
Cluster I/O with River: Making the Fast Case Common

Remzi H. Arpaci-Dusseau, Eric Anderson, Noah Treuhaft,
David E. Culler, Joseph M. Hellerstein, David Patterson, Kathy Yelick

Computer Science Division
University of California, Berkeley

We introduce River, a data-flow programming environment and I/O
substrate for clusters of computers. River is designed to provide max-
imum performance in the common case — even in the face of non-
uniformities in hardware, software, and workload. River is based on
two simple design features: a high-performancedistributed queue, and
a storage redundancy mechanism called graduated declustering. We
have implemented a number of data-intensive applications on River,
which validate our design with near-ideal performance in a variety of
non-uniform performance scenarios.

Scalable I/O systems form the basis for much of the high-
performance computing market. In recent years, manufactur-
ers have found that growth in customer appetite for I/O capacity
is outstripping Moore’s law [40]. Cluster systems are a key
component in the design of today’s most scalable data-intensive
architectures [1, 2, 17, 50].

A frustrating aspect of cluster I/O systems is that their
common-case performance is often a great deal worse than
their reported peak performance. This discrepancy arises from
various forms of performance heterogeneity across clustered
components. The simplest heterogeneity is in hardware: a
cluster may be composed of machines of differing speeds or
capacities. In principle, this problem can be solved byfiat, as is
done in packaged clusters such as IBM’s SP-2. More nefarious
are heterogeneities in software performance, which can arise
dynamically from a multitude of sources: unexpected operat-
ing system activity, uneven load placement, or a heterogeneous
mixture of operations across machines. Software heterogene-
ity is particularly hard to control, since it changes quickly over
time. Surprisingly, hardware heterogeneity is non-trivial to
control as well. For example, the inner cylinders of a disk have
much less bandwidth than the outer [36], and two apparently
identical disks can have different bandwidths depending on the
locations of unused “bad” disk blocks.

Presented at IOPADS ’99: Input/Output for Parallel and Dis-
tributed Systems, May, 1999, Atlanta, Georgia

Rather than attempting to prevent performance heterogene-
ity, we instead have designed an I/O system that takes it into
account as an inherent design consideration. In this paper
we describe River, a data-flow programming environment and
I/O substrate for clusters. The goal of River is to provide
common-case maximal performance to I/O-intensive applica-
tions. This is achieved using two basic system mechanisms: a
distributed queue (DQ) balances work across consumers of the
system, and a data layout and access mechanism called gradu-
ated declustering (GD) dynamically adjusts the load generated
by producers.

At the center of the River design is a high-performance
DQ implementation. River uses DQs to let data flow between
operators at autonomously adaptive rates: at any given time,
each producer places data into the DQ as fast as it can, and
each consumer takes data from the DQ as fast as it can. By
interposing DQs between operators in a data flow, load is natu-
rally balanced across consumers running at different rates. An
advantage of this simplicity is the lack of global coordination
required: consumers can change their rate autonomously over
time, without communicating with other clients. The result
is full-bandwidth, balanced consumption: all available band-
width is naturally utilized at all times, and all consumers of a
given set of data complete near-simultaneously.

The second important aspect of River is a flexible, re-
dundant disk layout and access mechanism called graduated
declustering. A generalization of a mechanism proposed for
early parallel database systems [26], GD allows the task of
data production to be shared among multiple producers in a
flexible fashion. GD mirrors large sequential collections on
the disks of different producers. During data flow, a pro-
ducer multiplexes its I/O bandwidth across all the data sets it
is currently handling, to ensure that it produces its share of the
global bandwidth available for each collection. The result is
full-bandwidth, balanced production: all available bandwidth
is utilized at all times, and all producers of a given data set
complete near-simultaneously.

In introducing River, we also describe its programming
model, and a graphical interface for composing River pro-
grams. These are based on traditional data-flow diagrams
composed of operators, similar to those used in database query
plans [24] and scientific data-flow systems [31, 46]. This in-
tuitive interface allows programmers to focus on application-
specific logic, while River transparently handles the issues of
high-performance I/O and parallelism within the application.

We demonstrate the River interface with a number of data-
intensive applications, and use them to validate the perfor-

1

0

1

2

3

4

5

6
Sl

ow
do

w
n

NOW-Sort + Single Anomaly

Best Case

Single Disk
Poor Layout

Single Disk
Hot Spot

Single Machine
Light CPU

Single Machine
Heavy CPU

Single Machine
Memory Load

Figure 1: NOW-Sort Under Perturbance. The graph
depicts the best-case performance of NOW-Sort, versus the
performance under slight disk, CPU, and memory perturba-
tions. All performance results are relative to the 8-node NOW-
Sort, which delivers data at a near-peak disk rate of 40 MB/s
throughout the run.

mance of the system. In all cases River provides near-ideal
performance in the face of severe performance perturbations.

To better motivate the problem of performance heterogene-
ity, we perform a simple experiment with NOW-Sort [2], a
high-performance parallel external sort for clusters. In the ex-
periment, the sort runs on 8 machines, and in each run, we
perform a slight perturbation of the sort on just one of those
machines. The results from these perturbation experiments are
shown in Figure 1.

As we can see from the graph, each of the perturbations on
just a single machine has a serious global performance effect.
If a singlefile on a single machine has poor layout (inner tracks
versus outer), overall performance drops by 50 percent. When
a single disk is a “hot spot”, and has a competing data stream,
performance drops by a factor of 3. CPU loads on any of the
machines decrease performance proportional to the amount
of CPU they steal. Finally, when the memory load pushes a
machine to page, a factor of five in performance is lost.

While it may be possible to build a system that avoids all of
these situations by balancing load across the system perfectly
at all times and meticulously managing all resources of the
system, we believe it is difficult. As system size and com-
plexity increase, carefully managing such a system becomes
near-impossible. Therefore, we are approaching the problem
in a different manner, by assuming the presence of such “per-
formance faults”, and providing a substrate that can operate
well in spite of them.

The rest of the paper is structured as follows. In Section 2, we
describe the design of the system and its current implemen-
tation, Euphrates. In Section 3, we validate the performance
properties of our dynamic I/O infrastructure, with measure-
ments of both distributed queues and graduated declustering.
We present initial application experience in Section 4. Related
work is found in Section 5. In Section 6, we present our plans
for future work, and in Section 7, we conclude.

This section describes the design of the River environment, as
well as the current implementation,Euphrates. First, we briefly
describe our hardware and software environment. Then, we
present the River data model: how data is stored and accessed
on disk. We continue by explaining the components of the
River programming model, including details of how a typical
River program is constructed. We conclude with a discussion.

The River prototype, Euphrates, currently runs on a cluster of
Ultra1 workstations connected together by the Myrinet local-
area network [9]. Each workstation has a 167 MHz Ultra-
SPARC I processor, two Seagate Hawk 5400 RPM disks (one
used for the OS and swap space in the common case), and
128 MB of memory. Solaris 2.6 is the operating system on
each machine, a modern multi-threaded UNIX [29].

All communication is performed with Active Messages
(AM), a second generation communication layer designed for
distributed computing [34]. AM exposes most of the raw
performance of Myrinet while providing support for threads,
blocking on communication events, and multiple independent
endpoints. Other fast message layers [39, 48, 49] do not support
blocking on communication events and thus require polling
the network interface to receive messages; boundless polling
consumes CPU cycles and is not appropriate for building an
I/O infrastructure such as River.

On a single disk, data is represented as a group of on-disk
records known as a collection. Each record has a set of named
fields, which can be of various types. This catalog of informa-
tion is kept as meta-data by the system.

Data can be accessed on disk as an unordered collection.
Unordered collections provide no ordering constraints between
records of the collection. Thus, an application reading such a
collection may receive records in an arbitrary order, subject to
optimizations by the system.

When ordering is desired by the application, data can be
accessed as a stream. A stream is an ordered set of records.
Thus, when an application writes a collection to disk as a
stream, the write order is preserved; applications accessing the
collection directly will receive the records in that order.

The Euphrates implementation uses the underlying Solaris
2.6 UNIX file system (UFS) to implement record collections.
To read from disk, we use either read() with directio()
enabled (an unbuffered read from disk), or the mmap() in-
terface, both of which deliver data at the raw disk rate for
sequential read access. Simple use of the read() interface
without directio() leads to double-buffering inside of the
file system, which is undesirable for most of our applications.
Writes to disk use the write() system call, with or without
directio() enabled.

When implemented on top of UFS, layout information is
not available, and therefore the optimizations that would be
possible with unordered collections are not currently imple-
mented in the disk manager. The next implementation of River
will include a disk manager on top of raw disk, in order to
exploit the range of scheduling optimizations that would thus
be enabled.

2

C 0 C 0

Fro
m

dis
k 3

Fro
m

dis
k 3

B/2

B/2

B/2

B/2

B/2

B

B/4

B/2 B B B B/2 B B

7B/8 7B/8 7B/8 7B/8

5B/82B/8 4B/83B/8

4B/8

Perturbation Perturbation

Without GD, clients 1 and 2 perceive an imbalance With GD, bandwidth is balanced to clients

C C C1 2 3

0 1 1 2 2 3 3 0

C C C1 2 3

0 1 1 2 2 3 3 0

B 3B/4 3B/4 B

2B/8 3B/8 4B/85B/8B/2B/4B/2

To
 cl

ien
t 0

To
 cl

ien
t 0

Figure 2: Graduated Declustering. These two diagrams depict two scenarios, without and with graduated declustering under a
perturbation. Unperturbeddisks normally deliver BMB/s of bandwidth, and the one perturbeddisk delivershalf of that, B/2. On the
left, the disk serving partitions 1 and 2 to clients is perturbed, and thus only half of its bandwidth is available to the application. Left
unchecked, the result is that clients 1 and 2 do not receive as much bandwidth as clients 0 and 3. On the right, the bandwidths from
each disk have been adjusted to compensate for the perturbation, as is the casewith graduated desclustering. With the adjustments,
each client receives an equal share of the available bandwidth.

Most of the applications in our system wish to access data
spread across multiple disks. To facilitate this, we provide the
abstraction of a parallel collection. This allows the grouping
of a set of single-disk collections into a single logical entity.
The parallel collection facility only tracks parallel meta-data,
such as the names and physical locations of each single-disk
collection that form the parallel collection, and any desired
ordering between the single-disk collections.

In Euphrates, the parallel collection meta-data is stored in
NFS. Because NFS provides no consistency guarantees un-
der concurrent access, all parallel meta-data operations are
serialized through a single process of the application. These
operations are rare (that is, they only occur when a file is be-
ing opened or created), and therefore are not a performance
bottleneck.

In large scale clusters, the presence of a data availability strat-
egy is important. Without one, data will frequently be unavail-
able due to disk and machine failures. In River, applications
that wish to have increased data reliability and availability
can choose to mirror each single-disk collection across disks
housed in different machines within the cluster.

We are interested in exploiting the redundant data con-
tained in mirrors to improve the consistency of application
performance. We do so by building on earlier work in [26],
in which the authors introduced chained declustering. The
key insight behind chained declustering is that, after the fail-
ure of one disk in a mirrored system, a read-only load can be
balanced evenly across the remaining, working disks. This
balance is achieved through a carefully-calculated distribution
of read requests to the mirror segments on the remaining disks.

We generalize this technique to what we call graduated
declustering in order to solve the performance consistency
problem. In the common case, all disks storing a mirrored

collection are functional, but each may offer a different band-
width over time (for reasons enumerated earlier) to any in-
dividual reader. Under traditional approaches to mirroring,
these variations are unavoidable because a reader will choose
one mirrored segment copy from which to read the entire seg-
ment. Such variations can lead to a global slowdown in parallel
programs, as slow clients complete later than fast ones.

To remedy this, we approach the problem somewhat differ-
ently. Instead of picking a single disk to read a partition from,
a client will fetch data from all available data mirrors, as illus-
trated in Figure 2. Thus, in the case where data is replicated on
two disks, disk 0 and disk 1, the client will alternatively send
a request for block 0 to disk 0, then block 1 to disk 1; as each
disk responds, another request will be sent to it, for the next
desired block.

However, this alone does not solve the problem. Gradu-
ated Declustering must provide each client that is reading a
set of collections an equal portion of the bandwidth available
to the application as a whole. Clients that receive less than
the expected bandwidth from one of the two disk mirrors must
receive more bandwidth from the other mirror as compensa-
tion. Thus, the implementation of graduated declustering must
somehow observe these bandwidth differences across clients
and adjust its bandwidth allocation appropriately.

The Euphrates implementation of GD uses a simple algo-
rithm to balance load amongst data sources. Each disk manages
two different segments of a parallel collection, and continually
receives feedback from two consumers as to the total band-
width that the consumers are receiving. When a performance
inequity between two clients is detected, the disk manager bi-
ases requests towards the lagging client, and thus attempts to
balance the rates at which the readers progress. An example
of the result of such a balancing is shown in the right-side of
Figure 2. There, both disks 0 and 2 compensate for a pertur-
bation to disk 1 by allocating 5/8 of their bandwidth to clients
1 and 2. The resulting bandwidths to each client are properly
balanced.

3

// module loop: get records + process
while ((msg = Get() != NULL) {

// operate on given message
rc = Operate(msg);

// conditionally pass message downstream
if (rc) Put(msg);

}
// indicate completion
return NULL;

Figure 3: Module API. This is a simple River module.
The module Get()s messages from upstream, performs some
operation on them by calling a user-defined Operate(), and
then (conditionally) Put()s messagesdownstream.

River provides a generic data flow environment for applica-
tions, similar to parallel database environments such as Vol-
cano [24]. Applications are constructed in a component-like
fashion into a set of one or more modules. Each module has
a logical thread of control associated with it, and must have at
least one input or output channel, often having one or more of
each. A simple example is a filter module, which gets a record
from a single input channel, applies a function to the record,
and if the function returns true, puts the data on a single output
channel.

Modules are connected both within a machine and across
machine boundaries with queues. A queue connects one or
more producers to one or more consumers and provides rate-
matching between modules. By dynamically sending more
data to faster consumers, queues are essential for adjusting the
work distribution of the system.

To begin execution of an application, a master program
constructs a flow. A flow connects the desired set of modules,
from source(s) to sink(s). Any time a single module is con-
nected to another, a queuemust be placed betweenthem. When
the flow is instantiated by the master program, the computation
begins, and continues until the data has been processed. Upon
termination, control is returned to the master program.

A module is the basic unit of programming in River. Modules
operate on records, calling Get() to obtain records from one
or more input channels, and then calling Put() to place them
onto one or more output channels. For convenience, we refer to
a set of records that is moving through the system as amessage.
Logically, each module is provided a thread of control. Thus, a
one-input, one-output module performs a simple loop: Get()
to obtain records from an upstream channel, operate on those
records, and then Put() to pass the records downstream, as
illustrated in Figure 3.

More complex modules may have more than one input or
output; in that case, they must specify the input/output number
as an argument to Get() or Put(). Non-blocking versions
of these interfaces are also available, as is the ability to perform
a Select(): this operation waits until one of a specified set
of channels is ready, and then returns control to the user.

In Euphrates, modules are written as C++ classes. In the
current implementation, each module is given its own thread of
control, which has both its benefits and drawbacks. The main

advantage of this approach is that applications naturally over-
lap computation with data movement; thus, the user is freed
from the burden of carefully managing I/O. However, thread
switches can be costly. To amortize this cost, modules should
pass data (a set of records) amongst themselves in relatively
large chunks. In our experience, this has not complicated mod-
ules in any noticeable fashion; thus, we felt that the inclusion of
complex buffer managementwas not worth the implementation
effort.

Queues connect multiple producers to multiple consumers,
both in the local (same machine) and distributed (different
machines) cases. During flow construction, queues are placed
between modules and messages are transmitted from produc-
ers to consumers. Modules that are placed on either side of
local or distributed queues are oblivious to the type of queue
with which they interact.

Messages in River may move arbitrarily through the sys-
tem, depending on run-time performance characteristics and
the constraints of the flow. Dynamic load balancing is achieved
by routing messages to faster consumers through queues that
have more than one consumer.

To improve performance, ordering may be relaxed across
queues. In a multi-producer queue, a consumer may receive
an arbitrary interleaving of messages from the producers. The
only ordering guarantee provided in a queue is point-to-point; if
a producer places message into queue before message ,
and if the same consumer receives both messages, it receives
before it receives . This ordering is necessary, for example,
to retain the ordering of a disk-resident stream. By attaching a
single consumer to the single producer of a stream, the ordered
property of the stream can be properly maintained.

In our implementation, local queues are data structures
shared between threads with the appropriate locking and sig-
nalling protocol. The Euphrates implementation of the DQ is
more interesting, and takes on two different flavors. In the
general case, we use a lightweight, randomized, credit-based
scheme to balance load across consumers. In this push-based
algorithm, each producer tracks the number of outstanding
messages sent to any consumer, and sends new messages ran-
domly only to consumers that have few messages currently
outstanding (less than a threshold value). This has the desired
behavior of automatically sending more records to nodes that
are consuming at higher rates, and can be implemented effi-
ciently: the randomized algorithm adds near-zero CPU over-
head on top of the normal message transfer costs.

In some cases, we have found that load balancing must
be provided for larger-than-record size units. For example,
after a sort module has sorted its input data, it may wish to
pass the entire sorted run to a disk write module, with the
order preserved (we will see this exact example in Section 4).
To provide this functionality, the DQ implementation can be
handed an arbitrarily large set of records; it then uses a pull-
based algorithm, with consumers querying producers for data,
to balance load. The randomized, push-based algorithm does
not work well in this case, because a single bad decision is
quite costly. The guarantee provided by this version of the DQ
is that a single consumer will receive the entire set of records,
in the order that it is given to the DQ. Thus, load balancing
occurs at the granularity of the large (potentially many MB)
unit handed to the DQ.

4

// simple copy program
Flow f;
Module *m1, *m2;
// instantiate module instances
m1 = f.Place("UFSRead", "file=in.1");
m2 = f.Place("UFSWrite", "file=out.1");
// attach read module to write
f.Attach(m1, m2);
// execute flow
f.Go();

Figure 4: FlowAPI. A simple reader to writer flow is shown.
The UFSRead module reads in collection “in.1”; its output
goes to the input of the UFSWrite module, which writes it to
disk under the name “out.1”.

To execute a program in the River environment, one or more
modules must be connected together to form a flow. A flow is a
graph from data source(s) to sink(s), with as many intermediate
stages as dictated by the given program.

There are three phases involved in instantiating a flow:
construction, operation, and tear-down. During construction,
amaster program specifies the global graph, describing where
and how data will flow, including which modules to use and
their specific interconnection. When the construction phase
is complete, the master program instantiates the flow. In the
operation phase, threads are created across machines as neces-
sary, and control is passed to each of the modules. The flow of
data begins at the data sources, and flows through the system
as specified by the graph, until completion.

Flow construction can be performed programmatically (a
flow API is provided) or graphically. The flow construction
API is quite simple: to add a node to a graph, the Place()
routine is called, specifying the name of the module and any
arguments it might take. For example, to read an on-disk col-
lection, the programmer might specify the UFSRead module,
with an argument of the filename, as shown in Figure 4.

Place() returns a reference to the module, which is then
used to attach modules together via a simple Attach() inter-
face, the interface used to specify graph edges. In the figure, a
simple copyflow is formed: both a Read and Write module are
placed in the flow, and then attached together. Attaching two
modules together places a queue between them. Modules can
have more than one input or output; in this case, the user must
specify extra arguments to the Attach() routine, to specify
which input to connect to which output.

Finally, to instantiate theflow,aGo() interface is provided,
which starts the threads, performs the necessary attachments,
and waits for their completion. An asynchronous version of
Go() is also available.

The flow description up to this point has been restricted to
single-machine flow specification, for the sake of simplicity.
To construct parallel flows across multiple machines, the pro-
grammer need only specify which nodes to place the various
modules upon; local and distributed queues are inserted where
appropriate, and when the program is run, it is spawned across
the nodes of the system using a simple remote execution mod-
ule, internal to the system. The user can add extra arguments
to the Attach() routine to specify details about remote con-
nections between producers and consumers: whether to use a
single -to- distributed queue, 1-to-1 distinct queues, or
an fully-connected graph.

In the Euphrates implementation, numerous languages can
be used to program flows. A C++ interface is available, but we
have found it overly cumbersome to re-compile codes for each
simple change to a flow. Therefore, we provide both Tcl and
Perl interfaces, allowing for the rapid assembly of flows in a
scripting language.

Finally, we have built a graphical user interface (GUI) for
specifying dataflow graphs, similar in spirit to Tioga [46]. The
GUI allows programmers to select modules from a module li-
brary and draw the data flow graph as desired. The user can
then execute the program, or generate the flow construction
code for later re-use. The GUI also allows variables to be
added to the program, thus enabling the user to easily con-
struct generic programs. In the example of the simple copy,
the user might choose to have the input and output collection
names as variables, and then generate a general-purpose copy
program. In general, we have found this simpler to use than
the programmatic interface, and less bug-prone.

We conclude the section with a discussion of the system, and
how we expect it will be used. The typical programmer writing
a new program will most likely spend their time programming
the individual modules; this is where the bulk of application
code should live. They will then use their modules and perhaps
some of the modules that come with the system in order to
construct a flow. We imagine that a user community interested
in similar problem areas would have one or more libraries of
standard modules that all would share, and that have been tuned
for high performance.

Achieving parallelism is then rather straight-forward; the
user must construct the flow either in a script or with the
GUI tool, and specify nodes on which to run; the system
will spawn modules across multiple nodes quite easily, and
generate the desired connections (queues, local or distributed)
between modules.

However, the focus of River is not simply enabling the con-
struction of high-performance, parallel, I/O-intensive applica-
tions; we seek to provide the necessary framework for building
performance-robust programs. The system provides one part
of the solution transparently to application writers, with the
graduated declustering algorithm. By enabling mirroring, ap-
plications automatically gain robustness to read perturbations.

However, the other component of River that provides per-
formance robustness is distributed queues, which must be in-
serted by the application writer where appropriate. In most
cases, where to place DQs depends on program semantics, and
therefore it is difficult to automate such a decision. In general,
DQs can be quite easily inserted wherever there is embarass-
ing parallelism; in those cases, producers place work into the
queue, and consumers take work from the queue, all at their
individual rates. The addition of DQs in other situations is
a bit more difficult, and requires a solid understanding of the
application.

Overall, the construction of performance-robust applica-
tions requires the application writer to construct and optimize
sequential modules, and describe a flow to connect them, in-
serting distributed queues where possible. By spending some
programmer effort on DQ placement, the user will gain in re-
turn a scalable application that runs well in the face of variable-
rate producers and consumers; indeed, a well-designed River
application will run with high performance across a set of ma-
chines with highly varying performance characteristics.

5

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30

Ba
nd

wi
dt

h
(M

B/
s)

Nodes

Distributed Queue Scaling

Ideal

DQ

Figure 5: Distributed Queue Scaling. In this experiment,
the scalability of the DQ is under scrutiny. During the run,
from 1 to 32 producersread data blocks from disk and put them
into the distributed queue, and 1 to 32 sources pull data from
the DQ. The ideal line shows the aggregate bandwidth that is
available from disk.

In this section, we perform experiments to validate the expected
performance properties of the system. First, we explore the
absolute performance and adaptability of the distributed queue.
The performance of the queue is crucial to the system, as this
is the primary mechanism for providing load balancing within
a flow. We will see that the distributed queue is effective in
balancing load across consumers, and moving more data to
faster consumers.

We then perform experiments on graduated declustering,
our performance enhancement for mirrored collections. Bal-
ancing work across consumers (via distributed queues) alone
does not solve the problem of achieving consistent perfor-
mance; when a single producer slows, performance of the
system drops proportionally. In this case, it is important for
the system to avoid the producer “hot-spot”. This is precisely
what GD transparently provides, using a simple distributed
algorithm to adapt to run-time perturbations of data sources.

First, we explore the scaling behavior of the distributed queue.
In the first experiment, we have the following set-up: data is
read from disks, put into a distributed queue, and consumed
by CPU sinks. We scale from 1 to 32. The results of this
scaling experiment are shown in Figure 5.

As the graph reveals, the scaling properties are near ideal.
Each disk is capable of delivering 5.45 MB/s. From 32 disks,
we thus would expect a peak read bandwidth of 174.4 MB/s.
With the data moving through the DQ, we achieve 168.6 MB/s,
or about 97 percent of peak. If the distributed queue is found to
have scaling problems at a given cluster size, we could design
a less aggressive algorithm, where each producer only sends
data to some subset of the consumers; we have not yet seen the
need for this. The performance when writing to disks through
a DQ (not shown) scales equally well.

0%

20%

40%

60%

80%

100%

0 2 4 6 8 10 12 14

Pe
rc

en
t o

f P
ea

k

Static

With DQ

Performance Cliff Reached
With Single Perturbation

CPU Nodes Perturbed

CPU Consumer Perturbation

Figure 6: DQ Read Under Perturbation. This figure shows
the percent of peak performanceachieved as consumerpertur-
bations are added into the system. Without a DQ to balance
load across unperturbed consumers, performance drops as
soon as a single consumer is slowed. With a DQ, performance
is unaffected until a large number of nodes are perturbed. A
CPUperturbationsteals 75%of the processor; the test consists
of 15 producers and 15 separate consumers.

We next examine the results when one or more consumers is
arbitrarily slower than the rest. This type of perturbation could
arise from dynamic load imbalance or hot spots in the system,
or could be due to the presence of CPUs or disks with different
performance capabilities.

Figure 6 shows the effect of slowing down 1 to 15 CPU
consumers both with and without a DQ, when reading from
1 to 15 disks. Without a DQ, work is pre-allocated across
consumers; thus, if a single consumer slows down, the perfor-
mance is as bad as if all consumers had slowed down (this is
labeled “static” for static allocation in the figure).

When a DQ is inserted between the producers (disks) and
consumers, more data flows to unperturbed consumers, thus
flowing around the hot spots in the system. Because the CPUs
are not fully utilized in the unperturbed case, there is no no-
ticeable performance drop-off under perturbation until 8 to 10
consumers are perturbed.

Whereas the previous experiment was a form of a parallel
read, the next experiment is a parallel write. In this experiment,
we place a DQ between CPU sources (which generate records)
and the disks in the system. The results of the write experiment
are shown in Figure 7.

Once again, the static allocation behaves quite poorly un-
der slight perturbation. In this case, however, the performance
when writing to disks through the DQ degrades immediately
under perturbation, gradually falling off; in fact, performance
becomes slightly worse than the static application when all 15
of the disks are under perturbation. The cause of the immedi-
ate degradation is that the disk bandwidth is fully utilized to
begin with, unlike the CPUs in the DQ read experiment above.
Thus, when a single disk of the system is perturbed, the total
bandwidth available is reduced. The difference is that with the
DQ, more data is sent to unperturbed disks, whereas the static
application does not adapt.

We have now demonstrated that the distributed queue has
the desired properties of balancing load among data consumers;
however, without mirroring, eachproducerof data has a unique

6

0%

20%

40%

60%

80%

100%

0 2 4 6 8 10 12 14

Pe
rc

en
t o

f P
ea

k With DQ

Static

Performance Cliff Reached
With Single Perturbation

Graceful Degradation

Disk Nodes Perturbed

Disk Consumer Perturation

Figure 7: DQWrite Under Perturbation. This figure shows
the effect of disk perturbation during writes, and how the DQ
dynamically adapts. The systemunder test consists of 15 disks.
Instead of falling off the performancecliff, the DQ routes data
to wherebandwidth is available, and thus gracefully degrades.
In this case, each perturber continually performs sequential,
large-block, writes to the local disk, stealing roughly half of
the available bandwidth.

collection of records, and to complete a flow, must deliver that
data to the consumers. Thus, when the producers are the
bottleneck in the system (as is often the case when streaming
through large data sets), slowing a single producer will lead
to a large global slowdown, as the program will not complete
until the slow producer has finished. This “producer” problem
is the exact problem that graduated declustering attempts to
solve.

We now describe our experimental validation of the graduated
declustering implementation. We find that both the absolute
performance and behavior under perturbations is as expected
in our initial implementation.

The performance of graduated declustering under reads, with
no disk perturbation, is slightly worse than the non-mirrored
case. This is a direct result of our design, which always fetches
data from both mirrors instead of selecting a single one, in order
to be ready to adapt when performance characteristics change.
Multiplexing two streams onto a single disk has a slight cost,
because a seek must occur between streams. Increasing the
disk request size to 512KB or 1MB amortizes most of the cost
of the seek, and thus we achieve 93 percent of the peak non-
mirrored bandwidth, as seen in Figure 8. Writes, each of which
must go to two disks, incur the same problem.

The real strengths of GD come forth for read-intensive work-
loads, such as decision support or data mining. In these cases,
applications reading from a non-adaptive mirroring system
would slow to the rate of the slow disk of the system. With
GD, the system shifts the bandwidth allocation per disk, and
thus each consumer of the data receives data at the same rate.

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14 16

Ag
gr

eg
at

e
Ba

nd
wi

dt
h

(M
B/

s)

Ideal

GD

Nodes

Graduated Declustering Scaling

Figure 8: Graduated Declustering Scaling. The graphs
shows the performance of GD under scaling. The only perfor-
mance loss is due to the fact that GD reads actively from both
mirrors for a given segment; thus, a seek cost is incurred, and
roughly 93% of peak performance is delivered.

0%

20%

40%

60%

80%

100%

0 2 4 6 8 10 12 14

Pe
rc

en
t o

f P
ea

k
With GD

Static

Disk Nodes Perturbed

Graduated Declustering Under Perturbation

Figure 9: GD Under Read Perturbation. The graphs shows
the performanceof GD under read perturbation. Performance
degrades slowly for the GD case, whereas a typical non-
adaptive mirrored system suffers immediate slowdown. Each
perturber is a competing read-stream to disk.

The results of a 28-machine experiment are shown in Fig-
ure 9. In this scenario, half of the machines serve as disk nodes,
and the other half serve as data consumers. As explained above,
the performance of GD mirroring as compared to no mirroring
is slightly worse in the unperturbed case. However, a single
perturbation slows the application on the non-GD system to
the bandwidth of the slow disk, which in this case delivers data
at roughly half of peak rate due to a single competing stream.
With GD, performance degrades slowly, spreading available
bandwidth evenly across consumers. However, when all disks
are equally perturbed, the performance of GD once again dips
below the non-GD system, again due to the overhead of seeking
between multiple streams.

Finally, perturbing a write stream to a collection and its mir-
ror has the expected effect of slowing the write to the speed of
the slower disk. In some sense, this represents the fundamental
cost of using mirroring; applications that write out scratch data
or other data of lesser value should not use mirroring because
of this potential performance cost.

7

We now describe some initial application experience. We be-
gin with an example of how an unmodified, sequential program
can use the River infrastructure. Then, we proceed with two
parallel applications that we have written, a parallel sort and
a parallel hash-join. The section focuses on how application
writers add robustness into their applications via distributed
queues, and therefore does not show performance with mirror-
ing enabled (as mirroring would be transparent to the user).

The first application we examine is a trace-driven simulator,
a second generation version of a file system simulator used
in [35]. This complex, sequential program simulates multiple
file system layout policies, buffer management, and includes a
complete disk simulator. This application uses River as a fast
data source; the simulator did not have to be modified in order
to do so.

To access data in the River system, the simulator loads
data into the River system via a simple copy-in script, and
then accesses it with a copy-out script. The latter constructs
a flow from a record collection to standard output, which is
piped into the standard input of the simulator. In this case,
the main benefit of River is the use of a fast, switch-based
network between application and disk. Before using River, the
simulator accesseddata via an NFS file server over an Ethernet
shared network. However, because there is no parallelism in
the application, distributed queues can not be used to provide
robust performance.

The next set of experiments involve a more complicated ap-
plication, external sorting. In this case as with the next, the
program has been written entirely within the River environ-
ment. Sort is a good benchmark for clustered systems because
its performance is largely determined by disk, memory, and
interconnect bandwidth. We compare an external sort built in
the River framework to an “ideal” statically partitioned sort; by
ideal we mean that the parallel sort reads in data from disk at
full disk bandwidth, takes zero time to perform the in-memory
sort, and then writes back to disk at full bandwidth, all with
no overhead to parallelism. For the sake of simplicity, we only
consider a single-pass sort (where the records are read into
memory, sorted, and written to disk in a single pass); eventu-
ally, we plan to extend our work to include two-pass sorting,
which places more severe memory management demands on
the system.

Figure 10 presents the flow of data in the simple version
of external sort in River (the flow is quite similar to NOW-
Sort [2]). First, data begins as an unsorted parallel collection
on a number of disks. Data is read in on each disk node via
the disk read module (), and then passed to a partitioning
module (). The partitioning modules perform a key-range
partitioning of the data; thus, each partitioning module reads
the top few bits of each record to determine which sorter ()
module should be sent a particular record. When a sorter
module has received all of the input, it sorts the data, and begins
streaming it to the disk write module (), which proceeds to
write the data out to disk as a stream (thus preserving order).
Thus, the application proceeds in three phases: read/partition,
sort, and write.

1 2

D

D

D

D P

P

P

P

Simple Single-Pass External Sort

S

S

S

S

D

D

D

D

R

R

R

R

W

W

W

W

Figure 10: Parallel External Sort in River. This figure
depicts the logical data flow in a single-pass external sort.
Data proceeds from disk into a set of static partitioners, which
split data (based on a key range in each record) across a set
of sort modules. When the data has been read in, the sort
modules sort entirely in parallel, and hand data to the write
modules, which send them to disk as an ordered stream. The
two markers, a circled 1 and 2, indicate two points where the
flow could be altered to add robustness, as discussed below.

First, we discuss the scaling behavior of the sort. Figure 11
shows the result of scaling the River sort to 14 machines.
The graph compares the River sort to the idealized, statically-
partitioned parallel sort. The performance of the sort in the
River framework begins at around 90% of peak efficiency, and
drops slightly to 86% at 14 nodes. The majority of the inef-
ficiency can be attributed to a poorly tuned in-memory sort,
which contributes to 10% of the total elapsed time. Even with
the un-tuned, in-memory, sort, we learn from this graph that it
is relatively easy to build a high-performance, non-trivial appli-
cation that does not lose much efficiency inside the framework.
Further, the application does not have to write a single line of
code to manage I/O. Qualitatively, all the application writer
has to write is the partitioning module and the sort module;
scaling to a parallel sort is then just a matter of constructing
the proper flow.

However, as it stands, the simple River parallel sort is not
robust to performance perturbations. With graduated declus-
tering, the sort can tolerate read perturbation. Here, we focus
on the read/partition and write phase of the sort, both of which
have potential for performance robustness.

First, we examine whether we can perturb the partition
modules and still achieve reasonable performance. To add a
level of robustness to the partition phase, we insert a distributed
queue between the disk read modules and the partitioners (la-
beled with a circled 1 in Figure 10). Because the sort is par-
titioning the data, there is no order yet imposed at this stage
of the sort, and therefore inserting the distributed queue only
changes the performance characteristics of the sort, not the
correctness.

Figure 12 shows the result of perturbing the partitioner
modules. In this experiment, the disk modules and sort mod-
ules are placed on one set of 14 machines, and the partitioners
are placed on another set of 14 machines (28 total). When
perturbations are applied to the partitioners, other partition
modules take over the slack, until the system is overloaded,
degrading slowly after 8 of the 14 partition nodes are per-
turbed.

The other location in the flow that can be modified to avoid

8

0%

20%

40%

60%

80%

100%

2 4 6 8 10 12 14

Pe
rc

en
t o

f P
ea

k

Nodes

Ideal Static Sort

River Sort

Sort Scalability

Figure 11: Parallel External Sort Scaling. This figure shows
the scaling behavior of the sort built in the River framework,
as compared to an idealized statically-partitioned sort. The
River sort scales well; its only deficiency is an under-tuned
in-memory sort.

run-time perturbations is between the sort modules and the
disk write modules, labeled with a 2 in Figure 10. Our desire
is to tolerate one or more disks slowing down during the write
phase. However, we can not simply move records arbitrarily
among the different disks; we must preserve the set of sorted
partitions as generated by each sort module. Thus, instead
of balancing load across the disks at the record-level, we can
balance load at a higher level of granularity, by dynamically
deciding where to place each sorted partition.

In order to balanceload among consumers with data from
producers, there must be more than data items produced.

In its original form, the sort allocates a single sort module per
producer (and thus per consumer); to remedy this, and allow
for load balancing at the disks, we instead allocate sort
modules, where is a small constant. Note that this produces a
slightly modified output, in that there are more sorted partitions.

The performance of load balancing sorted-runs under disk
perturbation is shown in Figure 13. As expected, by writ-
ing runs through the DQ, performance degrades much more
gracefully than with the static allocation. However, under full
perturbation, the performance is lower than expected; in this
case, the overhead of the current implementation results in only
40% of peak performance, roughly 10% lower than expected.

Hash-join is another important database operation, and is used
extensively in decision-support benchmarks such as TPC-D.
Hash-join takes two collections of records as input, and outputs
all pairs that have equal values on the join key. Both one-pass
and two-pass variants exist [45, 28]: the one pass algorithm
is suitable for use when the smaller collection fits into the
aggregate cluster memory.

For simplicity, we discuss the one-pass hash join. Figure 14
shows the flow of data. In the first phase, the smaller collection
(or building collection, because a hash table will be built over
it) is read from disk, partitioned using a hash function across
nodes, and internally hashed inside each join module (labeled

in the diagram) to prepare for the join phase. In the second
phase, the second (probing) collection is read from disk, and
partitioned across nodes via the same hash function. As records
pass into the join module, matching records from the building
collection are found, and the output proceeds immediately to

0%

20%

40%

60%

80%

100%

0 2 4 6 8 10 12 14

Pe
rc

en
t o

f P
ea

k

Ideal Static Sort

River Sort

Nodes Perturbed

Sort With Partition Perturbation

Figure 12: Perturbing the Sort Partitioner. This figure
shows the sort when the partition modules are perturbed. The
disk and sort modules run on one set of 14 machines, and
the partition modules run on another set. The River sort is
compared to a “perfect” sort that is statically partitioned.
Each perturbation steals 75 percent of the CPU.

0%

20%

40%

60%

80%

100%

0 2 4 6 8 10 12 14

With DQ

Static

Pe
rc

en
t o

f P
ea

k

Disks Perturbed

Sort with Write Perturbation

Figure 13: Perturbing the Sort Writer. This figure shows
performancewhenwriters areperturbedduring thewrite phase
of the sort. The runs are on one set of 14 machines, and are
writing to disks on a separate set of 14 machines. In this case,
each perturbation is a competing write-stream to disk.

disk. Thus, during this phase, both reading of the second
collection and writing of the output will operate concurrently.

The addition of distributed queues in the hash join is quite
similar to that of the sort. A queue can be placed between data
sources and partitioners,allowing faster partitioners to partition
more data. After the join is performed, if the output relation
is not kept in hash form, another DQ can be inserted, easily
balancing load across the disks. If the application wishes to
keep the output records in hashed partitions, a situation similar
to the balancing of sorted runs in the external sort could be
employed.

More interestingly, the hash-join can avoid performance
perturbations to the join modules by using replication. If each
building collection is replicated to two or more nodes, each
record that is partitioned during the probing phase can dynam-
ically choose between sites via a DQ.

Because of some functionality limitations of our current
infrastructure, we do not yet have performance numbers for
hash-join at scale. However, our initial results (on only 4
machines) are promising.

9

1 2

D

D

D

D P

P

P

P

D

D

D

D

R

R

R

R

W

W

W

W

Simple One-Pass Hash

J

J

J

J

Figure 14: Parallel External Hash in River. This figure
depicts the logical data flow in a single-pass hash-join. The
solid lines indicate the path of the first relation, from disks,
into the hash-partition modules (), and then into the hash-
join modules (). The dashed lines indicate the path of the
second relation, similar to the path of the first relation. When
the second relation passes through the hash-join modules, the
join is performed, and the output relation is generated.

River relates to work from a number of often distinct areas: file
systems, programming environments, and database research.
In this section, we discuss work from the three areas.

High-performance parallel file systems are abundant in the
literature: PPFS [27], Galley [37], Vesta [16], Swift [10],
CFS [38], SFS [33], and the SIO specification [6]. However,
most assume performance-homogeneousdevices; thus, perfor-
mance is dictated by the slowest component in the system.

Further, devoid of a specific programming model, applica-
tions could be constructed in an single-program, multiple-data
(SPMD)-like fashion; thus, even if the parallelfile system could
deliver consistent high-performance, it would go wasted inside
of a rigidly-designed program.

More advanced parallel file systems have specified higher-
level interfaces to data via collective I/O (a similar concept is
expressed with two-phase I/O) [30, 13]. In the original pa-
per, Kotz found that many scientific codes show tremendous
improvement by aggregating I/O requests and then shipping
them to the underlying I/O system; the I/O nodes can then
schedule the requests, and often noticeably increase delivered
bandwidth. However, because requests are made by and re-
turned to specific consumers, load is not balanced across those
consumers dynamically. Thus, though these types of systems
provide more flexibility in the interface, they do not solve the
problems we believe are common in today’s clustered systems.

Finally, there has been recentfile-system work extolling the
virtue of “adaptive” systems [35, 44]. As hardware systems
increase in complexity, it can be argued that more intelligent
software systems are necessary to extract performance from
the underlying machine architecture. Whereas some of these
systems employ off-line reorganization to improve global per-
formance [35], the goal of River is balance load on-line (at
run-time). However, long-term adaptation could also be useful
in our system.

There are a number of popular parallel programming envi-
ronments that support the SPMD programming style, includ-
ing messaging passing environments such as MPI [47] and
PVM [21], as well as explicit parallel languages, such as Split-
C [18]. These packages all provide a simple model of par-
allelism to the user, thus allowing the ready construction of
parallel applications. However, none provide any facility to
avoid run-time perturbations or adapt to hardware devices of
differing rates. Our own experience in writing a parallel, ex-
ternal sort in Split-C led us to realize some of the problems
with the SPMD approach; while it was possible to run the sort
well once (NOW-Sort broke the world record on two database-
industry standard sorting benchmarks), it was difficult to attain
a high-level of performance consistently [2, 3].

There have been many parallel programming environments
that are aligned with our River design philosophy of run-time
adaptivity. Some examples include Cilk [7], Lazy Threads [23],
and Multipol [12]. All of these systems balance load across
consumers in order to allow for highly-irregular, fine-grained
parallel applications.

The main difference between River and the systems above
is the granularity of communication. Because River limits itself
to I/O workloads, data is pushed through the interconnect in
large-sized blocks. All of these other systems are run-times for
general-purpose parallel programming, with a focus on fine-
grained or irregular applications. On today’s clusters, latency
to remote memory is much higher than latency to local memory,
perhaps by two orders of magnitude (10 microseconds versus
100 nanoseconds). This forces locality to be the dominant
issue in many of the systems. However, remote I/O bandwidth
is no worse than local I/O bandwidth; hence, while difficult to
hide remote memory latency, I/O data can be pushed through
the system with little cost. Further, none of these systems
attempt to deal with the problem of slow producers, which is
important in our environment.

Perhaps more similar to the River environment is Linda,
which provides a shared, globally-addressable, tuple-space to
parallel programs [11, 22]. Applications can perform atomic
actions on tuple-space, inserting tuples, and then querying the
space to find records with certain attributes. Because of the
generality of this model, high performance in distributed envi-
ronments is difficult to achieve [4]. Thus, while the distributed
aspects of River could be built on top of Linda, they would
likely suffer from performance and scaling problems.

Perhaps most relevant to River is the large body of work on
parallel databases. Data flow techniques are well-known in
the database literature [19], as it stems quite naturally from the
relational model [14].

One example of a system that takes advantageof unordered
processing of records is the IBM DB2 for SMPs [32]. In this
system, shared data pools are accessed by multiple threads,
with faster threads acquiring more work. This is referred to
as “the straw model”, because each thread “slurps” on its data
straw at a (potentially) different rate. Implementing such a sys-
tem is quite natural on an SMP; a simple lock-protected queue
will suffice, modulo performance concerns. With River, we
argue that this same type of data distribution can be performed
on a cluster, due to the bandwidth of the interconnect.

There are a number of parallel databases found in the liter-
ature, including Gamma [15], Volcano [24], and Bubba [20].

10

These systems all use similar techniques to distribute data
among processes. Both the Gamma split table, Volcano ex-
change operators, and a generalized split table known as a
“river” in [5], are used to move data between producers and
consumers in a distributed memory machine; however, all use
static data partitioning techniques, such as hash partitioning,
range partitioning, or round robin. These functions all do not
adapt at run-time to load variations among consumers.

Current commercial systems, such as the NCR TeraData
machine, exclusively use hashing to partition work and achieve
parallelism. A good hash function has the effect of dividing
the work equally among processors, providing consistent per-
formance and achieving good scaling properties. However, as
Jim Gray recently said of the TeraData system, “The perfor-
mance is bad, but it never gets worse” [25]. Consistency and
scalability were the goals of the system, perhaps at the cost of
getting the best use of the underlying hardware.

In the future, there are many research areas which we wish
to explore. The first three of these are enhancements to the
system infrastructure, and will serve to move the system from
the realm of a system for expert programmers to one more
easily used.

Process and Data Placement. Process placement and
data placement are two important decisions which are
currently determined entirely by the user in River. In
the ideal system, such decisions would be automated,
perhaps by a higher-level entity such as a compiler or
query planner.

Process and Data Migration. River currently moves
data through the system quite effectively. Initial expe-
rience suggests the feasibility of code migration, which
would also improve the dynamic performance properties
of the system. Long-term data migration would also be
useful; in this, short-term locally optimal placement de-
cisions could be re-evaluated and perhaps result in data
movement to optimize for current usage. This would
especially be useful

Application Fault Tolerance. The ultimate goal is
to write applications to the River interface that not only
have robust performance, but also can continue operation
under machine failure, similar to work in other dynamic
programming environments [8, 43]. Some form of auto-
matic check-pointing may be the solution, as suggested
in [5].

We also believe River is well-suited to a large class of ex-
ternal, distributed applications, including traditional scientific
codes and perhaps multimedia programs as well. Some evi-
dence for this exists in the literature about Volcano [51], where
scientific data-intensive applications are programmed and op-
timized in the Volcano data-flow environment. We plan on
exploring how to add robust performance features into these
types of applications.

Finally, we are developing simple models of how various
“performance faults” should affect the system. With well-
developed analytical models, we will be able to easily compare
the performance of our system versus the theoretical ideal in
any given perturbation scenario.

As hardware and software systems spiral in size and complex-
ity, systems that are designed for controlled environments will
experience serious performance defects in real-world settings.
This has long been realized in the area of wide-area network-
ing, where the end-to-end argument [42] pervades the design
methodology of protocol stacks such as TCP/IP. In such sys-
tems, it is clear that a globally-controlled, well-behaved envi-
ronment is not attainable; therefore, applications in the system
treat it as a black box, adjusting their behavior dynamically
based on feedback from the system to achieve the best possible
performance under the current circumstances.

Complexity has slowly grown beyond the point of man-
ageability in smaller distributed systems as well. Comprised
of largely autonomous, complicated, individual components,
clusters exhibit many of the same properties (and hence, the
same problems) of larger scale, wide-area systems. This prob-
lem is further exacerbated as clusters move towards serving as
a general-purpose computational infrastructure for large orga-
nizations. As resources are pooled into a shared computing
machine, with hundreds if not thousands of jobs and users
present in the system, it is clearly difficult, if not impossible,
to believe that the system will behave in an orderly fashion.

To address this increase in complexity and the correspond-
ing decrease in predictability, we introduce River, a substrate
for building I/O-intensive cluster applications. River is a con-
fluence of a programming environment and an I/O system; by
extending the notion of adaptivity and flexibility from the low-
est levels of the system up into the application, River programs
can reliably deliver high performance. Even when system re-
sources are over-committed, performance of applications writ-
ten in this style will degrade gracefully, avoiding sudden (and
often frustrating) prolongations in expected run time.

From our initial study of applications, we found that avoid-
ing perturbations among consumers is relatively straight-forward
via distributed queues. One important issue in balancing load
is the granularity of ordering required by the applications. The
most fine-grained applications (those that can balance load on
the level of the individual records) are the simplest to construct
in a performance-robust manner. While distributed queues
have proven excellent as load balancers, they do require the
programmer to insert them where appropriate in the flow.

Avoiding perturbations at the producers is the other prob-
lem solved by River, with graduated declustering. By dynami-
cally shifting load away from perturbed producers, the system
delivers the proper proportion of available bandwidth to each
client of the application.

For high-performance I/O in clusters, getting consistent
performance is easy (it can always be bad); getting peak per-
formance is a matter of persistence (one good run when every-
thing is “just right”); getting both is the goal of the River I/O
environment.

Source code is available upon request.

First and foremost, we would like to thank Jim Gray for all of his
advice and encouragement. We’d also like to thank Alan Mainwaring
for his work on and support of Active Messages; it is the sine qua
non of our work. Many thanks to the anonymous reviewers for all of
their helpful comments. Finally, thanks to Andrea Arpaci-Dusseau,
Amin Vahdat, and the I-Store group at Berkeley for suggestions that
improved the presentation and content of the paper.

11

This work was funded in part by DARPA F30602-95-C-0014,
DARPA N00600-93-C-2481,NSF CDA 94-01156,NASA FDNAGW-
5198, and the California State MICRO Program.

[1] Supercomputers: Plug and Play. The Economist, November
1998.

[2] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, D. E. Culler, J. M.
Hellerstein, and D. A. Patterson. High-Performance Sorting on
Networks of Workstations. In SIGMOD ’97, May 1997.

[3] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, D. E. Culler, J. M.
Hellerstein, and D. A. Patterson. Searching for the Sorting
Record: Experiences in Tuning NOW-Sort. In SPDT ’98, Aug.
1998.

[4] H. E. Bal, M. F. Kaashoek, and A. S. Tanenbaum. Orca: A Lan-
guage for Parallel Programming of Distributed Systems. IEEE
Transactions on Software Engineering, 18(3):190–205, Mar.
1992.

[5] T. Barclay, R. Barnes, J. Gray, and P. Sundaresan. Loading
Databases Using Dataflow Parallelism. SIGMOD Record (ACM
Special Interest Group on Management of Data), 23(4):72–83,
December 1994.

[6] B. Bershad, D. Black, D. DeWitt, G. Gibson, K. Li, L. Peterson,
and M. Snir. Operating system support for high-performance
parallel I/O systems. Technical Report CCSF-40, Scalable I/O
Initiative, Caltech Concurrent Supercomputing Facilities, Cal-
tech, 1994.

[7] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou. Cilk: An Efficient Multithreaded
Runtime System. In Proceedings of the 5th Symposium on Prin-
ciples and Practice of Parallel Programming, July 1995.

[8] R. D. Blumofe and P. A. Lisiecki. Adaptive and Reliable Par-
allel Computing on Networks of Workstations. In USENIX,
editor, 1997 Annual Technical Conference, January 6–10, 1997.
Anaheim, CA, pages 133–147, Berkeley, CA, USA, Jan. 1997.
USENIX.

[9] N. Boden, D. Cohen, R. E. Felderman, A. Kulawik, and C. Seitz.
Myrinet: A Gigabit-per-second Local Area Network. IEEE Mi-
cro, February 1995.

[10] L.-F. Cabrera and D. D. E. Long. Swift: Using distributed disk
striping to provide high I/O data rates. Computing Systems,
4(4):405–436, Fall 1991.

[11] N. J. Carriero. Implementation of tuple space. PhD thesis, De-
partment of Computer Science, Yale University, December1987.

[12] S. Chakrabarti, E. Deprit, E.-J. Im, J. Jones, A. Krishnamurthy,
C.-P. Wen, and K. Yelick. Multipol: A Distributed Data Structure
Library. Technical Report CSD-95-879, University of California,
Berkeley, July 1995.

[13] A. Choudhary, R. Bordawekar, M. Harry, R. Krishnaiyer, R. Pon-
nusamy,T. Singh, and R. Thakur. PASSION: parallel and scalable
software for input-output. Technical Report SCCS-636, ECE
Dept., NPAC and CASE Center, Syracuse University, September
1994.

[14] E. F. Codd. A Relational Model of Data for Large Shared Data
Banks. Communicationsof the ACM, 13(6):377–387, June 1970.
Also published in/as: ‘Readings in Database Systems, 3rd Edi-
tion’, M. Stonebraker and J. Hellerstein, Morgan-Kaufmann,
1998, pp. 5–15.

[15] G. Copeland, W. Alexander, E. Boughter, and T. Keller. Data
Placement in Bubba. SIGMOD Record (ACM Special Interest
Group on Management of Data), 17(3):99–108, Sept. 1988.

[16] P. F. Corbett and D. G. Feitelson. The Vesta parallel file sys-
tem. ACM Transactions on Computer Systems, 14(3):225–264,
August 1996.

[17] T. P. Council. TPC-D Individual Results, 1998.
http://www.tpc.org/results/tpc d.results.page.html.

[18] D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy,
S. Lumetta, T. von Eicken, and K. Yelick. Parallel Programming
in Split-C. In Proceedings of Supercomputing ’93, pages 262–
273, 1993.

[19] D. DeWitt and J. Gray. Parallel database systems: The future
of high-performance database systems. Communications of the
ACM, 35(6):85–98, June 1992.

[20] D. J. DeWitt, S. Ghandeharizadeh, and D. Schneider. A Per-
formance Analysis of the Gamma Database Machine. SIGMOD
Record (ACM Special Interest Group on Management of Data),
17(3):350–360, Sept. 1988.

[21] G. Geist andV. Sunderam. The Evolution of the PVM Concurrent
Computing System. In COMPCON, February 1993.

[22] D. Gelernter, N. Carriero, S. Chandran, and S. Chang. Parallel
programming in Linda. In D. Degroot, editor, 1985 International
Conference on Parallel Processing, pages 255–263, 1985.

[23] S. C. Goldstein, K. E. Schauser, and D. E. Culler. Lazy Threads:
Implementing a Fast Parallel Call. Journal of Parallel and Dis-
tributed Computing, 37(1):5–20, Aug. 1996.

[24] G. Graefe. Encapsulation of Parallelism in the Volcano Query
Processing System. SIGMOD Record (ACM Special Interest
Group on Management of Data), 19(2):102–111, June 1990.

[25] J. Gray. What Happens When Processors Are Infinitely Fast And
Storage Is Free? Invited Talk: 1997 IOPADS, November 1997.

[26] H.-I. Hsiao and D. DeWitt. Chained Declustering: A new
availability strategy for multiprocessor database machines. In
Proceedings of 6th International Data Engineering Conference,
pages 456–465, 1990.

[27] J. Huber, C. L. Elford, D. A. Reed, A. A. Chien, and D. S.
Blumenthal. PPFS: A high performance portable parallel file
system. InProceedingsof the 9th ACM InternationalConference
on Supercomputing, pages 385–394,Barcelona, July 1995. ACM
Press.

[28] M. Kitsuregawa, H. Tanaka, and T. Moto-Oka. GRACE: Rela-
tional algebra machine based on hash and sort — its design con-
cepts. Journal of the Information Processing Society of Japan,
6(3):148–155, 1983.

[29] S. Kleiman, J. Voll, J. Eykholt, A. Shivalingiah, D. Williams,
M. Smith, S. Barton, andG. Skinner. Symmetric Multiprocessing
in Solaris 2.0. In Proceedings of COMPCON Spring ’92, 1992.

[30] D. Kotz. Disk-directed I/O for MIMD multiprocessors. In
Proceedings of the 1994 Symposium on Operating Systems De-
sign and Implementation, pages 61–74. USENIX Association,
November 1994. Updated as Dartmouth TR PCS-TR94-226 on
November 8, 1994.

[31] S. Kubica, T. Robey, and C. Moorman. Data parallel program-
ming with the Khoros Data Services Library. Lecture Notes in
Computer Science, 1388:963–973, 1998.

[32] B. Lindsey. SMP Intra-Query Parallelism in DB2 UDB. Database
Seminar at U.C. Berkeley, February 1998.

[33] S. J. LoVerso, M. Isman, A. Nanopoulos, W. Nesheim, E. D.
Milne, and R. Wheeler. sfs: A parallelfile system for the CM-5. In
Proceedingsof the 1993 SummerUSENIX TechnicalConference,
pages 291–305, 1993.

[34] A. Mainwaring and D. Culler. Active Message Applications
Programming Interface and Communication Subsystem Organi-
zation. Technical Report CSD-96-918, University of California
at Berkeley, October 1996.

[35] J. N. Matthews, D. Roselli, A. M. Costello, R. Y. Wang, and
T. E. Anderson. Improving the performance of log-structured
file systems with adaptive methods. In Proceedings of the 16th
SymposiumonOperatingSystemsPrinciples (SOSP-97), volume
31,5 of Operating Systems Review, pages 238–251, Saint-Malo,
France, October5–8 1997. ACM SIGOPS, ACM Press.

12

[36] R. V. Meter. Observing the Effects of Multi-Zone Disks. In
Proceedings of the 1997 USENIX Conference, Jan. 1997.

[37] N. Nieuwejaar and D. Kotz. The Galley parallel file system.
In Proceedings of the 10th ACM International Conference on
Supercomputing, pages 374–381, Philadelphia, PA, May 1996.
ACM Press.

[38] B. Nitzberg. Performance of the iPSC/860 Concurrent File Sys-
tem. Technical Report RND-92-020, NAS Systems Division,
NASA Ames, December 1992.

[39] S. Pakin, M. Lauria, and A. Chien. High Performance Messag-
ing on Workstations: Illinois Fast Messages (FM) for Myrinet.
In Proceedings of the 1995 ACM/IEEE SupercomputingConfer-
ence, December 3–8, 1995, San Diego Convention Center, San
Diego, CA, USA. ACM Press and IEEE Computer Society Press,
1995.

[40] G. Papadopolous. Untitled. Talk at Winter NOW Retreat, July
1997.

[41] D. M. Ritchie. A Stream Input-Output System. BLTJ, 63(8, Part
2):1897–1910, October 1984.

[42] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-End Arguments
in System Design. ACM Transactions on Computer Systems,
pages 277–288, November 1984.

[43] D. Scales and M. Lam. Transparent Fault Tolerance for Parallel
Applications on Networks of Workstaions. In Proceedings of the
1996 USENIX Conference, Jan. 1996.

[44] M. Seltzer and C. Small. Self-Monitoring and Self-Adapting
Systems. In Proceedingsof the 1997Workshop onHot Topics on
Operating Systems, Chatham, MA, May 1997.

[45] L. D. Shapiro. Join processing in database systems with large
main memories. ACM Transactions on Database Systems,
11(3):239–264, Sept. 1986.

[46] M. Stonebraker, J. Chen, N. Nathan, C. Paxson, and J. Wu.
Tioga:providing data management support for scientific visual-
ization applications. In International Conference On Very Large
Data Bases (VLDB ’93), pages 25–38, San Francisco, Ca., USA,
Aug. 1993. Morgan Kaufmann Publishers, Inc.

[47] The MPI Forum. MPI: A MessagePassing Interface. InProceed-
ings of Supercomputing ’93, pages 878–883, November 1993.

[48] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A
User-Level Network Interface for Parallel and Distributed Com-
puting. InProceedings of the 14thACMSymposiumonOperating
Systems Principles, pages 40–53, December 1995.

[49] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser.
Active Messages: a Mechanism for Integrated Communication
and Computation. In Proceedings of the 19th Annual Interna-
tional Symposium on Computer Architecture, pages 256–266,
Gold Coast, Australia, May 19–21, 1992. ACM SIGARCH and
IEEE Computer Society TCCA. Computer Architecture News,
20(2), May 1992.

[50] R. Winter and K. Auerbach. The Big Time: 1998 Winter VLDB
Survey. Database Programming and Design, 1998.

[51] R. Wolniewicz and G. Graefe. Algebraic Optimization of Com-
putations over Scientific Databases. In VLDB ’93, pages 13–24,
1993.

13

