To appear in the proceedings of the Internation Conference on Parallel Processing, 1995.

Portable Runtime Support for Asynchronous Simulation *

Chih-Po Wen and Katherine Yelick
Computer Science Division, University of California

Berkeley, CA 94720

cpwen@cs.berkeley.edu yelick@cs.berkeley.edu

Abstract

We present library and runtime support for
portable asynchronous applications, wusing event-
driven simulation as an example. Although event-
driven simulation has a natural source of parallelism
between the simulated entities, real speedups have
been hard to obtain because of the fine-grained, un-
predictable communication patterns. Language and
systems software support is also lacking for asyn-
chronous problems. Qur runtime supports makes the
applications portable, eases performance tuning, and
allows code re-use between applications. Qur goal
18 to support a range of platforms with varying per-
formance characteristics, from special-purpose mul-
tiprocessors through networks of workstations. We
discuss the performance issues in the runtime sup-
port, describe a distributed event graph data struc-
ture, and present performance numbers from a par-
allelized timing simulator called SWEC.

1 Introduction

Parallel applications can be classified according
to their degree of irregularity. Fox identifies three
classes: synchronous algorithms have little or no
data-dependent behavior and fit into an SIMD exe-
cution model; loosely synchronous problems are spa-
tially irregular but temporally regular and can be
expressed in SPMD languages with alternating com-
munication and computation phases; asynchronous
problems are irregular in time and space and are

*This work was supported in part by the Advanced
Research Projects Agency of the Department of Defense
monitored by the Office of Naval Research under contract
DABT63-92-C-0026, by the Department of Energy grant DE-
FG03-94ER 25206, and by the National Science Foundation
(number CCR-9210260 and number CDA-8722788). The in-
formation presented here does not necessarily reflect the posi-
tion or the policy of the Government and no official endorse-
ment should be inferred.

the most difficult to parallelize [Fox91]. Data par-
allel languages like HPF [Hig93] and NESL [Ble93]
are well-suited to synchronous problems, and with
sufficient compiler [BCF+93 BC90] and run-time
support (e.g., the PARTT system [SBW91]), can be
used for loosely synchronous problems. In this paper
we describe library and runtime support for asyn-
chronous applications.

The goal of our research is to provide software
systems to make asynchronous applications easier
to parallelize, using extensive runtime support and
a distributed data structure library. Portability
is a primary goal. The programs developed us-
ing our system run and exhibit good performance
on a range of machines. In this paper, we use a
conservative parallel version of the SWEC simula-
tor, an asynchronous event-driven simulator, as a
running example to study programmability, perfor-
mance, and portability issues of our system. The
main distributed data structure in this problem is
an event-graph, a component of our Multipol library
[CDTT95]. In previous work, we described a parallel
implementation of the SWEC simulator that used
optimistic concurrency [WY93]. The implementa-
tion performed well on the CM5 multiprocessor, but
contained machine-specific techniques and was not
organized to allow for code re-use in other simula-
tors. This work addresses those concerns.

Our research targets distributed memory archi-
tectures such as the CMb, Paragon, SP1/SP2, and
networks of workstations. A common characteris-
tic of distributed memory machines is that the over-
head and latency of accessing remote data is much
larger than accessing local data, and the bandwidth
of remote access improves with the size of the data.
Solving irregular problems on these machines is par-
ticularly challenging, because communication is fine-
grained and unpredictable, leaving few opportunities
for compile-time optimization or runtime preprocess-
ing.

Our runtime system employs two techniques to

reduce communication costs: split-phase operations
built from atomic threads, which hide the latency of
remote operations, and message aggregation, which
reduces the overhead of communication. On top of
this, the Multipol data structures provide reusable
abstractions for irregular structures. One of these,
an event graph, provides order-preserving, flow-
controlled message delivery between a set of logi-
cal processes. It also takes advantage of the process
graph structure to optimize for communication effi-
ciency.

The rest of the paper is organized as follows. Sec-
tion 2 gives an overview of the application, which is
a timing simulator called SWEC. Section 3 describes
our runtime support, drawing examples from SWEC
to motivate the design. Section 4 describes the inter-
face and semantics of the event graph and sketches
the algorithm used in the parallelized SWEC. Sec-
tion 5 gives the performance results and uses statis-
tics from our experiments to evaluate the effective-
ness of our runtime system. Section 6 describes pre-
vious work on portable software support and discrete
event simulation. Section 7 concludes the paper.

2 Overview of SWEC

The SWEC program is mainly used to per-
form timing simulation for digital MOS circuits
[LKMS91]. Tt partitions a circuit into loosely cou-
pled subcircuits (as shown in Figure 1), each of which
can be simulated independently within a time step.
At the end of a time step, if the subcircuit’s new
state cannot be extrapolated linearly from the old
state within some error margin, the new state is
propagated to the fanout subcircuits. This commu-
nication is referred to as an event. Events occur at
unpredicatable times and vary in frequency depend-
ing on the non-linearity of the voltage. The time
step size used by the subcircuits depend on their
states. SWEC uses smaller timesteps for subcircuits
with more activity to improve accuracy, and larger
timesteps for subcircuits with little activity to save
computation. There are no global synchronization
points, since each subcircuit 1s simulated with a vari-
able number of timesteps that cannot be predicted
in advanced.

In the sequential implementation, the subcircuits
are always scheduled in strict ascending time order,
so that all relevant events are processed before any
affected subcircuit computation takes place. Figure
2 sketches the sequential algorithm. A subcircuit

r2

Figure 1: Partitioning the circuit into subcircuits.
The subcircuits (denoted by r) contains MOS tran-
sistors (denoted by m) and voltage points (denoted
by n). The transistors are connected to their fanin
voltage points via the gates (denoted by e).

s has two attributes: s.time, the current simula-
tion time of the subcircuit and s.step the current
duration of a time step. Subcircuits are placed in
a priority queue, p, ordered by the estimated next
time point (s.time + s.step).

The priority queue in SWEC offers little room
for parallelization, because it imposes a total order
on the scheduling of subcircuits. Our parallel im-
plementation distributes the subcircuits among the
processors, and the simulation proceeds in a data-
flow manner. The parallel algorithm is a typical
case of distributed asynchronous simulation, where
each subcircuit corresponds to a logical process, and
each event corresponds to a collection of messages
sent to the fanout subcircuits. We adopt the con-
servative approach to parallel asynchronous simu-
lation [KC81], scheduling a subcircuit only when
all input events have been processed. Previously,
we showed that conservative parallel simulation is
primarily useful for combinational circuits (circuits
without feedback paths); optimistic scheduling is
much more effective for sequential circuitsfWY93].
We are developing an optimistic analog to the con-
servative Parallel SWEC, but in this paper we focus
on the conservative example.

Parallel SWEC is irregular in computation and
communication. The number of time steps as well as
their costs depend on the state of simulation, which
is not known in advance. The number of messages is
also data dependent, so their storage cannot be pre-
allocated. Furthermore, the messages, usually small,

For all subcircuits s,
initialize s.time and s.step
insert s into p using key (s.time + s.step)

While min key of p < end of simulation,

delete s with min key from p

simulate s from s.time up to (s.time + s.step) and
update its state

for each voltage point v of s,

if new state of v cannot be linearly extrapolated
from previous state

for each fanout subcircuit s’ of s at v

update the state of the mosfet driven by v in s’

reduce s’.step if necessary

delete s’ from p

insert s’ in p using key (s’.time + s’.step)
s.time = s.time + s.step
s.step = projected time step based on new state of s
insert s into p using key (s.time + s.step)

Figure 2: The sequential SWEC algorithm.

are sent at unpredictable times. To resolve load im-
balance caused by computation irregularities, we use
simple static load balancing heuristics for distribut-
ing the subcircuits across processors. Our heuristics
work well in practice and avoid the communication
overhead of dynamic load balancing. In the remain-
der of this paper, we focus on communication irreg-
ularities and how small asynchronous messages are
handle in a portable manner.

3 Runtime Support

To achieve good performance on distributed mem-
ory machines, three communication costs must be
addressed: overhead, latency, and bandwidth. In
this section, we explore these 1ssues and present the
solutions used in our runtime layer.

3.1 Overhead Reduction

Communication overhead refers to the processor
time spent in setting up the communication and in-
jecting data into the network. It can be decom-
posed into the fixed start-up overhead for setting
up the communication, such as allocating storage
or performing kernel calls, and the overhead per
byte for injecting the message. FEven for machines
with like the CM5 with small hardware messages
and lightweight communication such as Active Mes-
sages [VECGS92], the startup cost observed by ir-
regular applications may be significant. Active mes-
sages avoid storage allocation by using fixed hard-

ware packet sizes and by requiring that the user pro-
vide an address range in memory for the message
data to be written. Structuring the program based
on a fixed packet size limits portability, and for asyn-
chronous programs, the cost of buffer management
may resurface in the users’ code.

Our runtime system accumulates small, asyn-
chronous messages in a continuous buffer until its
size exceeds a certain threshold, or until no other
computational threads are eligible for execution.
The aggregated messages in the buffer are then sent
as a single message using a bulk communication
primitive. Message aggregation, a technique that is
well-known for bulk-synchronous algorithms and li-
braries [BSS91, KB94], reduces communication over-
head by amortizing the start-up overhead over many
messages.

Although message aggregation reduces the amor-
tized communication start-up, it incurs the overhead
for data copying, and thus increases the overhead per
byte. Tt may also increases the observed latency of
remote operations, since messages may be delayed in
the aggregation buffer. The exact tradeoff depends
on the application, the machine architecture, as well
as the input. Therefore, we expose the degree of ag-
gregation to the programmer for performance tun-
ing, but ensure that all message will eventually be
delivered.

3.2 Latency Hiding

Irregular applications typically have dynamic
data structures such as graphs, trees, and tables.
Rather than simple fetch and store operations, as
one would have on arrays or static graphs, dynamic
structures have operations to add or delete nodes
from linked structures as well as non-trivial opera-
tions to observe the state of the structure. For such
data structures, there can be many sources of latency
in an operation: the delay due to message aggrega-
tion, the network latency, the delay due to schedul-
ing at the remote processor, the computation time
at the remote processor, and the latency of sending
back the result. Since the total latency can be long,
support for multithreading is required to overlap the
latency with other computation.

Our runtime system supports split-phase op-
erations implemented as user-level atomic threads
for latency hiding. A atomic thread is a fi-
nite computation that is guaranteed to run atomi-
cally. A split-phase operation is built from two or
more such threads. High-level synchronization con-
structs such as suspension are implemented on top

of atomic threads using continuations. Atomicity
eases programming by eliminating locking for simple
read-modify-write operations. Unlike system level
threads, the context of our threads are explicitly
managed by the programmer, so only the required
variables are passed from one thread to its continu-
ation. The threads synchronize using counters, sim-
ilar to those used in Split-C [CDGT93]. Every split-
phase operation takes a counter as input argument,
which is incremented when the operation completes.
A separate continuation thread can be created to
wait on the value of the counter. The counter auto-
matically enables the continuation thread for execu-
tion when the operation completes, without requir-
ing polling by the programmer.

The runtime system also provides the program-
mer with mechanisms for building customized sched-
ulers. For example, a scheduler which has knowledge
of the simulation time is used to schedule the subcir-
cuit threads in parallel SWEC. The user schedulers
are fairly invoked by the system, so the scheduling
policy of one data structure can be fine-tuned for
performance without introducing unexpected dead-
locks.

3.3 Bandwidth Optimization

Using message aggregation, the overhead per
byte, or the communication bandwidth, becomes
the determining factor of communication efficiency.
Communication bandwidth can be improved by im-
plementing bulk communication with nonblocking
primitives. The runtime system interfaces with all
machine architectures using the nonblocking store
primitive, which transfers a block of data from a lo-
cal address to a remote address, increments a local
counter when the local buffer can be reused, and in-
vokes a remote thread when the transfer is complete.
The nonblocking store primitive saves the copying
cost for queuing messages at the sending processor,
and may improve network utilization by interleaving
the injection of packets from multiple messages that
are to be sent to different processors.

3.4 Summary of Runtime Support

The runtime system supports a small set of prim-
itives for managing atomic threads and three forms
of split-phase communication: put, which transfers
a block of data from a local address to a remote ad-
dress, get, which transfers a block of data from a
remote address to a local address, and remote thread

wnwvocation, which creates a thread on a remote pro-
cessor. The remote threads are like any local threads
and may perform arbitrary computation. They are
different from the network handlers, which the run-
time system uses in a restricted manner to drain data
from the network as fast as possible. The put and get
operations are used for bulk, regular communication,
while remote threads are usually used for irregular
communication such as sending events in SWEC.

4 A Distributed Event Graph Data
Structure

The dominant communication in asynchronous
simulation 1s the propagation of events. Storage
must be allocated for the event messages before
they are sent, and the messages must arrive in their
time stamp order for the conservative method to
work. In this section, we introduce a data struc-
ture called an event graph, which supports in-order,
flow-controlled message delivery in a static network
of nodes. The event graph also takes advantage of
the graph structure to optimize for locality.

4.1 Interface and Semantics

The event graph can be thought of as a graph with
fixed-sized FIFO buffers attached to the edges, with
which the nodes send and receive events. We refer to
the size of these FIFO buffers as the edge capacity.
There are five operations on the event graph, all of
them split-phase:

e MakeEventGraph: create a distributed event
graph on all processors based on an input
graph. The programmer can write custom par-
titioners to assign nodes to processors. The
programmer also specifies the edge capacity.
MakeEventGraph completes when the event
graph is ready for use on all processors.

e SendEvent: propagate an event from a node to
all its fanout nodes. SendEvent completes when
storage for the messages has been allocated in
all fanout edges and the event has been copied.
Its completion does not guarantee that the event
messages are immediately available, although it
is guaranteed to arrive in finite time.

e ReceiveEvent: read and/or remove an event
message from an incoming edge of a node.
The removal frees up space for more incom-
ing messages. The programmer has the option

to wait for new messages when the edge con-
tains no message. The programmer can also
query the status of each edge, and uses non-
split-phase versions of ReceiveEvent for better
performance.

e WaitForEvent: wait until some event message
is available for a node to receive.

e Freeze/UnFreeze: freeze and unfreeze the
state of the event graph for taking dis-
tributed snapshots. Freeze suspends all split-
phase mutators, such as SendEvent. When
Freeze completes, the events are available using
ReceiveEvent. No event can be “stuck” in the
communication layer or the network. Unfreeze
re-enables all mutators. The Freeze/Unfreeze
operations are useful for detecting global prop-
erties in applications using distributed data
structures. For example, they are used in par-
allel SWEC to detect deadlocks. They are also
used to compute the global time in an optimistic
parallelization of SWEC (currently under devel-
opment).

Two operations on a data structure are said to
interfere if their behavior under concurrent execu-
tion is undefined. For the event graph, Freeze in-
terferes with all mutator operations that can tem-
porarily leave the data structure in an inconsistent
state. Some of the ReceiveEvent operations that
modify the edge buffers are not split-phase, and as
a result they interfere with Freeze. The program-
mer must insert sufficient synchronization in the pro-
gram to ensure these operations are not issued when
Freeze is in progress. Also, SendEvent interferes
with SendEvent on the same node, since the mean-
ing of concurrent enqueues to the same FIFO is not
clear.

4.2 Implementation Techniques

The implementation of event graph uses the fol-
lowing techniques to improve performance:

e Lazy evaluation of SendEvent. We weaken the
semantics of SendEvent so that its completion
guarantees the event will arrive in finite time,
but does not guarantee it is immediately avail-
able. The semantics requires no acknowledge-
ment from the remote processor. The program-
mer can use the Freeze operation to ensure that
all events are globally visible.

Figure 3: Mapping of circuit to event graph. The
circuit shown in the previous example is mapped to
an event graph. The nodes derived from the same
subcircuit are allocated on the same processor, so
that the simulation steps can be performed using
local data.

e Caching event messages. The edges are al-
located on the receiving processors, and all
ReceiveEvent operations are handled locally.
To further reduce communication, if an event is
sent to two different node on the same proces-
sor, its value is cached on the remote processor.
The caching 1s static because the graph struc-
ture remains fixed, so the storage for caching
can be pre-allocated.

e Replicating the buffer control state. Sending
an event requires that space be available on
all fanout edges. We replicate the flow-control
state of the edges (such as the number of ele-
ments) on the sending processor, and update the
replica lazily so that the flow-control overhead
can be amortized over many operations. When
the edge capacity is large, most SendEvent op-
erations can usually proceed without requiring
communication for buffer space allocation.

4.3 Parallelizing SWEC using Event
Graph

We parallelize SWEC using the event graph as
follows. One distributed event graph is created for
the entire circuit to handle all messages. Each sub-
circuit is a node in the graph for receiving event
messages from its fanin subcircuits. Each voltage
point is also a node for propagating its state. The
mapping of circuits to event graph is illustrated in
Figure 3. Evidence of the power of distributed data
structures comes from our programming experience.
The event-graph took a couple weeks to design, de-
bug, and optimize. Given this, and a familiarity with

no WHE @ g2 g
rl l;
r2 o 25 50 0->35
30
r3 o 35 r2

25->50

0 10 20 30 40 50 time

Figure 4: Deadlock due to storage constraints.

SWEC, the parallel conservative simulator took only
a few days to implement.

Since we target combinational circuits, the data
dependence graph of the circuit is acyclic, and dead-
lock due to the lack of global information cannot oc-
cur. However, because the event graph places an up-
per bound on the number of outstanding messages,
the subcircuits sending new events may have to wait
for its fanout subcircuits to release buffer space.
This creates cycles in the overall dependence graph.
Therefore, deadlock due to storage constraints can
still occur. The problem is illustrated in Figure 4.
The left-hand picture shows a sequential simulation
with numbers denoting simulation steps and boxed
numbers denoting steps that produced an event. In
the parallel version on the right, the edge capacity is
three events. The parallel simulation is deadlocked
because r2 has not produced an event to tell r3
that it can proceed beyond time zero. Therefore, ri
blocks because event 40 cannot be propagated due
to the lack of space and r2 blocks waiting for r1. If
buffer space were unbounded, r1 and r2 would con-
tinue running, eventually producing an event from
r2 that would allow r3 to proceed.

We resolve deadlocks using a combination of null
messages and deadlock detection and recovery. A
null message is an event that carries only the simu-
lation time. A subcircuit sends a null message if it
proceeds for several time steps and blocks without
producing any event message. Our heuristics pro-
duce enough null messages to eliminate deadlocks in
practice.

5 Performance Results

In this section, we report on the performance of
the parallel timing simulator on various platforms,
and provide statistics to show the effectiveness of
our approach.

We have ported the runtime system to the CM5,
SP1/SP2 and Paragon. The CMb port is built on
the Thinking Machines active message layer, called
CMAML, the SP port uses the IBM message passing

Speedup on SP2
701

PERFECT LINEAR
60

501 C2670

40t

REGFILE

speedup
1

30+

201

.
0 10 20 30 40 50 60 70
nodes

Speedup on Paragon

351

C2670
30

speedup

PERFECT LINEAR

nodes

Speedup on CM5
351

PERFECT LINEAR

30+

251

15 20 25 30 35

Figure 5: Speedups of the conservative parallel
SWEC. The speedups are with respect to the 1 pro-
cessor parallel implementation.

subcircuits | mosfets | time steps | events SP2 Paragon CM5
2670 2033 5364 2510047 | 760166 402 (243) 2159 (3046.4) | 3916 (84 0.5)
REGFILE 325 4832 177987 957412 | 112.4 (153.7) | 324.7 (460.3) | 622 .7 (518.48)

Table 1: Statistics from the benchmark circuits. The execution times of the sequential SWEC on a single
processor of machine is shown, with the running time of the one-processor parallel code in parentheses. All

times are in seconds.

library MPL, and the paragon port is based on the
NX communication library. We use the active mes-
sage developed at Berkeley for both the SP and
the NX ports [Lun94]. The SP and Paragon have
higher bandwidth networks and faster processors
than CMb5. In general, the gap between the com-
putation and communication performance is more
pronounced for the SP and Paragon than for the
CM5.

Table 1 describes the benchmark circuits. Due to
differences in float-point characteristics, the number
of time steps performed and consequently the num-
ber of events are slightly different among the three
machines. REGFILE is a 32-bit register file, and
(2670 is an unknown circuit from the ISCAS bench-
mark suite. Both circuits are combinational. C2670
has quite uniform computation granularities for the
subcircuits, which usually contain only a few transis-
tors. The computation of REGFILE is dominated by
32 very large subcircuits which represent the 32 bit
slices of the register file. Notice that parallel SWEC
on 1 node sometimes outperforms the sequential
SWEC. Although parallelization causes communica-
tion and threading overhead, the distributed, data-
driven approach of parallel SWEC alleviates the bot-
tleneck of a centralized priority queue in SWEC,
whose accessing cost grows with the number of sub-
circuits.

The speedups of our parallel implementation is
show in Figure 5.5 The curves are nearly linear for
(2670, indicating good scalability for larger circuits.
Both C2670 and REGFILE show speedup of over
5 on the 8-node Paragon, over 20 on the 32-node
CMb5, and over 41 and 33 on the 64-node SP2. The
superlinear speedup of C2670 on the Paragon will be
explained later.

Two program parameters can be set to fit the ma-
chine characteristics for better performance: degree
of message aggregation and edge capacity. Figure 6
shows the impact of these two parameters on per-

1We were not able to obtain some of the SP2 results. For
processor numbers 1 through 8, an SP1 was used with perfor-
mances scaled to reflect the speed difference.

formance. The running times in the graphs are nor-
malized with respect to the minimum time in each
curve to show the percentage of increase in time.

Message aggregation is shown to be essential for
performance. For C2670, the running time can in-
crease by more than a factor of 3 when aggregation
is not performed. The effect of aggregation is not as
significant for REGFILE, which has very large sub-
circuits so that the communication time occupies a
smaller portion of the execution time. In most cases,
the running time increases when the degree of aggre-
gation exceeds a certain threshold. This is because
aggregation delays the progress of the simulation, so
it becomes counterproductive unless there is suffi-
cient parallelism. The threshold is about 2K bytes
for C2670.

The effect of edge capacity is dependent on the
input as well as the machine configuration. A large
capacity improves performance by increasing concur-
rency, and consequently reduces the number of null
messages that have to be sent to avoid deadlock. The
increase in concurrency also provides more threads
for hiding latency, as well as more opportunities for
message aggregation. The results show that C2670
is less sensitive to edge capacity than REGFILE,
because it has more parallelism (more subcircuits).
The increase in running time for REGFILE can be
as much as 60% on the SP1 and Paragon when the
edge capacity is too small.

A large edge capacity, however, may degrade the
performance of the memory hierarchy because 1t re-
quires more memory. This is demonstrated by the
running time of C2670 on Paragon, which increases
by a factor of 3 when the edge capacity is too large.
The simulation of C2670 may require more than
300M bytes of memory, and our local Paragon con-
figuration provides only about 10M bytes of physical
memory per node. This also explains the superlin-
ear speedup within the parallel implementation for
(2670 in Figure 5, since for a smaller number of pro-
cessors the machine may spend a significant amount
of time paging.

6 Related Work

Parallel asynchronous simulation is a well stud-
ied problem. Chandy and Misra developed the con-
servative method[KC81]. Jefferson introduced the
optimistic method, also known as the time-warp
algorithm[Jef85]. Tn our prior work[WY93], we com-
pared the potential of the both methods for paral-
lelizing SWEC[LKMS91], and developed a CM5 spe-
cific implementation using the optimistic method.

Recent research has produced a variety of run-
time support such
as the Chare kernel [SK91], Nexus[FKOT91], and
the compiler-controlled threaded abstract machine
(TAM) [CSSH91]. Nexus provides mechanisms sim-
ilar to remote thread invocation, but is more heavy-
weight than our runtime system, because it supports
arbitrary thread suspension and heterogeneous com-
puting. The threads in our runtime system are sim-
ilar in spirit to the TAM threads, but do not require
compiler support for static thread allocation, and are
intended for coarser grained, dynamically generated
threads.

The idea of aggregating small messages to re-
duce communication overhead can be found in the
Fortran-D compiler[HKT91], which uses message
vectorization in parallel loops to reduce overhead,
and in PARTI[BSS91], which uses runtime prepro-
cessing to pre-allocate storage for aggregated array
accesses in bulk synchronous programs. It is a com-
mon technique for regular, array-based computa-
tions and for data structures that are irregular in
time space but not time.

There have been a number of attempts at de-
veloping application-specific distributed data struc-
tures such as irregular grids[BSS91, KB94] and
oct-trees[WS93]. As with aggregation, these data
structures are targeted toward loosely synchronous,
rather than asynchronous applications.

7 Conclusions

We have presented a runtime communication
layer for a general class of irregular problems, and
a distributed even graph data structure for asyn-
chronous simulation. The runtime layer provides
and portability layer for the Multipol library. Perfor-
mance portability is obtained using split-phase op-
erations, multithreading, and message aggregation.
We demonstrated good performance on two nontriv-
ial circuits. We also quantified some of the per-
formance trade-offs that make portability difficult.

The combination of runtime support and distributed
data structures were shown to be effective for writ-
ing portable parallel programs for asynchronous sim-
ulation. Future work includes the development of
an optimistic parallel implementation using the in-
frastructure described in this paper, application of
these data structures to other problems, and the au-
tomatic tuning of program and data structure pa-
rameters for improving performance.

References
[BCI0] Guy E. Blelloch and Siddhartha Chat-
terjee. VCODE: A data-parallel interme-
diate language. In Frontiers ’90, pages
471-480, College Park, MD, October
1990.

[BCF+93] Zeki Bozkus, Alok Choudhary, Geof-
frey Fox, Tomasz Haupt, and Sanjay
Ranka. A compilation approach for For-
tran 90D/HPF compilers on distributed
memory MIMD computers. In Lan-
guages and Compilers for Parallel Com-
puting, pages h1-h23, Portland, OR,
August 1993.

[Ble93] Guy E. Blelloch. NESL: A nested data-
parallel language (version 2.6). Tech-
nical Report CMU-CS-93-129, CMU
School of Computer Science, Pitts-
burgh, PA April 1993. Updated version

of CMU-CS-92-103, January 1992.

[BSS91] H. Berryman, J. Saltz, and J. Scroggs.
Execution time support for adaptive sci-
entific algorithms on distributed mem-
ory multiprocessors. Concurrenty:
Practice and Ezxperience, pages 159-178,

June 1991.

[CDGT93] David E. Culler, Andrea Dusseau,
Seth Copen Goldstein, Arvind Krishna-
murthy, Steven Lumetta, Thorsten von
Eicken, and Katherine Yelick. Parallel
programming in Split-C. In Supercom-
puting ’93, Portland, Oregon, November
1993.

Soumen Chakrabarti, Etienne Deprit,
Eun-Jin Im, Jeff Jones, Arvind Krish-
namurthy, Chih-Po Wen, and Kather-
ine Yelick. Multipol: A distributed

[CDT*95]

[CSS+91]

[FKOT91]

[Fox91]

[Hig93]

[HKT91]

[Jef85]

[KBY4]

[KC81]

data structure library. Technical Re-
port To appear, University of California
at Berkeley, Computer Science Division,

1995.

D. Culler, A. Sah, K. Schauser, T. von
Eicken, and J. Wawrzynek. Fine-
grain Parallelism with Minimal Hard-
ware Support: A Compiler-Controlled
Threaded Abstract Machine. In Proc. of
4th Int. Conf. on Architectural Support
for Programming Languages and Oper-
ating Systems, Santa-Clara, CA, April
1991.

Tan Foster, Carl Kesselman, Robert Ol-
son, and Steve Tuccke. Nexus: An
interoperability toolkit for parallel and
distributed computer systems. Tech-
nical Report ANL/MCS-TM-189, Ar-
gonne National Laboratory, 1991.

G. C. Fox. The architecture of problems
and portable parallel software systems.
Technical Report SCCS-134, Syracuse
Center for Computational Science, 1991.

High Performance Fortran Forum. High
Performance Fortran language specifica-
tion version 1.0. Draft, May 1993.

Seema Hiranandani, Ken Kennedy, and
Chau-Wen Tseng. Compiler opti-
mizations for Fortran D on MIMD
distributed-memory machines. In Su-
percomputing '91, New Mexico, Novem-

ber 1991.

D.R. Jefferson. Virtual time. ACM
Transactions on Programming Lan-
guages and Systems, 7(3), July 1985.

Scott Kohn and Scott Baden. A robut
parallel programming model for dy-
namic non-uniform scientific computa-
tions. In Proceedings of the Scalable
High Performance Computing Confer-
ence, Knoxville, TN, May 1994.

J. Misra K.M. Chandy. Asynchronous
distributed simulation via a sequence of
parallel computations. Communications

of the ACM, 24(11), April 1981.

[LKMS91]

[Lun94]

[SBWO1]

[SK91]

[VECGS92]

[WS93]

[WY93]

S. Lin, E. Kuh, and M. Marek-
Sadowska. SWEC: A stepwise equiva-
lent conductance simulator for cmos visi
In Proc. of European Design
Automation conference, February 1991.

circuits.

Steve Luna. Implementing an efficient
portable global memory layer on dis-
tributed memory multiprocessors. Mas-
ter’s thesis, Computer Science Divi-
sion, University of California at Berke-

ley, 1994.

Joel Saltz, Harry Berryman, and Janet
Wu. Multiprocessors and run-time com-
pilation. Concurrenty: Practice and Ex-
perience, December 1991.

Wei Shu and L.V. Kalé. Chare kernel
— a runtime support system for paral-
lel computations. Journal of Parallel
and Distributed Computing, 11:198-211,
1991.

Thorsten von Eicken, David E. Culler,
Seth Copen Goldstein, and Klaus Erik
Schauser. Active messages: a mecha-
nism for integrated communication and
computation. In International Sympo-
stum on Computer Architecture, 1992.

M.S. Warren and J.K. Salmon. A paral-
lel hashed oct-tree n-body algorithm. In
Supercomputing ‘93, pages 12-21, Port-
land, Oregon, November 1993.

Chih-Po Wen and Katherine Yelick.
Parallel timing simulation on a dis-
tributed memory multiprocessor. In In-
ternational Conference on CAD, Santa
Clara, CA, November 1993. An earlier
version appeared as UCB Technical Re-
port CSD-93-723.

normalized time

Effect of Message Aggregation on C2670 Effect of Message Aggregation on REGFILE

3.5 CM5
N
" 12PN
--- 8P v
3 \ Cm—— o Paragon
! \ \ = T T T
! - - Paragon P R i SP1
CM5
©0.8F
£
o
o
N
© -
£ 0.6
o
c
0.4
05 021
0 | | | | | | | | 0 | | | | | | | | |
0 500 1000 1500 2000 2500 3000 3500 4000 45 0 500 1000 1500 2000 2500 3000 3500 4000 4500
aggregation (bytes per message) aggregation (bytes per message)
Effect of Edge Capacity on C2670 Effect of Edge Capacity on REGFILE
3r 1.6
\ — CMs5
,
s N --- SP1
4 140)
p \
251 . N — — - Paragon
e Parag 4|
) .
p
2r 3
2 L, o 17
E p E
3 . 3
N5t . NO8[
[s [
£ 3 £
8 ‘ g
’ 0.6F
CM5, SP1 0.4k
0.5
0.2f
ol 0
40 60 80 100 120 140 160 180 200 220 240 0 50 100 150 200 250
edge capcacity (events per edge) edge capcacity (events per edge)

Figure 6: Impact of message aggregation and edge capacity on performance.

10

