matrix, and x, y are dense vectors. We refer to x as the
source vector and y as the destination vector. Algorithmically, the
SpMV kernel is as follows, (i, j): ∀ai,j 6= 0 : yi ← yi + ai,j · xj ,
where ai,j denotes an element of A. SpMV has a low compu-
tational intensity, given that ai,j is touched exactly once, and on
cache-based machines, one can only expect to reuse elements of
x and y. If x and y are maximally reused (i.e., incur compulsory
misses only), then reading A should dominate the time to execute
SpMV. Thus, we seek data structures for A that are small and en-
able temporal reuse of x and y.

The most common data structure used to store a sparse matrix for
SpMV-heavy computations is compressed sparse row (CSR) for-



// Basic SpMV implementation,
// y <- y + A*x, where A is in CSR.
for (i = 0; i < m; ++i) {

double y0 = y[i];
for (k = ptr[i]; k < ptr[i+1]; ++k)

y0 += val[k] * x[ind[k]];
y[i] = y0;

}

Figure 1: Compressed sparse row (CSR) storage, and a basic
CSR-based SpMV implementation.

mat, illustrated in Figure 1. The elements of each row of A are
shaded using the same color. Each row of A is packed one after
the other in a dense array, val, along with a corresponding integer
array, ind, that stores the column indices of each stored element.
Thus, every non-zero value carries a storage overhead of one ad-
ditional integer. A third integer array, ptr, keeps track of where
each row starts in val, ind. We show a naïve implementation of
SpMV for CSR storage in the bottom of Figure 1. This implemen-
tation enumerates the stored elements of A by streaming both ind
and val with unit-stride, and loads and stores each element of y
only once. However, x is accessed indirectly, and unless we can
inspect ind at run-time, it is difficult or impossible to reuse the
elements of x explicitly.

When the matrix has dense block substructure, as is common
finite element method-based applications, practitioners employ a
blocked variant of CSR (BCSR), which stores a single column in-
dex for each r × c block, rather than one per non-zero as in CSR.

2.1 OSKI, OSKI-PETSc, and Related Work
We compare our multicore SpMV optimizations against OSKI, a

state-of-the-art collection of low-level primitives that provide auto-
matically tuned computational kernels on sparse matrices [20]. The
motivation for OSKI is that a non-obvious choice of data structure
can yield the most efficient implementations due to the complex be-
havior of performance on modern machines. OSKI hides the com-
plexity of making this choice, using techniques extensively doc-
umented in the SPARSITY sparse-kernel automatic-tuning frame-
work [10]. These techniques include register- and cache-level block-
ing, exploiting symmetry, multiple vectors, variable block and di-
agonal structures, and locality-enhancing reordering.

OSKI is a serial library, but is being integrated into higher-level
parallel linear solver libraries, including PETSc [3] and Trilinos [24].
This paper compares our multicore implementations against a ge-
neric “off-the-shelf” approach that uses our own experimental im-
plementation of PETSc’s distributed memory SpMV in which we
replace the serial SpMV with calls to OSKI (referred to as OSKI-
PETSc). We use MPICH 1.2.7p1 configured to use the shared-
memory (ch_shmem) device, where message passing is replaced
with memory copying. PETSc’s default SpMV uses a block-row
partitioning with equal numbers of rows per process.

The literature on optimization and tuning of SpMV is extensive.
A number consider techniques that compress the data structure by
recognizing patterns in order to eliminate the integer index over-
head. These patterns include blocks [10], variable or mixtures
of differently-sized blocks [6] diagonals, which may be especially

well-suited to machines with SIMD and vector units [19], dense
subtriangles arising in sparse triangular solve [22], and symme-
try [11], and combinations.

Others have considered improving spatial and temporal locality
by rectangular cache blocking [10], diagonal cache blocking [16],
and reordering the rows and columns of the matrix. Besides clas-
sical bandwidth-reducing reordering techniques [15], recent work
has proposed sophisticated 2-D partitioning schemes with theo-
retical guarantees on communication volume [18], and traveling
salesman-based reordering to create dense block substructure [14].

Higher-level kernels and solvers provide opportunities to reuse
the matrix itself, in contrast to non-symmetric SpMV. Such kernels
include block kernels and solvers that multiply the matrix by multi-
ple dense vectors [10], AT Ax [21], and matrix powers [19]. Better
low-level tuning of the kind proposed in this paper, even applied
to just a CSR SpMV, are also possible. Recent work on low-level
tuning of SpMV by unroll-and-jam [12], software pipelining [6],
and prefetching [17] influence our work. See [19] for an extensive
overview of SPMV optimization techniques.

3. EXPERIMENTAL TESTBED
Our work examines several leading CMP system designs in the

context of the demanding SpMV algorithm. In this section, we
briefly describe the evaluated systems, each with its own set of ar-
chitectural features: the dual-socket × dual-core AMD Opteron
X2; the dual-socket× quad-core Intel Clovertown; the single-socket
× eight-core hardware-multithreaded Sun Niagara2; and the het-
erogeneous STI Cell processor configured both as the single-socket
six-core (six SPEs) PS3 as well as the dual-socket× eight-core Cell
blade. Overviews of the architectural configurations and character-
istics appear in Table 1 and Figure 2. Note that the sustained sys-
tem power data were gathered by actual measurements via a digital
power meter. Additionally, we present an overview of the evaluated
sparse matrix suite.

3.1 AMD X2 Dual-core Opteron
The Opteron 2214 is AMD’s current dual-core processor offer-

ing. Each core operates at 2.2 GHz, can fetch and decode three x86
instructions per cycle, and execute 6 micro-ops per cycle. The cores
support 128b SSE instructions in a half-pumped fashion, with a sin-
gle 64b multiplier datapath and a 64b adder datapath, thus requiring
two cycles to execute a SSE packed double-precision floating point
multiply. The peak double-precision floating point performance is
therefore 4.4 GFlop/s per core or 8.8 GFlop/s per socket.

The Opteron contains a 64KB 2-way L1 cache, and a 1MB 4-way
victim cache; victim caches are not shared among cores, but are
cache coherent. All hardware prefetched data is placed in the vic-
tim cache of the requesting core, whereas all software prefetched
data is placed directly into the L1. Each socket includes its own
dual-channel DDR2-667 memory controller as well as a single cache-
coherent HyperTransport (HT) link to access the other sockets cache
and memory. Each socket can thus deliver 10.6 GB/s, for an aggre-
gate NUMA (non-uniform memory access) memory bandwidth of
21.3 GB/s for the dual-core, dual-socket SunFire X2200 M2 exam-
ined in our study.

3.2 Intel Quad-core Clovertown
Clovertown is Intel’s foray into the quad-core arena. Reminis-

cent of their original dual-core designs, two dual-core Xeon chips
are paired onto a single multi-chip module (MCM). Each core is
based on Intel’s Core2 microarchitecture (Woodcrest), running at
2.33 GHz, can fetch and decode four instructions per cycle, and
can execute 6 micro-ops per cycle. There is both a 128b SSE adder



Core AMD Intel Sun STI
Architecture Opteron X2 Clovertown Niagara2 Cell SPE

super scalar super scalar MT SIMDType
out of order out of order dual issue∗ dual issue

Clock (GHz) 2.2 2.3 1.4 3.2
L1 DCache 64KB 32KB 8KB —
Local Store — — — 256KB

DP flops/cycle 2 4 1 4/7
DP GFlop/s 4.4 9.33 1.4 1.83

System Opteron X2 Clovertown Niagara2 PS3 Blade
# Sockets 2 2 1 1 2

Cores/Socket 2 4 8 6(+1) 8(+1)
4MB 16MB 4MBL2 cache

(1MB/core) (4MB/2cores) (shared)
— —

DP GFlop/s 17.6 74.7 11.2 11 29
DDR2 FBDIMM FBDIMM XDR XDR

667 MHz 667 MHz 667 MHz 1.6 GHz 1.6 GHzDRAM Type
2×128b 4×64b 4×128b 1×128b 2×128b

DRAM
(read GB/s) 21.3 21.3 42.6 25.6 51.2

Ratio
Flop:Byte 0.83 3.52 0.26 0.43 0.57

Max Socket
Pwr (Watts) 190 160 84 <100 200

Sustained Sys
Pwr (Watts) 230 330 350 195 285

Table 1: Architectural summary of AMD Opteron X2, Intel
Clovertown, Sun Niagara2, and STI Cell multicore chips. Sus-
tained power measured via digital power meter. ∗Each of the
two thread groups may issue up to one instruction

(two 64b floating point adders) and a 128b SSE multiplier (two 64b
multipliers), allowing each core to support 128b SSE instructions
in a fully-pumped fashion. The peak double-precision performance
per core is therefore 9.3 GFlop/s.

Each Clovertown core includes a 32KB, 8-way L1 cache, and
each chip (two cores) has a shared 4MB, 16-way L2 cache. Each
socket has a single front side bus (FSB) running at 1.33 GHz (deliv-
ering 10.66 GB/s) connected to the Blackford chipset. In our study,
we evaluate the Dell PowerEdge 1950 dual-socket platform, which
contains two MCMs with dual independent busses. Blackford pro-
vides the interface to four fully buffered DDR2-667 DRAM chan-
nels that can deliver an aggregate read memory bandwidth of 21.3
GB/s. Unlike the AMD X2, each core may activate all four chan-
nels, but will likely never attain the peak bandwidth. The full sys-
tem has 16MB of L2 cache and 74.67 GFlop/s peak performance.

3.3 Sun Niagara2
The Sun UltraSparc T2 “Niagara2” eight-core processor presents

an interesting departure from mainstream multicore chip design.
Rather than depending on four-way superscalar execution, each of
the 8 strictly in-order cores supports two groups of four hardware
thread contexts (referred to as Chip MultiThreading or CMT) to
provide a total of 64 simultaneous hardware threads per socket.
Each core may issue up to one instruction per thread group assum-
ing there is no resource conflict. The CMT approach is designed
to tolerate instruction, cache, and DRAM latency through fine-
grained multithreading, while consuming relatively little power:
84 Watts per socket at 1.4 GHz.
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Figure 2: Architectural overview of (a) dual-socket× dual-core
AMD Opteron X2 (b) dual-socket × quad-core Intel Clover-
town, (c) single-socket × eight-core Sun Niagara2 (d) single-
socket× six-core STI PS3 and (e) dual-socket× eight-core STI
Cell.



Although the original Niagara only offered a single non-pipelined
floating point unit that was shared by all of the processor cores, Ni-
agara2 instantiates one FPU per core (shared among 8 threads). Our
study examines the Sun UltraSparc T5120 with a single T2 proces-
sor operating at 1.4 GHz. It has a peak performance of 1.4 GFlop/s
(no FMA) performance per core (11.2 GFlop/s per socket). Each
core has access to its own private 8KB write-through L1 cache,
but is connected to a shared 16-way set-associative L2 cache via
a 179 GB/s(read) on-chip crossbar switch. The socket is fed by
four dual channel 667 MHz FBDIMM memory controllers that de-
liver an aggregate bandwidth of 64 GB/s (42.6 GB/s for reads, and
21.3 GB/s for writes) to the L2. Niagara has no hardware prefetch-
ing and software prefetching only places data in the L2. Although
multithreading may hide instruction and cache latency, it may not
be able to fully hide DRAM latency.

3.4 STI Cell
The Sony Toshiba IBM (STI) Cell processor is the heart of the

Sony PlayStation 3 (PS3) video game console, whose aggressive
design is intended to meet the demanding computational require-
ments of video games. Cell adopts a heterogeneous approach to
multicore, with one conventional processor core (Power Processing
Element / PPE) to handle OS and control functions, combined with
up to eight simpler SIMD cores (Synergistic Processing Elements /
SPEs) for the computationally intensive work [7, 8]. The SPEs dif-
fer considerably from conventional core architectures due to their
use of a disjoint software controlled local memory instead of the
conventional hardware-managed cache hierarchy employed by the
PPE. Rather than using prefetch to hide latency, the SPEs have
efficient software-controlled DMA engines which asynchronously
fetch data from DRAM into the 256KB local store. This approach
allows more efficient use of available memory bandwidth than is
possible with standard prefetch schemes on conventional cache hi-
erarchies, but also makes the programming model more complex.
In particular, the hardware provides enough concurrency to satisfy
Little’s Law [2] and conflict misses, while potentially eliminating
write fills, however capacity misses must be handled in software.

Each SPE is a dual issue SIMD architecture: one slot can issue
only computational instructions, whereas the other can only issue
loads, stores, permutes and branches. This make instruction issue
VLIW-like. Each core includes a half-pumped partially pipelined
FPU. In effect, each SPE can execute one double-precision SIMD
instruction every 7 cycles, for a peak of 1.8 GFlop/s per SPE —
clearly far less than the AMD X2’s 4.4 GFlop/s or the Xeon’s 9.3
GFlop/s. In this study we examine two variants of the Cell proces-
sors: the PS3 containing a single socket with six SPEs (11 GFlop/s
peak), and the QS20 Cell blade comprised of two sockets with eight
SPEs each (29.2 GFlop/s peak). Each socket has its own dual chan-
nel XDR memory controller delivering 25.6 GB/s. The Cell blade
connects the chips with a separate coherent interface delivering up
to 20 GB/s; thus, like the AMD X2 system, the Cell blade is ex-
pected show strong variations in sustained bandwidth if NUMA is
not properly exploited.

3.5 Evaluated Sparse Matrices
To evaluate the performance of our SpMV multicore platforms

suite, we conduct experiments on 14 sparse matrices from a wide
variety of actual applications, including finite element method-based
modeling, circuit simulation, linear programming, a connectivity
graph collected from a partial web crawl, as well as a dense matrix
stored in sparse format. These matrices cover a range of properties
relevant to SpMV performance, such as overall matrix dimension,
non-zeros per row, the existence of dense block substructure, and
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Figure 3: Overview of sparse matrices used in evaluation study.

degree of non-zero concentration near the diagonal. An overview
of their salient characteristics appears in Figure 3.

4. SPMV OPTIMIZATIONS
In this section, we discuss our considered set of SpMV tuning

optimizations, in the order in which they are applied during auto-
tuning. These tuning routines are designed to be effective on both
conventional cache-based multicores as well as the Cell architec-
ture; as a result, several optimizations were restricted to facilitate
Cell programming. The complete set of optimizations can be clas-
sified into three areas: low-level code optimizations, data structure
optimizations (including the requisite code transformations), and
parallelization optimizations. The first two largely address single-



core performance, while the third examines techniques to maximize
multicore performance in a both single- and multi-socket environ-
ments. We examine a wide variety of optimizations including soft-
ware pipelining, branch elimination, SIMD intrinsics, pointer arith-
metic, numerous prefetching approaches, register blocking, cache
blocking, TLB blocking, block-coordinate (BCOO) storage, smaller
indices, threading, row parallelization, NUMA-aware mapping, pro-
cess affinity, and memory affinity. A summary of these optimiza-
tions appears in Table 2.

Most of these optimizations complement those available in OSKI.
In particular, OSKI includes register blocking and single-level cache
or TLB blocking, but not with reduced index sizes. OSKI also con-
tains optimizations for symmetry, variable block size and splitting,
and reordering optimizations, which we do not exploit in this paper
(e.g., we do not exploit symmetry in our experiments). Except for
unrolling and use of pointer arithmetic, OSKI does not explicitly
control low-level instruction scheduling and selection details, such
as software pipelining, branch elimination, and SIMD intrinsics,
relying instead on the compiler back-end. Finally, we apply the op-
timizations in a slightly different order to facilitate parallelization
and Cell development.

Explicit low-level code optimizations, including SIMD intrin-
sics, can be very beneficial on each architecture. Applying these
optimizations helps ensure that the cores are bound by memory
bandwidth, rather than by instruction latency and throughput. Un-
fortunately, implementing them can be extremely tedious and time-
consuming. We thus implemented a Perl-based code generator that
produces the innermost SpMV kernels using the subset of opti-
mizations appropriate for each underlying system. Our generators
helped us explore the large optimization space effectively and pro-
ductively — less than 500 lines of generators produced more than
30,000 lines of optimized kernels.

4.1 Thread Blocking
The first phase in the optimization process is exploiting thread-

level parallelism. The matrix is partitioned into NThreads thread
blocks, which may in turn be individually optimized. There are
three approaches to partitioning the matrix: by row blocks, by col-
umn blocks, and into segments. An implementation could use any
or all of these, e.g., 3 row thread blocks each of 2 column thread
blocks each of 2 thread segments. In both row and column paral-
lelization, the matrix is explicitly blocked to exploit NUMA sys-
tems. To facilitate implementation on Cell, the granularity for par-
titioning is a cache line.

Our implementation attempts to statically load balance SpMV
by approximately equally dividing the number of nonzeros among
threads, as the transfer of this data accounts for the majority of time
on matrices whose vector working sets fit in cache. It is possible to
provide feedback and repartition the matrix to achieve better load
balance, and a thread-based segmented scan could achieve some
benefit without reblocking the matrix. In this paper, we only ex-
ploit row partitioning, as column partitioning showed little poten-
tial benefit; future work will examine segmented scan.

To ensure a fair comparison, we explored a variety of barrier
implementations and utilized the fastest implementation on each
architecture. For example, the emulated Pthreads barrier (with mu-
texes and broadcasts) scaled poorly beyond 32 threads and was
therefore replaced with a simpler version where only thread 0 is
capable of unlocking the other threads.

Finally, for the two NUMA architectures in our study, Cell and
AMD X2, we apply NUMA-aware optimizations in which we ex-
plicitly assign each thread block to a specific core and node. To
ensure that both the process and its associated thread block are

mapped to a core (process affinity) and the DRAM (memory affin-
ity) proximal to it, we used the NUMA routines that are most appro-
priate for a particular architecture and OS. The libnuma library
performed well on the Cell, but showed poor behavior on the AMD
X2; we thus implemented AMD X2 affinity via the Linux sched-
uler. Native Solaris scheduling routines were used on the Niagara2.
We highlight that benchmarking with the OS schedulers must be
handled carefully, as the mapping between processor ID and phys-
ical ID is unique to each machine. For instance, the socket ID is
specified by the least-significant bit on the evaluated Clovertown
system and the most-significant bit on the AMD X2.

Note that our set of SpMV optimizations, discussed in the sub-
sequent subsections, are performed on thread blocks individually.

4.2 Cache and Local Store Blocking
For sufficiently large matrices, it is not possible to keep the source

and destination vectors in cache, potentially causing numerous ca-
pacity misses. Prior work shows that explicitly cache blocking
the nonzeros into tiles (≈ 1K × 1K) can improve SpMV perfor-
mance [10,13]. We extend this idea by accounting for cache utiliza-
tion, rather than only spanning a fixed number of columns. Specif-
ically, we first quantify the number of cache lines available for
blocking, and span enough columns such that the number of source
vector cache lines touched is equal to those available for cache
blocking. Using this approach allows each cache block to touch
the same number of cache lines, even though they span vastly dif-
ferent numbers of columns. We refer to this optimization as sparse
cache blocking, in contrast to the classical dense cache blocking
approach. Unlike OSKI, where the block size must be specified or
searched for, we use a heuristic to cache block.

Given the total number of cache lines available, we specify one
of three possible blocking strategies: block neither the source nor
the destination vector, block only the source vector, or block both
the source and destination vectors. In the second case, all cache
lines can be allocated to blocking the source vector. However, when
implementing the third strategy, the cache needs to store the poten-
tial row pointers as well as the source and destination vectors; we
thus allocated 40%, 40%, and 20% of the cache lines to the source,
destination, and row pointers respectively.

Although these three options are explored for cache-based sys-
tems, the Cell architecture always requires cache blocking (i.e.,
blocking for the local store) for both the source and destination
vector — this Cell variant requires cache blocking for DMA. To
facilitate the process, a DMA list of all source vector cache lines
touched in a cache block is created.

This list is used to gather the stanzas of the source vector and
pack them contiguously in the local store via the DMA get list
command. This command has 2 constraints: each stanza must be
less than 16KB, and there can be no more than 2K stanzas. Thus,
the sparsest possible cache block cannot touch more than 2K cache
lines, and in the densest case, multiple contiguous stanzas are re-
quired. (We unify the code base of the cache-based and Cell imple-
mentations by treating cache-based machines as having large num-
bers of stanzas and cache lines.) Finally, since the DMA get list
packs stanzas together into the disjoint address space of the local
store, the addresses of the source vector block when accessed from
an SPE are different than when accessed from DRAM. As a results,
the column indices must be re-encoded to be local store relative.

4.3 TLB Blocking
Prior work showed that TLB misses can vary by an order of mag-

nitude depending on the blocking strategy, highlighting the impor-
tance of TLB blocking [13]. Thus, on the three evaluation platforms



Code Optimization Data Structure Optimization Parallelization Optimization
x86 N2 Cell x86 N2 Cell x86 N2 Cell

SIMDization X N/A X BCSR X X Row Threading X4 X4 X5

Software Pipelining X BCOO X X X Process Affinity X6 X8 X7

Branchless X10 X 16-bit indices X X X Memory Affinity X6 N/A X7

Pointer Arithmetic X10 32-bit indices X X N/A
PF/DMA1 Values & Indices X X X Register Blocking X X X9

PF/DMA1 Pointers/Vectors X Cache Blocking X2 X2 X3

inter-SpMV data structure caching X X TLB Blocking X X

Table 2: Overview of SpMV optimizations attempted in our study for the x86 (AMD X2 and Clovertown), Niagara2, and Cell
architectures. Notes: 1PF/DMA (Prefetching or Direct Memory Access), 2sparse cache blocking, 3sparse cache blocking for DMA,
4Pthreads, 5libspe 2.0, 6via Linux scheduler, 7via libnuma, 8via Solaris bind, 92x1 and larger, 10implemented but resulted in no
significant speedup.

running Linux with 4KB pages for heap allocation (Niagara2 run-
ning Solaris uses 256MB pages), we heuristically limit the num-
ber of source vector cache lines touched in a cache block by the
number of unique pages touched by the source vector. Rather than
searching for the TLB block size, which would require costly re-
encoding of the matrix, we explore two tuning settings: no TLB
blocking and using the heuristic. Note that for the AMD X2 we
found it beneficial to block for the L1 TLB (each cache block is
limited to touching 32 4KB pages of the source vector).

4.4 Register Blocking and Format Selection
The next phase of our implementation is to optimize the SpMV

data format. For memory-bound multicore applications, we believe
that minimizing the memory footprint is more effective than im-
proving single thread performance. Indeed, technology trends in-
dicate that it is easier and more cost effective to double the number
of cores rather than double the DRAM bandwidth [1]; thus we ex-
pect future multicore codes to become increasingly memory bound.
In a naïve coordinate approach, 16 bytes of storage are required for
each matrix nonzero: 8 bytes for the double-precision nonzero, plus
4 bytes each for row and column coordinates. Our data structure
transformations can, for some matrices, cut these storage require-
ments nearly in half. A possible future optimization, exploiting
symmetry, could cut the storage in half again.

Register blocking groups adjacent nonzeros into rectangular tiles,
with only one coordinate index per tile [10]. Since not every value
has an adjacent nonzero, it is possible to store zeros explicitly in
the hope that the 8 byte deficit is offset by index storage savings on
many other tiles. For this paper we limit ourselves to power-of-two
block sizes up to 8× 8 (and on Cell, 8× 2), to facilitate SIMDiza-
tion, minimize register pressure, and allow a footprint minimizing
heuristic to be applied. Instead of searching for the best register
block, we implement a two-step heuristic. First, we register block
each cache block using 8 × 8 tiles. Then, for each cache block,
we inspect each 8 × 8 tile hierarchically in powers of two and de-
termine how many tiles are required for each r × c power-of-two
blocking, (i.e., we count the number of tiles for 8× 4 tiles, then for
8× 2 tiles, then for 8× 1 tiles, and so on).

For cache block encoding, we consider block coordinate (BCOO)
and block compressed sparse row (BCSR; Section 2) formats. BCSR
requires a pointer for every register blocked row in the cache block
and a single column index for each register block, whereas BCOO
requires 2 indices (row and column) for each register block, but no
row pointers. The BCSR can be further accelerated either by spec-
ifying the first and last non-empty row, or by using a generalized
BCSR format that stores only non-empty rows while associating
explicit indices with either each row or with groups of consecu-
tive rows (both available in OSKI). We also select the appropriate

r × c × format combination that minimizes each cache block’s
footprint. Thus, each cache block (not just each thread) may have
a unique encoding.

As Cell is a SIMD architecture, it is expensive to implement 1x1
blocking. In addition, since Cell streams nonzeros into buffers [25],
it is far easier to implement BCOO than BCSR. Thus to maximize
our productivity, for each architecture we specify the minimum and
maximum r and c, as well as a mask that enables each format.
On Cell, this combination of configuration variables requires block
sizes of at least 2 × 1, which will tend to increase memory traf-
fic requirements and thereby potentially degrade Cell performance,
while facilitating productivity.

4.5 Index Size Selection
As a cache block may span fewer than 64K columns, it is pos-

sible to use memory efficient indices for the columns (and rows)
using 16b integers. Doing so provides a 20% reduction in mem-
ory traffic for some matrices, which could translate up to a 20%
increase in performance. On Cell, no more than 32K unique dou-
bles can reside in the local store at any one time, and unlike caches,
this address space is disjoint and contiguous. Thus, on Cell we can
always use 16b indices, even if the entire matrix in DRAM spans
1 million columns. This is the first advantage our implementation
conferred on the Cell. Note that our technique is less general but
simpler than a recent index compression approach [23].

4.6 Architecture Specific Kernels
The SpMV multithreaded framework is designed to be modular.

Each architecture specifies which of the previously described op-
timizations are implemented in a configuration file. The optimiza-
tion routines then block the matrix accordingly and the execution
routines take this information to call the corresponding kernels. To
maximize productivity, all kernels as well as the unique configura-
tion file for each architecture are generated from a single Perl script.
Each kernel implements a sparse cache block matrix multiplica-
tion for the given encoding (register blocking, index size, format).
There is no restriction on how this functionality is implemented,
thus the generator is custom tailored for each architecture.

4.7 SIMDization
The Cell SPE ISA is rather restrictive compared to conventional

RISC instruction sets. All operations are on 128 bits (quadword) of
data, all loads are of 16 bytes and must be 16 byte aligned. There
are no double, word, half or byte loads. When a scalar is required it
must be moved from its position within the quadword to a so-called
preferred slot. Thus, the number of instructions required to imple-
ment a given kernel on Cell far exceeds that of other architectures,
despite the computational advantage of SIMD. To overcome certain



limitations in the compiler’s (xlc’s) code generation, our Cell ker-
nel generator explicitly produces SIMDization intrinsics. The xlc
static timing analyzer provides information on whether cycles are
spent in instruction issue, double-precision issue stalls, or stalls for
data hazards, thus simplifying the process of kernel optimization.

In addition, we explicitly implement SSE instructions on the x86
kernels. Use of SSE made no performance difference on the AMD
X2, but resulted in significant improvements on the Clovertown.
However, when the optimal gcc tuning options are applied, SSE
optimized code was only slightly faster than straight C code. Pro-
grams produced by the Intel compiler (icc 9.1) saw little benefit
from SSE instructions or compiler tuning options.

4.8 Loop Optimizations
A conventional CSR-based SpMV (Figure 1) consists of a nested

loop, where the outer loop iterates across all rows and the inner
loop iterates across the nonzeros of each row via a start and end
pointer. However, the CSR data storage is such that the end of one
row is immediately followed by the beginning of the next, meaning
that the column and value arrays are accessed in a streaming (unit-
stride) fashion. Thus, it is possible to simplify the loop structure by
iterating from the first nonzero to the last; although this approach
still requires a nested loop, it includes only a single loop variable
and often results in higher performance.

Additionally, since our format uses a single loop variable cou-
pled with nonzeros that are processed in-order, we can explicitly
software pipeline the code to hide any further instruction latency.
In our experience, this technique is useful on in-order architectures
like Cell, but is of little value on the out-of-order superscalars.

Finally, the code can be further optimized using a branchless im-
plementation, which is in effect a segmented scan of vector-length
equal to one [4]. On Cell, we implement this technique using
the select bits instruction. A branchless BCOO implemen-
tation simply requires resetting the running sum (selecting between
the last sum or next value of Y ). Once again, we attempted this
branchless implementations via SSE, cmov, and jumps, but with-
out Cell’s xlc static timing analyzer, could not determine why no
performance improvement where seen.

4.9 Software Prefetching
We also consider explicit prefetching, using our code generator

to tune the prefetch distance from 0 (no prefetching) to 1024 bytes.
The x86 architectures rely on hardware prefetchers to overcome
memory latency, but prefetched data is placed in the L2 cache, so
L2 latency must still be hidden. Although Clovertown has a hard-
ware prefetcher to transfer data from the L2 to the L1, software
prefetch via intrinsics provides an effective way of not only placing
data directly into the L1 cache, but also tagging it with the appro-
priate temporal locality. Doing so reduces L2 cache pollution, since
nonzero values or indices that are no longer useful will be evicted.
The Niagara2 platform, on the other hand, supports prefetch but
only into the L2 cache. As a result the L2 latency can only be hid-
den via multithreading. Despite this, Niagara2 still showed benefits
from software prefetching.

4.10 Auto-tuning Framework
For each threading model, we implement an auto-tuning frame-

work that can incorporate the architecture-optimized kernels. For
parallel computations, we attempt three cases: no cache and no
TLB blocking, cache blocking with no TLB blocking, as well as
cache and TLB blocking. Within each of these, heuristics optimize
the appropriate block size, register blocking, format, and index size.
Additionally, we exhaustively search for the best prefetch distance

on each architecture (this process is relatively fast as it does not re-
quire data structure changes). The Cell version does not require a
search for the optimal prefetch distance searching due to the fixed
size of the DMA buffer. We report the peak performance for each
tuning option.

5. SPMV PERFORMANCE RESULTS
In this section, we present SpMV performance on our sparse ma-

trices and multicore systems. We compare our implementations to
serial OSKI and parallel (MPI) PETSc with OSKI. PETSc was run
with up to 8 tasks, but we only present the fastest results for the
case where fewer tasks achieved higher performance. OSKI was
compiled with both gcc and icc, with the best results shown. For
our SpMV code we used gcc 4.1.2 on AMD X2 and Clover-
town (icc was no faster), gcc 4.0.4 on Niagara2, and xlc on
the Cell. We start with a discussion of the ramifications of sparse
matrix structure, followed by a detailed analysis of the dense ma-
trix case (the easiest to understand), and finally a broad discussion
of the full matrix suite.

For clarity, we present the performance of each optimization con-
densed into a stacked bar format as seen in Figure 4. Each bar seg-
ment corresponds to an individual trial rather than to components
of a total. In addition, we provide median performance (half per-
form better/worse) our matrix set for each optimization. Readers
interested in a specific area (e.g., finite element meshes or linear
programming) should focus on those matrices rather than median.

5.1 Performance Impact of Matrix Structure
Before presenting experimental results, we first explore the struc-

ture and characteristics of several matrices in our test suite, and
consider their expected effect on runtime performance. In particu-
lar, we examine the impact that few nonzero entries per row have on
the CSR format and the flop:byte ratio (the upper limit is 0.25, two
flops for eight bytes), as well as the ramifications of cache blocking
on certain types of matrices.

Note that all of our CSR implementations use a nested loop struc-
ture. As such, matrices with few nonzeros per row (inner loop
length) cannot amortize the loop startup overhead. This cost, in-
cluding a potential branch mispredict, can be more expensive than
processing a nonzero tile. Thus, even if the source/destination vec-
tors fit in cache, we expect matrices like Webbase, Epidemiology,
Circuit, and Economics to perform poorly across all architectures.
Since the Cell version successfully implements a branchless BCOO
format it will not suffer from the loop overhead problem, but may
suffer from poor register blocking and an inherent low flop:byte
ratio,

Matrices like Epidemiology, although structurally nearly diago-
nal, have very large vectors. As such, those vectors cannot reside
in cache, and thus suffer capacity misses. Assuming a cache line
fill is required on a write miss, the destination vector generates 16
bytes of traffic per element. Thus, the Epidemiology matrix has
a flop:byte ratio of about 2 ∗ 2.1M/(12 ∗ 2.1M + 8 ∗ 526K +
16 ∗ 526K) or 0.11. Given the AMD X2’s and Clovertown’s peak
sustained memory bandwidths are 13.35 GB/s and 11.24 GB/s re-
spectively, we do not expect the performance of Epidemiology to
exceed 1.47 GFlop/s and 1.24 GFlop/s (respectively), regardless of
CSR performance. The results of Figure 4 (discussed in detail in
Section 5) confirm this prediction.

Aside from Cell, we flush neither the matrix nor the vectors from
the cache between SpMVs. Thus, matrices such as QCD and Eco-
nomics, having fewer than 2M nonzeros and a footprint as little
as 10 bytes per nonzero, may nearly fit in the Clovertown’s col-
lective 16MB cache. If all lines in a given set are tagged with the



Sustained Memory Bandwidth in GB/s (% of configuration peak bandwidth)
Sustained Performance in GFlop/s (% of configuration peak computation)

one socket, one socket, one socket, all sockets,
one core, one core, all cores, all cores,

Machine one thread all threads all threads all threads
5.24 GB/s (49.2%) 5.24 GB/s (49.2%) 6.73 GB/s (63.0%) 13.35 GB/s (62.6%)AMD X2
1.31 GF/s (29.7%) 1.31 GF/s (29.7%) 1.68 GF/s (19.1%) 3.31 GF/s (18.8%)
3.82 GB/s (35.8%) 3.82 GB/s (35.8%) 5.37 GB/s (50.3%) 11.24 GB/s (52.7%)Clovertown
0.95 GF/s (10.2%) 0.95 GF/s (10.2%) 1.33 GF/s (3.6%) 2.79 GF/s (3.7%)
0.66 GB/s (1.5%) 3.79 GB/s (8.9%) 23.28 GB/s (54.6%) 23.28 GB/s (54.6%)Niagara2
0.16 GF/s (11.7%) 0.94 GF/s (67.3%) 5.80 GF/s (51.8%) 5.80 GF/s (51.8%)
4.76 GB/s (18.6%) 4.76 GB/s (18.6%) 21.16 GB/s (82.6%) 21.16 GB/s (82.6%)Cell(PS3)
1.15 GF/s (62.9%) 1.15 GF/s (62.9%) 5.12 GF/s (46.6%) 5.12 GF/s (46.6%)
4.75 GB/s (18.6%) 4.75 GB/s (18.6%) 24.73 GB/s (96.6%) 47.29 GB/s (92.4%)Cell(Blade)
1.15 GF/s (62.9%) 1.15 GF/s (62.9%) 5.96 GF/s (40.7%) 11.35 GF/s (38.8%)

Table 3: Sustained bandwidth and computational rate for a dense matrix stored in sparse format, in GB/s (and percentage of
configuration’s peak bandwidth) and GFlop/s (and percentage of configuration’s peak performance).

non-temporal hint, cache replacement will be nearly random. Thus,
unlike the least-recently-used (LRU) cache replacement policy, it is
possible that a cache line may remain resident when it is required
on a subsequent iteration. Thus, we expect to see superlinear ben-
efits for these matrix patterns, even for matrices that barely do not
fit in the Clovertown cache.

Finally, we examine the class of matrices represented by Linear
Programming (LP). LP is very large, containing (on average) nearly
three thousand nonzeros per row; however, this does not necessarily
assure high performance. Upon closer examination, we see that LP
has a dramatic aspect ratio with over a million columns, for only
four thousand rows, and is structured in a highly irregular fashion.
As a result each processor must maintain a large working set of
the source vector (between 6MB–8MB). Since no single core, or
even pair of cores, in our study has this much available cache, it
is logical to conclude that performance will suffer greatly due to
source vector cache misses. On the other hand, this matrix structure
is amenable to effective cache and TLB blocking as there are plenty
of nonzeros per row. As a result, LP should benefit from cache
blocking on both the AMD X2 and Clovertown. Figure 4 confirms
this prediction. Note that this is the only matrix that showed any
benefit for column threading; thus we only implemented cache and
TLB blocking as it improves LP as well as most other matrices.

5.2 Peak Effective Bandwidth
On any balanced modern machine, SpMV should be limited by

memory throughput, we thus start with the best case for the mem-
ory system, which is a dense matrix in sparse format. This dense
matrix is likely to provide a performance upper bound, because it
supports arbitrary register blocks without adding zeros, loops are
long-running, and accesses to the source vector are contiguous and
have high re-use. As the optimization routines result in a matrix
storage format with a flop:byte ratio of nearly 0.25, one can easily
compute best-case GFlop/s or GB/s from time. Since all the mul-
ticore systems in our study except Niagara2 have a flop:byte ratio
greater than 0.25, we expect these platforms to be memory bound
on this kernel — if the deliverable streaming bandwidth is close to
the advertised peak bandwidth. A summary of the results for the
dense matrix experiments are shown in Table 3.

Observe that the systems achieve a wide range of the available
memory bandwidth, however, only the full version of the Cell (8
SPEs) comes close to fully saturating the socket bandwidth, uti-
lizing an impressive 96% of the theoretical potential. This is due,

in part, to the explicit local store architecture of the Cell, which
allows double-buffered DMAs to hide the majority of memory la-
tency. This high memory bandwidth utilization translates to high
sustained performance, attaining over 11 GFlop/s (92% of theoret-
ical bandwidth) on the dual-socket Cell blade. Results also show
that the PS3 is actually not memory bound, as full socket (6 SPE)
performance increases nearly linearly, but does not saturate the
bandwidth.

Looking at the other end of the spectrum, the data in Table 3
shows that the Niagara2 system sustains only 1.5% of its memory
bandwidth when utilizing a single thread on a single core. There
are numerous reasons for this poor performance. Most obviously,
Niagara2 has more single socket bandwidth than the other systems.
Secondly, the Niagara2 architecture cannot deliver a 64-bit operand
in less than 14 cycles (on average) for a single thread, as the L1
line size is only 16 bytes with a latency of three cycles, while the
L2 latency is about 22 cycles. Since each SpMV nonzero requires
two unit-stride accesses, and one indexed load, this results in be-
tween 23 and 48 cycles of memory latency per nonzero. When
combined with at least an additional eight cycles for instruction
execution, it becomes clear why a single thread on the Niagara2
strictly in-order cores only sustains between 50 and 90 Mflop/s for
1× 1 CSR (with a sufficient number of nonzeros per row). With as
much as 48 cycles of latency, and 11 instructions per thread, per-
formance should scale well and consume the resources of a single
thread group. As an additional thread group and cores are added,
performance is expected to continue scaling. However, since the
machine flop:byte ratio only slightly larger than the ratio in the
best case (dense matrix), it is unlikely Niagara2 can saturate its
available memory bandwidth for the SpMV computation. This de-
parture from our memory-bound multicore assumption implies that
search-based auto-tuning is likely necessary for Niagara2.

Although it is relatively easy to understand the performance of
the Cell and Niagara2 in-order architectures, the behavior of the
(out-of-order) superscalar AMD X2 and Clovertown are more dif-
ficult to predict. For instance, the full AMD X2 socket does not
come close to saturating its available 10.6 GB/s bandwidth, even
though a single core can use 5.24 GB/s. It is even less clear why
the extremely powerful Clovertown core can only utilize 3.8 GB/s
(36%) of its memory bandwidth, when the FSB can theoretically
deliver 10.6 GB/s. It is interesting to note that the AMD X2 socket
can utilize a slightly larger fraction of its memory bandwidth than
the Clovertown MCM can of its FSB bandwidth. Performance re-



sults in Table 3 show that, for this memory bandwidth-limited ap-
plication, the AMD X2 is 20% faster than a Clovertown for a full
socket (even though the Clovertown socket peak flop rate is 4.2×
higher than the AMD X2) As a sanity check, we also ran tests (not
shown) on a small matrix amenable to register blocking that fit in
the cache, and found that, as expected, the performance is very high
— 23 GFlop/s on the Clovertown. Thus, performance is limited by
the memory system but not by bandwidth per se, even though ac-
cesses are almost entirely unit-stride reads and are prefetched in
both hardware and software.

5.3 AMD Opteron X2 Performance
Figure 4(top) presents SpMV performance of the AMD X2 plat-

form, showing increasing degrees of single-core optimizations —
naïve , prefetching (PF), register blocking (RB), and cache blocking
(CB) – as well as fully-optimized parallel (Pthread) performance on
both cores of a single socket, and finally full system performance
(dual-socket × dual core). Additionally, comparative results are
shown for both serial OSKI and parallel (MPI) OSKI-PETSc.

The effectiveness of AMD X2 optimization depends on the ma-
trix structure. For example, the FEM-Ship matrix sees significant
improvement from register blocking (due to its natural block struc-
ture) but little benefit from cache blocking, while the opposite ef-
fect holds true for the LP matrix. Generally, AMD X2 performance
is tied closely with the optimized flop:byte ratio of the matrix, and
suffers from short average inner loop lengths. The best perform-
ing matrices sustain a memory bandwidth of 10–13.4 GB/s, which
corresponds to a high computational rate of 2–3 GFlop/s. Con-
versely, matrices with low flop:byte ratios show poor parallelization
and cache behavior, sustaining a bandwidth significantly less than
8 GB/s, and thus achieving performance of only 0.5–1 GFlop/s.

Looking at overall SpMV behavior, serial results show that our
optimizations speedup naïve runtime by a factor of 1.6× in the
median case, while achieving about a 1.4× speedup (due, in part,
to explicit prefetching) over the highly tuned OSKI library. For
the parallel, multicore experiments, we find performance improve-
ments of 1.5× (bus saturation) and 2.9× (multiple controllers) for
the dual core and full system (dual-socket × dual-core) configu-
rations, respectively, when compared to our optimized single-core
results. More impressively, our full-system implementation runs
3.3× faster than the parallel full-system OSKI-PETSc experiments.

Note that OSKI-PETSc uses an “off-the-shelf” MPICH-shmem
implementation, and generally yields only moderate (if any) speedups,
due to at least two factors. First, communication time accounts on
average for 30% of the total SpMV execution time and as much
as 56% (LP matrix), likely due to explicit memory copies. Sec-
ond, several matrices suffer from load imbalance due to the default
equal-rows 1-D matrix distribution. For example, in FEM-Accel,
one process has 40% of the total non-zeros in a 4-process run. It
is possible to control the row distribution and improve the commu-
nication, but we leave deeper analysis and optimization of OSKI-
PETSc to future work.

In summary, these results indicate tremendous potential in lever-
aging multicore resources — even for memory bandwidth-limited
computations such as SpMV — if optimizations and programming
methodologies are employed in the context of the available memory
resources. Additionally, our data show that significantly higher per-
formance improvements could be attained through multicore paral-
lelizations, rather than serial code or data structure transformations.
This an encouraging outcome since the number of cores per chip is
expected to continue increasing rapidly, while core performance is
predicted to stay relatively flat [1].

5.4 Intel Clovertown Performance
The quad-core Clovertown SpMV data appears in Figure 4 (sec-

ond from top), showing both naïve and optimized serial perfor-
mance, as well as parallel (Pthread) dual-core, quad-core, and full
system (dual-core, quad-core) results. Serial OSKI and parallel
(MPI) OSKI-PETSc results are also presented as a baseline for
comparison. Unlike the AMD X2, Clovertown performance is more
difficult to predict based on the matrix structure. The sustained
bandwidth is generally less than 9 GB/s, but does not degrade as
profoundly for the difficult matrices as on the AMD X2: no doubt
due to the large (16MB) aggregate L2 cache and the larger total
number of threads to utilize the available bandwidth. This cache
effect can be clearly seen on the Economics matrix, which con-
tains 1.3M nonzeros and requires less than 15MB of storage. As
a result, superlinear (4×) improvements are seen when comparing
a single-socket × quad-core with 8MB of L2 cache, against the
dual-socket full system, which contains 16MB of L2 cache across
the eight cores. Despite fitting in cache, the few nonzeros per row
significantly limit performance — when compared to matrices that
fit in cache, have large numbers of nonzeros per row, and exhibit
good register blocking.

Examining the median Clovertown performance, shows that our
single-core SpMV optimization resulted in only a 1.4× improve-
ment compared with the naïve case. This is due, in part, to the
Xeon’s superior hardware prefetching capabilities compared with
the Opteron, as there was only moderate benefit from software
prefetching. Additionally, register blocking was useful on less than
half of the matrices, while cache blocking held little benefit due to
the large L2 cache of the Clovertown.

Surprisingly, only a paltry speedup of 7% is seen (between the
optimized versions) when comparing one and two cores of the Clover-
town system. Performance only increases slightly (an additional
21%) when four cores (within a single socket) are employed, since
the two-core experiment usually attains a significant fraction of
the sustainable FSB bandwidth. Examining the full system (dual-
socket × quad-core), shows performance that exceeds the opti-
mized serial case by only 2.2×; this was not surprising as the
aggregate FSB bandwidth was doubled in this configuration. Fi-
nally, comparing results with the OSKI autotuner, we see a se-
rial improvement of 1.7× and a parallel full-system speedup of
2.2× compared with OSKI and OSKI-PETSc respectively. These
results highlight the effectiveness of our explicitly programmed,
multicore-specific optimization and parallelization schemes.

5.5 Sun Niagara2 Performance
Figure 4 (third from top) presents SpMV performance of the Ni-

agara2 system, showing increasing levels of optimizations for the
single-threaded (single core) test case, as well as optimized per-
formance using all eight threads per cores on increasing numbers
of cores. The full system configuration utilizes eight cores and
all eight hardware-supported CMT contexts. As discussed in Sec-
tion 5.2, Niagara2’s performance is bound by the interaction be-
tween the L1, L2, lack of L1 prefetching, and the strictly in-order
cores rather than limits in DRAM bandwidth.

Results show that, as expected, single thread results are extremely
poor, achieving only 75 Mflop/s for the median matrix in the naïve
case, with about 10% speedup from our suite of optimizations (86
Mflop/s). Eight-way multithreading on a single core yielded a 5×
increase in performance, and significant performance improvement
is achieved as the number of fully populated cores increases, achiev-
ing a 1.9×, 3.8×, and 6.8× speedup for 16 threads (2 cores), 32
threads (4 cores), and 64 threads (8 cores) respectively — when
compared with the optimized single core (1 core × 8 threads). As-
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Figure 4: Effective SpMV performance (not raw flop rate) on (from top to bottom) AMD X2, Clovertown, Niagara, and Cell, show-
ing increasing degrees of single-core optimizations — prefetching (PF), register blocking (RB) and cache-blocking (CB) (denoted
as *) — as well as performance on increasing numbers of cores, and multiple-socket (full system) optimized results. OSKI and
OSKI-PETSc results are denoted with circles and triangles. Note: Bars show the best performance for the current subset of opti-
mizations/parallelism. The LP matrix could not be run on the PS3; the 6 SPE QS20 data is shown instead.

toundingly, the full system single socket (64 thread) median results
achieve 3 GFlop/s, more than 3× the performance of a single socket
of the x86 machines.

Although Niagara2 achieves high performance, we believe that
such massive thread-level parallelism is a less efficient use of hard-
ware resources than a combination of intelligent prefetching and
larger L1 cache lines. Nevertheless, Niagara2 performance may

be a harbinger of things to come in the multi- and many-core era,
where high performance will depend on effectively utilizing a large
number of participating threads.

5.6 STI CELL Performance
Finally, Cell results appear in Figure 4 (bottom). Although the

Cell platform is often considered poor at double-precision arith-
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Figure 5: Architectural comparison of the median matrix performance showing (a) GFlop/s rates of OSKI and optimized SpMV on
single-core, full socket, and full system and (b) relative power efficiency computed as total full system Mflop/s divided by sustained
full system Watts (see Table 1).

metic, results show the contrary — the Cell’s SpMV execution
times are dramatically faster than all other multi-core SMP’s in our
study. Cell performance is highly correlated with a single param-
eter: the actual flop:byte ratio of the matrix. In fact, since DMA
makes all transfers explicit, including bytes unused due to a lack
of spatial locality, it is possible to show that for virtually every ma-
trix, Cell sustains about 90% of its peak memory bandwidth. On
the more difficult matrices, the get list DMA command can effec-
tively satisfy Little’s Law [2] on a stanza gather; as a result, there is
no reduction in actual sustained bandwidth. The PS3, with only 6
cores, is not capable of saturating its 25 GB/s peak bandwidth even
on the dense matrix test case — indicating that it is bound by inner
kernel performance (every Cell double-precision instruction stalls
all subsequent issues for 7 cycles).

Examing multicore behavior, we see speedups of 5.4×, 7.1×,
and 13.4×when utilizing 6 cores (PS3), 8 cores (single blade socket),
and 16 cores (full blade system), compared with a single-core Cell
blade. These results show impressive scaling on a single socket,
however, the lack of sharing of data between local stores can result
in a non-trivial increase in redundant total memory traffic. Recall
that this implementation is sub-optimal as it requires 2×1 or larger
BCOO; thus, it may require twice the memory traffic of a CSR
implementation, especially for matrices that exhibit poor register
blocking, This version was not implemented due to the inefficiency
of scalar double-precision on Cell.

5.7 Architectural Comparison
Figure 5(a) presents compares median matrix results, showing

the optimized performance of our SpMV implementation, as well
as OSKI, using a single-core, fully-packed single socket, and full
system configuration. Results clearly indicate that the Cell blade
significantly outperforms all other platforms in our study, achiev-
ing 3.3×, 4.1×, and 2.2× speedups compared with the AMD X2,
Clovertown, and Niagara2 despite its poor double-precision and
sub-optimal register blocking implementation. Cell’s explicitly pro-
grammed local store allows for user-controlled DMAs, which ef-
fectively hide latency and utilize a high fraction of available mem-
ory bandwidth (at the cost of increased programming complexity).

Looking at the Niagara2 system, results are extremely poor for
a single core/thread, but improve quickly with increasing thread
parallelism. The overall performance is on par with a single Cell
socket, and significantly faster than the x86 machines, albeit with
significantly more memory bandwidth. Finally, the dual core AMD
X2 attains better performance than a quad core Clovertown both
within a single-socket, as well as in full-system (dual-socket) ex-
periments. This is somewhat surprising as the Clovertown’s per-
socket computational peak is 4.2× higher than the AMD X2, has
no NUMA affects, and uses FBDIMMs.

Next we compare power efficiency — one of today’s most im-
portant considerations in HPC acquisition — across our evaluated
suite of multicore platforms. Figure 5(b) shows the Mflop-to-Watt
ratio based on the median matrix performance and the actual (sus-
tained) full-system power consumption (Table 1). Results show
that the Cell blade leads in power efficiency, followed by the single
socket PS3. The single socket Niagara2 delivered the same effi-
ciency as a dual socket Opteron. Although the Niagara2 system
attains high performance and productivity, it comes with a price
— power. Eight channels of FBDIMM drove sustained power to
350W for the best performing matrix. Thus, Niagara2’s system
efficiency for the SpMV kernel was marginal. The Clovertown de-
livered the poorest power efficiency because its high power and low
(relative) performance. The Cell blade attains an approximate ad-
vantage of 2.6×, 4.8×, and 2.7× compared with the AMD X2,
Clovertown, and Niagara2 (respectively).

6. SUMMARY AND CONCLUSIONS
We are witnessing a sea change in computer architectures due to

the impending ubiquity of multicore processors. Understanding the
most effective design and utilization of these system, in the context
of demanding scientific computations, is of utmost priority to the
HPC community. In this work we examine SpMV, an important and
highly- demanding numerical kernel, on one of the most diverse
sets of multicore configurations in existing literature.

Overall our study points to several interesting multicore obser-
vations. First, the “heavy-weight” out-of-order cores of the AMD
X2 and Clovertown showed sub-linear improvement from one to
two cores. This finding is surprising because the multicore designs
of these architectures provide approximately twice the bandwidth
of their single-core counterparts. However, significant additional
performance was seen on the dual socket configurations. This indi-
cates that sustainable memory bandwidth may become a significant
bottleneck as core count increases, and software designers should
consider bandwidth reduction (e.g., symmetry, advanced register
blocking, Ak methods [20]) as a key algorithmic optimization .

On the other hand, the two in-order “light-weight” cores in our
study, Niagara2 and Cell — although showing significant differ-
ences in architectural design and absolute performance — achieved
high scalability across numerous cores at reasonable power de-
mands. This observation is also consistent with the gains seen
from each of our optimization classes; overall, the parallelization
strategies provided significantly higher speedups than either code
or data-structure optimizations. These results suggest that multi-
core systems should be designed to maximize sustained bandwidth
and tolerate latency with increasing core count, even at the cost of
single core performance.

Our results also show that explicit DMA transfers can be an



effective tool, allowing Cell to sustain a much higher fraction of
the available memory bandwidth, compared with the alternative
techniques on our other platforms: out-of-order execution, hard-
ware prefetching, explicit software prefetching, and hardware mul-
tithreading.

Finally, our work compares a multicore-specific Pthreads imple-
mentation with a traditional MPI approach to parallelization across
the cores. Results show that the Pthreads strategy resulted in run-
times more than twice as fast as the message passing strategy. Al-
though the details of the algorithmic and implementation differ-
ences must be taken into consideration, our study strongly points to
the potential advantages of explicit multicore programming within
and across SMP sockets.

In summary, our results show that matrix and platform dependent
tuning of SpMV for multicore is at least as important as suggested
in prior work [20]. Future work will include the integration of these
optimizations into OSKI, as well as continued exploration of opti-
mizations for SpMV and other important numerical kernels on the
latest multicore systems.
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