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Abstract

We describe optimizations of sparse matrix-vector multiplication on uniprocessors
and SMPs. The optimization techniques include register blocking, cache blocking, and
matrix reordering. We focus on optimizations that improve performance on SMPs, in
particular, matrix reordering implemented using two different graph algorithms. We
present a performance study of this algorithmic kernel, showing how the optimization
techniques affect absolute performance and scalability, how they interact with one
another, and how the performance benefits depend on matrix structure.

1 Introduction

Sparse matrix-vector multiplication is an important computational kernel used in scientific
computation, signal and image processing, document retrieval, and many other applications.
In general, the problem is to compute y = aA X x + By, for sparse matrix A, dense vectors
z and y, and scalars o and 3. Sparse matrix algorithms tend to run much more slowly
than their dense matrix counterparts. For example, on 167 MHz Ultrasparc I, the naive
implementation of sparse matrix-vector multiplication runs at 25 Mflops/s for a 1000 x 1000
dense matrix represented in sparse format. This performance is heavily dependent on the
nonzero structure of the matrix, and can be as low as 5 Mflops/s for matrices with a
lower ratio of nonzero. For comparison, a naive implementation of dense matrix-vector
multiplication runs at 38 Mflops/s, and the vendor-supplied routine runs at 58 Mflops/s.
The primary reason for this performance difference is poor data locality in access to the
source vector x in the sparse case.

We are building a toolbox called Sparsity for automatically producing optimized sparse
matrix vector kernels on uniprocessors and shared memory multiprocessors (SMPs). As
part of the development of Sparsity, we have performed a study of memory hierarchy
optimization techniques and their benefits on SMPs. We measure the performance
advantages for matrices taken from range of application domains, including Finite Element
methods, linear programming, and document retrieval (e.g., Latent Semantic Indexing). In
this paper we describe the performance results on one or more nodes of an Ultrasparc SMP.
The optimization techniques fall into three categories: register blocking, cache blocking,
and matrix reordering. We describe each of these here and give some highlights of the
performance results.
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2 Related Work

The interface to the routine for dense matrix-vector multiplication is standardized in the
Basic Linear Algebra Subprograms (BLAS) [2]; most hardware vendors provide optimized
BLAS libraries, highly tuned for their own architectures. Unlike the dense matrix
calculation, there are no highly optimized sparse matrix routines supplied by vendors,
because there is not yet a standard interface for sparse matrices, and there are diverse
formats that different users find suitable for their applications. A standardization effort for
sparse matrix routines is currently going on in BLAS Technical (BLAST) Forum [1], but this
does not include plans to implement highly optimized versions for specific platforms. As a
result of an effort to provide a generic sparse matrix operation library, the NIST sparseBLAS
[10] provides generic routines and TNT (Template Numerical Toolkit) [9] provides a generic
matrix/vector classes. BlockSolve [8] and Aztec [4] are parallel iterative solvers that include
the implementation of optimized sparse matrix operations.

3 Register Blocking

Register blocking reorganizes the sparse matrices into a set of fixed-size dense blocks by
finding a small block size which fits into the target machine’s register set, and also fits well
to the original sparse matrix, meaning the number of extra zero elements stored to compose
dense blocks is reasonably small. This optimization improves the reuse of values of vector
z within block, eliminates some loop overheads, and improves the ability of a compiler to
perform instruction scheduling to overlap memory operations.

Figure 1 shows the raw performance of register blocked multiplication on different
block sizes of a dense matrix in sparse format. This is likely to be an upper bound
on the performance of sparse matrices in the same format. Figure 2 shows the effective
performance of register blocked multiplication on the scientific computing matrices. (By
effective performance, we mean the Mflop rate counting only the flops that are required
by the unblocked code.) The register block size is dependent on the nonzero structure of
sparse matrix, and we used a heuristic to find a block size that generates small number of
zero element to fill dense blocks [5].

Register blocking performance
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FiG. 1. Performance of register blocked multiplication taken from 167 MHz Ultrasparc
for 1000 x 1000 dense matrixz represented in sparse format. Each line is for a fired number of rows,
varying the number of columns from 1 to 12.
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Performance of register blocked code on Ultrasparc
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Fig. 2. Performance of register blocked multiplication on 10 sparse matrices from
scientific applications taken on a 167 MHz Ultrasparc. The first bar is the base performance
and the second bar is the performance of the register blocked matriz for a block size chosen by our
model, and the third bar is the best performance over all the block sizes considered. The numbers on
the top of the bars are block size and fill overhead in the parenthesis for the second bars (bottom)
and the third bars (top).

matrix | size(N) | nonzeros Application area
1| 23560 | 484K Airfoil eigenvalue calculation
2 | 41092 1.7M 2D PDE problem
3 | 30237 1.5M Automobile frame stiffness matrix
4 | 13965 1.0M FEM stiffness matrix
5 | 24696 1.8M FEM stiffness matrix
6 | 52329 2.7M Engine block stiffness matrix
7 | 54870 2.7M | structure from shuttle rocket booster
8 4134 94K | Chemical process separation
9 | 62424 1.7M Unstructured Euler solver
10 | 26068 177K Device simulation

Fic. 3. Scientific computing matrices used in the experiments. The table shows the
matriz dimension, number of nonzeros, and the application area of the matriz.

Figure 3 illustrates the matrices used in the experiment. In our experience, register
blocking tends to be effective on matrices from physical simulations, where the matrix often
contains a large number of small fixed-size dense sub-blocks, but not for linear programming
or document retrieval.

Performance improvement from register blocking on an SMP are similar to the
uniprocessor results, since register blocking does not affect parallelism. In section 5 we
will combine the register blocking technique with matrix reordering used to to improve
scalability.

4 Cache Blocking
As an extension of the register blocking idea, we consider an optimization called cache
blocking. The idea of this optimization is to keep cqche €lements of vector x in the cache
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Fig. 4. Alignment of cache-blocks in sparse matrix The grey areas are sparse matrizc
blocks that contain nonzero elements in the Ceqche X Teache Tectangle. The white areas are the areas
that contain no nonzero elements.
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Fic. 5. Storage format of cache-blocked sparse matrix The nonzero elements of

Teache X Ceache blocks are stored in contiguous locations. The cache blocks consist of block _ptr,
col_idx and value arrays. The block_ptr array keeps track of starting points of each of reoche TOWS.
The row_start index array stores the indices into block_ptr array for every rcache-th row.

while an regehe X Ceache block of matrix A is multiplied to this portion of vector x. That
is, we limit the vector products so that the elements of vector x can all be kept in cache
and re-used for the vector product for the next row. A matrix with equal size cache blocks
identified is illustrated in figure 4.

Unlike register blocking, creating dense 7.qche X Ceache blocks by filling in zeros is not
practical, because expanding 7cqche X Ceache SParse matrices to dense matrices will incur
excessive storage and computation overhead. For that reason, the blocks in the cache
blocked matrix are stored as sparse matrices in the implementation of static cache blocking.
The sparse matrix is reorganized by changing the order of the nonzero elements of sparse
matrix in the storage as shown in figure 5. We have also considered a variant of cache
blocking which we call dynamic cache blocking in which the representation is left unchanged,
but a set of r.qche pointers are used to keep track of blocks dynamically. However, the
additional pointer manipulation and control required for dynamic cache blocking made it
less useful than the static case.

We measured the performance of cache blocked matrix-vector multiplication for the
matrices in the scientific computing set on a 167 MHz Ultrasparc I, which has 512K bytes
of off-chip L2 cache. The block size was chosen empirically as 16 K x 16 K. Unfortunately,
cache blocking shows a slight degradation in performance for all of these matrices from
numerical simulations. However, for a matrix that arises in a document retrieval algorithm
called Latent Semantic Indexing (LST), cache blocking dramatically improves performance.



OPTIMIZING SPARSE MATRIX VECTOR MULTIPLICATION ON SMPs 5

Performance of Static Cache blocking on Random Matrices
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Fic. 6. Performance of cache-blocked multiplication on random matrices measured
on 64K x 64K random matrices with different densities 0.02-0.26%. FEach line represents different
cache block sizes, and the separate points at 0.15% are the performance of LSI matriz.

The unblocked code runs at 5.8 Mflops/s on an Ultrasparc, while the cache blocked code
runs at 18 Mflops/s, giving a speedup of 3.1. It is interesting to note that register blocking
for the LST matrix showed no benefit.

The nonzero pattern of the LSI matrix is unusual compared to most scientific
applications, in that it has little discernible structure.! Combined with the fact that the
size of the matrix is very large, the performance of multiplication on LSI matrix before the
optimization is very low (5.8 Mflops/sec.) relative to the other matrices (10-25 Mflops/sec.).

As further evidence that cache blocking is effective on matrices with evenly distributed
nonzeros, we also measured the performance on random matrices. The results are shown in
figure 6, with the z-axis varying the density of nonzero elements between 0.02% and 0.26%.
The size of the random matrix was 64K x 64K, and the performance was measured for
different cache block sizes. The performance of LSI multiplication for the same cache block
sizes are shown in the same figure as separate points above 2 = 0.15%, the density of the
LSI matrix. The performance characteristics of the LSI matrix are very similar to those of
a random matrix.

We also ran cache blocked multiplication on 8-way Ultrasparc SMP. We tried several
strategies in applying cache blocking on an SMP.

e C1: Rows in the same block are distributed evenly to participating processors.

C2: Each block of rows are assigned to each processor.
e (C3: The calculation starts from the diagonal block in the previous setting (C2).

e (C4: Each block of columns are assigned to each processor.

The assignment of computation to processors is illustrated in figure 7 for the 4 processor
case . In C3, assignment is same to that of C2, but the calculation starts from the diagonal

!Sparse matrix-vector multiplication is the kernel of the LSI algorithm. Our matrix came from
NERSC/LBNL in collaboration with the Inktomi company, and is a subset of real data from the web.
They use an algorithm different from LSI, which is also based on sparse matrix-vector multiplication.
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Fic. 7. Configuration of cache blocking on SMP

block, i.e., procO begins from S1, procl from S1, and so on, to make each processor read
different parts of source vector.

The performance is shown in figure 8. In the left graph, we show the performance
per processor for the multiplication of LSI matrix. The base performance, which is the
performance on a uniprocessor without any optimizations, is also shown for comparison.
The portion of the LSI matrix used in this experiment is 10K x 256K, with 3.8M nonzero
elements. The C1 configuration runs no faster than the base performance because the
long rows do not fit in the cache. As a variation on configuration C1, we used block sizes
that were limited to 16K columns per block, and showed a performance of 17-18 Mflops/s
per processor. Configurations C2 and C3 exhibit the same performance, since the data
layout is the same; we might expected some slight benefits of C3 over C2, because each
processor was accessing different parts of memory in C3, but these effects are negligible.
Configuration C4 scales very well, showing the same performance per processor as the cache
blocked implementation on a uniprocessor. In configuration C2, C3, and C4, the reason
why the performance is low at small number of processors (1 to 4), is that its row size of
cache block is too wide (number of columns / number of processors) to fit in cache. When
we limit the row size to approximately 16K, and also evenly divide the number of columns
across the processors, we see 16-17 Mflops/s per processor for any number of processors.

The right graph shows the performance for matrix number 5 from the scientific
computing set, a finite element method matrix. The dimension of this matrix is
24696 x 24696 with 1.7M nonzero elements. Unlike the LSI matrix, the row length is
not long enough to cause problems fitting in cache. Although this matrix exhibited no
benefits of cache blocking on a uniprocessor, on an SMP we see that configurations C2
and C3 maintain almost linear speedup, and are better than configurations C1 and C4. In
C4, extra synchronization is needed to accumulate partial calculations before updating the
destination vector, which makes it slower.

5 Matrix Reordering

Matriz reordering changes the order of rows and columns within A which in turn changes the
memory access pattern to vector z. A matrix can be reordered to reduce cache misses and
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Performance of cache blocking on SMP: 1 Performance of cache blocking on SMP: 5
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Fic. 8. Performance of cache-blocked multiplication on 8-way Ultrasparc SMP.
The left figure shows the performance of multiplication on LSI matriz and right figure shows the
performance of multiplication on the 5th matriz from the scientific computing matrices.

memory coherence traffic across the bus or crossbar of an SMP. Because we are interested
in reorderings that are general enough to handle matrices from linear programming and
document retrieval, neither of which are symmetric, we extended some existing techniques
to the nonsymmetric case.

First, we used a graph numbering scheme, Reverse Cuthill-McKee (RCM) [7], in which
graph nodes are numbered in reverse order according to Breadth First Search. This is a
heuristic that aims to reduce the bandwidth of the symmetric matrix, by moving the non-
zeros close to each other (near the diagonal) and therefore improving locality of access to
data within the source and destination vectors. The original RCM algorithm considers the
symmetric matrix as an adjacent matrix of the graph, i.e., nodes ¢ and j are connected if
A;; and Aj; are nonzero. We extend the algorithm to non-symmetric, rectangular matrices
by differentiating row nodes and column nodes.

We also applied graph partitioning algorithms using the hMETIS [6] package developed
at University of Minnesota, which implements a multi-level partitioning algorithm on
hypergraphs with tunable parameters based on work by Hendrickson and Leland [3]. In a
hypergraph, a set of nodes are connected with a hyperedge. We can partition rows of the
matrix by considering each column to be a hyperedge whose nonzero elements compose a
set of nodes in the hyperedge. Similarly, the columns are partitioned by considering each
row as hyperedge. The hypergraph partitioning was implemented in hMETIS package using
multilevel algorithm.

First we applied these two reordering techniques on a uniprocessor implementation
using the scientific computing matrices. On an Ultrasparc, RCM bandwidth reduction
improves the performance of matrix-vector multiplication on some matrices that arise
in linear programming problems by 18 %. Prior to reordering, the linear programming
matrices have very wide bandwidth and no locally dense blocks. The RCM reordering
significantly reduced the matrix bandwidth, and in doing so, also changed the memory
access pattern to source vector x to enhance cache access.

Secondly, we compared the performance improvement and scalability of multiplication
on an SMP. We experimented with the scientific computing matrices, and we combined
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Performance of reordering before blocking on SMP: 2 Performance of reordering after blocking on SMP: 2
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Fic. 9. Performance per processor of multiplication on 8-way Ultrasparc SMP
Left graph shows performance when reordering is applied before register blocking and the right graph
shows performance when reordering is applied after register blocking is done. Two horizontal lines
in both graphs are base performance on uniprocessor, one for non-blocked matriz, and the other for
blocked performance. So, we expect this line when we have efficiency of 1.

register blocking and matrix reordering in different orders — reordering was applied before
and after register blocking. One can expect partitioning the matrix first generates more
clusters in the matrix, making more dense blocks, but on the other hand, blocking first
makes it possible to keep existing dense blocks during reordering. We observed that the
graph partitioning algorithm generally generates better reorderings than RCM as shown
in figure 9. For matrices with natural dense blocks, partitioning after blocking was better
than partitioning before blocking.

6 Conclusions

We described optimization study of sparse matrix-vector multiplication on a uniprocessor
and SMP. The optimizations are register blocking, cache blocking and matrix reordering.
We also tried the combination of register blocking and matrix reordering.

Each of the three optimization techniques shows a noticeable performance benefit for
matrices from some application domain. The matrix structure for which each is beneficial,
though, is quite different. Register blocking is most effective when the matrix contains a
natural dense blocking factor that also matches the number of registers in the machine;
these arise most frequently in finite element applications. Cache blocking is only effective
on matrices with nearly random nonzero structure; we found it to be extremely useful in
document retrieval and in synthetic matrices with a random nonzero structure. For the
SMP case, we showed that assigning processors across the row blocks is better for matrices
from FEM, while assigning processors across the column blocks is better for the LSI matrix,
where the matrix is much wider. Matrix reordering improved the uniprocessor performance
of a matrix from linear programming whose bandwidth is very wide, but had no effect on
uniprocessor performance for the scientific matrices. When combining register blocking and
reordering on an SMP, we showed that the hypergraph partition reorders the matrix better
than RCM, and that blocking before reordering was better because it keeps existing blocks.

The results presented here have shown the importance of good data structure organiza-
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tion for sparse matrices on both uniprocessors and SMPs. Unfortunately, there is no single
format that is best for all machines or all matrices. Instead, we have identified some appli-
cation domains and matrix characteristics that can be used to choose the representation.
Our ultimate goal is to use this optimization study to build a toolbox for automatically
generating highly optimized sparse matrix vector multiplication codes based on matrix and
machine characterisitics.
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