
Enforcing Textual Alignment of Collectives Using
Dynamic Checks ?

Amir Kamil Katherine Yelick

Computer Science Division, University of California, Berkeley
{kamil,yelick}@cs.berkeley.edu

Abstract. Many parallel programs are written in a single-program, multiple-
data (SPMD) style, in which synchronization is provided using collective opera-
tions that all threads execute simultaneously. If these operations are not properly
aligned on all threads, deadlock can occur, and many compiler analyses and op-
timizations that depend on proper alignment fail. In this paper, we discuss the
flaws in the Titanium language’s type system for enforcing textual alignment of
collectives. We then present a system that uses runtime checks to ensure align-
ment for two definitions of textual alignment. The system instruments the code
to keep track of alignment in each thread and then checks that alignment matches
prior to performing a collective operation. We have implemented the system in the
Titanium compiler, verifying that it catches alignment errors. We tested its per-
formance on multiple application programs, demonstrating that the checks have
no appreciable impact on execution time.

1 Introduction

With the growing body of parallel programs for both multicore and high performance
cluster systems, there is a need for good program analysis techniques to detect program-
ming errors and enable optimizing transformations. Critical to both error detection and
optimization is an analysis of the synchronization constructs of a program. In this paper,
we consider the problem of alignment of barrier synchronization operations and other
operations that all threads perform collectively, such as broadcasts, which implicitly
result in synchronization.

Prior work on the Titanium language [20] has shown the value of synchronization
analysis, that it enables communication optimizations, race detection, and enforcement
of memory consistency models [12, 13]. We present an overview of Titanium’s syn-
chronization model, which requires that all threads can be proven statically to reach the
same textual instance of each collective [2]. This model is very powerful, but our experi-
ence indicates that programmers find the static checking overly restrictive. We propose
a dynamic version of the analysis that relaxes the language definition but still permits
the benefits of static checking: the compiler may assume barriers are textually aligned,
? This work was supported in part by the Department of Energy under DE-FC03-01ER25509, FDDE-FC02-07ER25799,

and Lawrence Berkeley National Laboratory Contract DE-AC02-05CH11231, by the National Science Foundation under
CNS-0325873 and OCI-0749190, by the California State MICRO Program, by Microsoft (Award #024263) and Intel
(Award #024894) funding and by matching funding by U.C. Discovery (Award #DIG07-10227), and by gifts from Sun
Microsystems. The information presented here does not necessarily reflect the position or the policy of the Government
and no official endorsement should be inferred.



but final checks are made at runtime. We implemented two versions of a fully dynamic
analysis and show that while individual collective operations are more expensive due to
the runtime checking, the application overhead is negligible. Since the dynamic model
does not depend on the strong typing properties of Titanium, it is also applicable to the
broader class of PGAS languages that rely on a SPMD execution model, including UPC
[5] and Co-Array Fortran [16].

2 Background

Titanium [20] is a dialect of Java but does not use the Java Virtual Machine model.
Instead, the end target is assembly code. For portability, Titanium is first translated
into C and then compiled into an executable. In addition to generating C code to run
on each processor, the compiler generates calls to a runtime layer based on GASNet
[4], a lightweight communication layer that exploits hardware support for direct remote
reads and writes when possible. Titanium runs on a wide range of platforms including
uniprocessors, shared memory machines, distributed-memory clusters of uniprocessors
or SMPs (CLUMPS), and a number of specific supercomputer architectures (Cray X1,
Cray T3E, SGI Altix, IBM SP, Origin 2000, and NEC SX6). Instead of having dynam-
ically created threads as in Java, Titanium is a single program, multiple data (SPMD)
language, so all threads execute the same code image.

2.1 Collective Operations

Many scientific applications are written in a bulk-synchronous style that alternates be-
tween communication and computation phases, or between different phases of physical
simulations such as the ocean and atmospheric models in a climate simulation. These
applications frequently require all threads to synchronize and communicate together.
Like other SPMD languages, Titanium provides collective operations to support this.
The three primitive collective operations in Titanium are barriers, broadcasts, and ex-
changes. A barrier forces threads to wait until all threads have reached it. A broadcast
is a one-to-all communication construct that sends a value from one thread to the others.
An exchange is an all-to-all communication construct that copies one value from each
thread to all threads.

Collective operations introduce the possibility of deadlock if not all threads execute
the same sequence of collectives. The collectives are aligned if all threads do execute
the same sequence.

Most SPMD languages do not attempt to guarantee alignment of collectives. Some
languages such as UPC have named collectives. These collectives take an integer value
as an argument. When the collective executes, it compares the value on all threads and
generates an error if they differ. However, different collective operations in a program
can have the same value under this scheme. Even if each collective in a program has
its own unique value, as soon as the collective is wrapped inside a function, the align-
ment scheme can be defeated. For example, a call to the following function acts like an
unnamed barrier:



void barrier2() {
upc_barrier 315415431;

}

More complicated and less malicious examples of this can occur in practice. A further
flaw with named collectives is that they can result in late error messages: the actual
program statement that causes misalignment can be far from the affected collective and
is not detected or reported to the user.

Aiken and Gay introduced the concept of structural correctness to enforce align-
ment of collectives and developed a static analysis that determines whether or not a
program is structurally correct [2, 9]. The following code is not structurally correct:

if (Ti.thisProc() % 2 == 0)
Ti.barrier(); // even ID threads

else
; // odd ID threads

Titanium provides a stronger guarantee of textually aligned collectives: not only do all
threads execute the same number of collectives, they also execute the same textual se-
quence of collectives. Thus, both the above structurally incorrect code and the following
structurally correct code are erroneous in Titanium:

if (Ti.thisProc() % 2 == 0)
Ti.barrier(); // even ID threads

else
Ti.barrier(); // odd ID threads

The fact that Titanium collectives are textually aligned not only guarantees deadlock
freedom but is also essential to concurrency analysis: not only does it guarantee that
code before and after each collective cannot run concurrently, it also guarantees that
code immediately following two different collectives cannot execute simultaneously
[12, 13].

Titanium currently relies on a static type system to ensure textual alignment of col-
lectives. We discuss this type system in §3.

2.2 Related Work

In addition to Aiken and Gay’s work on structural correctness, many others have ad-
dressed the problem of collective alignment.

Zhang and Duesterwald developed a static analysis for matching textually unaligned
barriers in MPI [21]. The analysis is available as part of the Eclipse Parallel Tools Plat-
form [1]. They later extended their analysis in collaboration with Gao to shared mem-
ory OpenMP programs and built a concurrency analysis on top of it [22]. Siegel and
Avrunin applied model checking to MPI programs [18]. Their system detects deadlock
in the presence of MPI barriers.

Jeremiassen and Eggers developed a static analysis for barrier synchronization for
SPMD programs with non-textual barriers that divides a program into non-concurrent



phases [10]. This analysis provides a conservative estimate of which barriers can con-
flict: two barriers can only conflict if they may both be executed at the boundary of the
same phase. Other work has also been done in the area of concurrency analysis [14,
15], though like Jeremiassen and Eggers, the authors don’t directly apply it to detecting
alignment errors.

A lot of work has also been done in the area of barrier optimization [6, 17, 19], which
requires reasoning about the execution of barriers. However, work in this area gener-
ally either assumes aligned barriers or is not concerned with detecting synchronization
errors arising from the misaligned barriers.

The main drawback to static analysis is imprecision: it may be unable to conclude
that a collective is properly aligned even if it is. While in practice, results from static
analysis appear to be precise enough to be useful for other analyses and optimizations,
the existence of false positives makes it less than ideal for enforcing semantic restric-
tions, as it would report nonexistent errors to the programmer.

3 The single Type System

In order for collectives to be textually aligned, all expressions that control the execution
of collectives must evaluate to coherent values on all threads. In Titanium, the single
type system ensures that this is the case. A value is single if it is coherent across all
threads. The entire set of rules for what values are single is described in the Titanium
language reference [20] and is fairly complicated, so we describe only a subset of the
rules here.

3.1 single Values

For primitive types, the coherency rules are straightforward. Compile-time and runtime
constants (such as the number of executing threads) are single, as well as expressions
composed entirely of single values. Variables are single if they are annotated as
such by the programmer. Such variables can only by assigned with single values.

The rules for method calls are more complex. In order for the result of a method call
to be single, its return type must be declared as single, the object being dispatched
on must be single for an instance method, and all parameters declared as single
must be passed single arguments. These rules are illustrated below:

class Foo {
int single bar(int single x, int y) { ... }
static void baz() {

Foo single a = ...;
Foo b = ...;
int single i = 1;
int j = Ti.thisProc();
a.bar(i, j); // return is single
b.bar(i, j); // return is not single since b is not
a.bar(j, i); // return is not single since x = j is not



}
}

An allocation results in a single object if the constructor call obeys the rules for
method calls above. A field dereference is single if the referenced object is single
and the field is declared as single.

3.2 Control Flow Restrictions

All control flow decisions that affect the execution of statements with global effects
must only depend on single expressions. In general, a statement has global effects if
it or any of its substatements is one of the primitive collective operations described in
§2.1, a method call that a programmer has declared as global by qualifying it with the
sglobal keyword1, or assigns to certain locations that are declared as single.

All branches, loops, and method calls that have global effects can only be controlled
by single expressions. Exceptions have more complicated restrictions, and the inter-
ested reader can refer to the Titanium language reference for the associated rules.

3.3 Type System Flaws

As hinted at above, the single type system rules are complicated. Feedback from
Titanium users indicates that while they appreciate the fact that the type system prevents
deadlock, the error messages can be confusing at times due to the conservative nature
of the analysis.

The type system requires the programmer to annotate many variables with the
single keyword. Since a single variable can only be assigned an expression com-
posed of other single variables, it may be necessary to propagate these annotations
throughout a program. This can be quite burdensome, especially for quick prototyping
of small pieces of code.

There are additional flaws in the type system, such as its handling of arrays and
casts to single [11]. Most importantly, we have not yet found a clean way to extend
the type system to allow collectives over a subset of all the threads.

3.4 Subset Collectives

The Titanium language reference contains a proposal for a partition construct that
divides the set of threads into non-overlapping teams. Collective operations affect only
members of the team that execute them. In the below code, only those threads whose
IDs are less than 3 will call setX(1).

static single void bar() {
partition {
Ti.thisProc() < 3 => setX(1);

1 In the current Titanium language specification, the sglobal keyword has been deprecated
in favor of the single keyword. In this paper, however, we will use sglobal to prevent
confusion with non-global methods that have a single return or single arguments.



}
if (x == 0)

Ti.barrier(); // misaligned barrier
}
static int single x = 0;
static single void setX(int single y) { x = y; }

Since single is used to ensure alignment of collective operations, it only implies
coherence across all threads of a given team. This can cause problems if a single
variable is updated within a partition statement. In the above code, a subset of the
threads modify the single variable x. Since collectives are over a team, the code is
correctly typed. However, it will deadlock, since the barrier after the partition is
executed by all the threads, which now have incoherent values of x.

4 Dynamic Alignment

Given the flaws of the single type system described in §3.3, we present an alternative,
dynamic scheme for enforcing textual alignment of collectives.

4.1 Alignment Rules

The basic conditions that guarantee textual alignment of collectives are as follows2:

– If any branch of a conditional has global effects, then all threads must take the same
branch.

– If the body/test of a loop has global effects, then all threads must execute the same
number of iterations.

– If a method call has global effects, then the dynamic dispatch target of the call must
be the same on all threads.

– The source thread in a broadcast expression must evaluate to the same value in each
thread.

All four conditions above are enforced by the single type system.
A strict alignment scheme enforces the above conditions with respect to a similar

definition of has global effects as the single type system: a statement has global ef-
fects if it or any of its substatements is a primitive collective operation or calls a method
declared as sglobal. A weaker alignment scheme results if a statement has global
effects only if it or any of its substatements actually executes a primitive collective op-
eration at runtime. In particular, the following code is legal under weak alignment but
prohibited under strict alignment:

if (Ti.thisProc() % 2 == 0) // even threads
if (Ti.thisProc() % 2 == 1) // odd threads

Ti.barrier(); // never reachable

2 We omit discussion of exceptions here, as the rules are essentially the same as in the single
type system.



Under weak alignment, the code above never executes the barrier, so it does not have
global effects and not all threads must take the same branch of the outer conditional.
Under strict alignment, however, the then branch does have global effects since one of
its substatements is a barrier, so all threads must take the branch.

Note that the strict alignment rules are static: it is possible to determine which state-
ments have global effects at compile-time. The weak alignment rules, on the other hand,
are partially dynamic. For some statements, it can be statically determined that they
never execute primitive collectives. For others, however, it can only be determined at
runtime whether or not they do so. As a result, we believe that strict alignment is prefer-
able both for compiler analysis purposes and for programmer reasoning.

4.2 Dynamic Enforcement

The alignment rules are enforced dynamically by tracking those conditionals, loops, and
method calls that have global effects. (For the purposes of this section, global effects
are according to the strict definition above.). The Titanium compiler has an inference
system that statically determines which statements have global effects.

At program startup, each thread creates an empty list that records its execution his-
tory. In addition, a hash of this list is maintained, initially set to some value h0. The
following operations update the list, with the hash updated accordingly:

– On a non-static dispatch to a method that has global effects, an entry is added
to the list with the method that is the dynamic dispatch target.

– On a branch of a conditional that has global effects, an entry is added recording the
branch taken.

– On each iteration of a loop that has global effects, an entry is added recording that
a loop iteration occurred.

– On reaching a broadcast operation, an entry is added with the value of the source
thread.

When performing a primitive collective, the hashes for all threads are first compared.
This can be done by using a comparison tree, or simply by broadcasting the hash value
from a single thread and comparing it to the value on each other thread. Our implemen-
tation currently uses the latter. If the hash values match, the collective is executed. If
any two hashes differ, however, then execution halts, and the corresponding histories are
used to generate an appropriate error message. For performance reasons, the execution
history list can be eliminated or reduced in size, at the cost of poorer error messages.

The above procedure is sufficient for enforcing strict alignment. Weak alignment, on
the other hand, only guarantees alignment of statements that execute primitive collec-
tives at runtime. Thus, if a statement never executes a primitive collective, the execution
history and hash must be restored to their previous values once the statement completes.
This necessitates saving the old history and hash state before making any of the above
changes.

Figure 1 illustrates the execution of the following code under strict and weak align-
ment:



PROC == 0?

update (id0) update (id1)

fakeBarrier()fakeBarrier()

check ()STRICT failure!

Ti.barrier()

PROC 0?

h = save ()

update (id0) update (id1)

PROC == 0?

1

fakeBarrier()fakeBarrier()

check ()

restore(h)

WEAK success!check ()

Ti.barrier()

success!

Fig. 1. Difference in execution between strict and weak alignment.

if (Ti.thisProc() == 0) fakeBarrier();
else fakeBarrier();
Ti.barrier();

Here, fakeBarrier is a method declared as sglobal but that does not execute any
primitive collective operations. As such, the code should fail under strict alignment but
succeed under weak alignment.

Optimizations It is possible to reduce the number of history updates and checks if
they can be proven redundant. If two history updates always occur in sequence with no
intervening collectives, then they can be combined into a single update. This may occur
in nested conditionals or conditionals inside loops. Similarly, two history checks can be
redundant if no updates occur between them.

Another optimization is a hybrid static/dynamic analysis that would apply a static
analysis to determine which branches, loops, and method calls can be proven to depend
only on single values and then eliminate their associated updates. This would also
make it much more likely for consecutive collectives not to have any updates between
them, allowing their associated history checks to be removed.

Program Coverage As is usually the case with dynamic analysis, the enforcement
scheme above does not provide full program coverage, which is a drawback compared
to the static type system. In particular, it does not check alignment of code that is not
reached at runtime, such as the following:

if (<some rare condition>)
if (Ti.thisProc() == 0)

Ti.barrier();

An error is only generated if the rare condition is taken. Similarly, if the rare con-
dition was replaced by an expression dependent on the number of threads, such as



Ti.numProcs() > 100, then an error would only occur if the program was run
with the required number of threads to trigger the condition.

Weak alignment provides somewhat less coverage than strict alignment. Consider
the above code with the two conditions switched. Now, strict alignment would generate
an error since the threads are not aligned with respect to the outer conditional, which
has global effects. Weak alignment, on the other hand, will only find an error if the rare
condition is met, since no primitive collective operation is executed otherwise.

4.3 Subset Collectives

The dynamic enforcement scheme can easily be extended to the partition construct
described in §3.4. At the start of such a statement, the current execution history and hash
need to be saved. Within a partition, the history and hash are updated as anywhere
else. When performing a team collective, the hash is compared only among the threads
in the associated team, guaranteeing that these threads are aligned. At the conclusion
of a partition, the saved history and hash are restored, so that the differing team
alignments within the partition do not affect code outside the partition.

4.4 Implementation

We have implemented the two dynamic enforcement schemes in the Titanium compiler.
The compiler instruments each program to perform the required tracking and checking3.
We do not apply the optimizations described in §4.2, since our experimental results in
§5.2 show them to be unnecessary. We also do not yet support subset collectives, as
GASNet does not yet officially allow them.

For both strict and weak alignment, the compiler provides a default mode where
only a hash is kept corresponding to execution history as well as a debugging mode that
maintains the execution history list. The default mode requires less memory and fewer
operations at runtime than the debugging mode, so it could potentially be more effi-
cient. The debugging mode only stores execution history between successive primitive
collective operations, since successful completion of a collective implies that it and all
statements preceding it are properly aligned.

The Titanium compiler provides an escape hatch for when dynamic error checking
adversely affects performance. Users generally switch to a less-safe, higher-performance
mode that elides error checking such as null pointer and array bounds checks for pro-
duction runs, under the assumption that such errors have already been caught while
debugging a program. This escape hatch can also be used if dynamic alignment check-
ing proves to be too expensive, as the compiler can remove those checks as well.

5 Evaluation

We have verified on many different test cases that the dynamic enforcement system
does detect alignment errors in practice without requiring any programmer annotations.

3 Note that for weak alignment, we could instead examine the program stack on each thread.
However, this would require a far more complicated implementation, as stack layout depends
on the target machine and the C compiler.



On the program corresponding to Figure 1, the following error is produced under strict
alignment in debugging mode in addition to the usual Java-like stack trace:

ti.lang.Alignment.AlignmentError: collective alignment
failed on processor 1 at foo.java:9:8

last location: else branch at foo.java:5:12
last location on processor 0: then branch at foo.java:5:12
previous location: none

The error message directs the user to the exact location that caused alignment to fail,
instead of just providing the location of the misaligned collective itself.

Since Titanium currently enforces alignment statically, no Titanium application has
alignment errors, and we could not test its effectiveness on real-world programs. How-
ever, we were able to determine the performance cost of dynamic checking on two
platforms: an eight-core (two-processor, four-core) Intel Xeon E5435 shared memory
multiprocessor (SMP) and a cluster composed of dual-processor 2.2GHz Opteron nodes
with an InfiniBand interconnect.

Five program versions were compared:

– static: no dynamic checking
– strict: strict alignment scheme, default mode with no execution history list
– strict/debug: strict alignment scheme, debugging mode with execution his-

tory list
– weak: weak alignment scheme, default mode with no execution history list
– weak/debug: weak alignment scheme, debugging mode with execution history

list

5.1 Collective Performance

We first tested the performance of each of the primitive collectives by repeatedly in-
voking them inside a loop. For the dynamic alignment schemes, a single loop iteration
includes an update to the execution hash (and list for the debugging modes), and for
the broadcast test, an additional execution hash/list update for the source thread of the
broadcast. Each loop iteration also includes the hash comparison code associated with
a collective operation, which consists of a broadcast, comparison, and conditional.

Figure 2 shows the relative loop iteration time for the broadcast, barrier, and ex-
change tests on the SMP machine for up to 8 processors. The broadcast is of a single
32-bit integer, and the exchange is of 32-bit integers among all threads. On average,
barriers in the dynamic schemes take about 2.7 times as long as the static version,
broadcasts take 2.5 times as long, and exchanges 70% longer. The dynamic debugging
versions consistently were slower than the default dynamic versions by an average of
about 20%.

Figure 3 shows the loop iteration times for each collective in the static case on the
cluster machine for up to 32 processors, and Figure 4 shows the dynamic times rela-
tive to the static time. The broadcast and exchange are as in the SMP case. The jump
in barrier time at four processors is due to it being the fewest number of processors
to require internode communication. On average, barriers in the dynamic schemes take



3

3.5
SMP�Collectives�Time

2 4 8
Processors

2.5

3

ti
c

2

ti
ve
�to

�S
ta
t

1

1.5

Ti
m
e�
Re

la
t

0.5

1T

0

Broadcast Barrier Exchange

Fig. 2. Relative collective performance on the SMP machine.

180

200

450

500
Cluster�Time�for�Static�Collectives�and�Applications
CG FT MG broadcast barrier exchange

140

160

350

400
s

120

140

300

350

ro
se
co
nd

s

Se
co
nd

s

80

100

200

250

m
e�
in
�M

ic
r

Ti
m
e�
in
�S

40

60

100

150 Ti
m

0

20

0

50

2 4 8 16 32

Processors

Fig. 3. Collective and application performance on the cluster machine in the static case. Applica-
tion times are plotted with respect to the left vertical axis and collective times with respect to the
right.



4.5

5
Cluster�Collectives�Time

2 4 8 16 32
Processors

3.5

4

ti
c

2 4 8 16 32

2.5

3
ti
ve
�to

�S
ta
t

1 5

2

Ti
m
e�
Re

la
t

0 5

1

1.5T

0

0.5

Broadcast Barrier Exchange

Fig. 4. Relative collective performance on the cluster machine.

about three times as long as the static version, broadcasts take twice as long, and ex-
changes 40% longer. There is little discernible difference between the various dynamic
versions.

On both machines, the overhead of dynamic checking decreases for each collective
operation as the number of processors increases. In particular, the cost of an unchecked
broadcast trends to about half that of a barrier on the cluster machine and becomes
negligible compared to the cost of an exchange. Since checked operations include an
extra broadcast, we expect that for a large number of processors, broadcasts would take
twice as long with dynamic checking compared to static, barriers would take 1.5 times
as long, and exchanges would take about the same amount of time.

5.2 Application Performance

We also tested three of the NAS Parallel Benchmarks [3] in Titanium [8, 7]: conjugate
gradient (CG), Fourier transform (FT), and multigrid (MG). Due to memory constraints,
the three benchmarks used class B, A, and B sized problems, respectively, though the
parameters were tweaked to increase running time.

In general, parallel applications do not perform collectives in their inner, compute-
intensive loops, nor do such loops tend to have global effects. Thus, even though collec-
tives are slower under dynamic alignment and tracking operations have some additional
cost, we expect them to be executed rarely and do not expect them to drastically af-
fect application performance. Figure 3 shows the running time for the NAS Parallel
Benchmarks on the cluster machine in the static case for up to 32 processors. Figure
5 shows the relative dynamic times, demonstrating that for these applications, the dy-
namic checks have no effect on performance. The same results also occurred on the
SMP, though the graphs have been omitted for brevity.



1.2
Cluster�Applications�Time

2 4 8 16 32
Processors

0 8

1

c

0.6

0.8
iv
e�
to
�S
ta
ti

0.4

0.6

Ti
m
e�
Re

la
t

0.2

0

CG FT MG

Fig. 5. Relative application performance on the cluster machine.

Analysis In order to understand why dynamic checking does not appear to significantly
affect application performance, we ran experiments to determine how much impact it
should have. In Table 1(a), we report the amount of time it takes for each alignment
operation on the two machines, including the time to update the alignment hash, the
time to update the history and hash in debugging mode, the time to perform a history
save and restore pair for weak alignment, and the time to perform a hash check. The
latter varies depending on the number of processors, so we report the maximum time
on all processor counts we tested.

Table 1(b) shows the number of times each operation occurs in each benchmark.
Using these numbers and the times from Table 1(a), we conservatively estimate the
maximum effect on running time for each machine. The worst case is 1.37 seconds for
the multigrid application on the cluster, which is less than 5% of total running time on
32 processors. The results in Figure 5 show that the actual effect is even less than this.

Table 1. Time for alignment update and check operations on each machine, and number of oper-
ations and calculated overhead for each benchmark.

(a)

Time SMP Cluster
Update 4.0 ns 12.8 ns

Debug Update 31.4 ns 152.3 ns
Save/Restore 10.3 ns 87.2 ns
Max Check 1.6 µs 47.5 µs

(b)

Operation Count Max Total Time
Updates Saves/Restores Checks SMP Cluster

CG 1844 924 2729 4.4 ms 0.13 s
FT 1835 1216 1218 2.0 ms 0.05 s
MG 100530 69248 28320 48.9 ms 1.37 s



In general, most applications try to avoid collectives since they limit scalability. As
a result, they would not be affected much by the overhead of dynamic checking at each
collective. Applications that spend a significant fraction of their time in collectives can
expect this portion of their execution time to as much as double for large numbers of
processors, as we argued in §5.1. If this cost is too high, users can turn of checking
as noted in §4.4. In addition, the optimizations described in §4.2 should significantly
reduce the performance impact of dynamic checking.

We also determined how much space the execution history list uses in debugging
mode. Since entries are cleared from the list at each collective, the number of entries in
the list when performing a collective is equal to the number of control flow decisions
that affect execution of the collective since the previous collective executed. We expect
this number to be relatively small and the execution history to use little space as a result.
Our tests showed that the space used on each thread was 0.8 KB. 0.3 KB, and 90 KB
for CG, FT, and MG, respectively, matching our expectations.

6 Conclusion

We presented Titanium’s synchronization model for barriers and other collective op-
erations, which requires that all threads must reach the same textual instance of each
collective for a program to be correct. We then described a system of dynamic checks
for enforcing proper alignment of collectives. The system has two variations, a strict
version that matches the previous static type system in what must be aligned and a
weak version that only requires primitive collective operations that get executed at run-
time to be aligned. The dynamic system is more flexible and intuitive than the static
one, requiring no programmer annotations while permitting the use of collectives on
thread teams.

Although the dynamic checks used for the runtime analysis result in collective op-
erations that are up to three times slower than without the checks, we showed that the
overhead is negligible in three application benchmarks on both a shared memory multi-
processor and a cluster machine. Our results indicate that dynamic checking is a viable
replacement for the current static type system in Titanium and the unchecked synchro-
nization in other languages, enabling analyses and optimizations that depend on proper
alignment of collectives.

References

1. Eclipse Parallel Tools Platform. http://www.eclipse.org/ptp/.
2. A. Aiken and D. Gay. Barrier inference. In Proceedings of the 25th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, January 1998.
3. D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, D. Dagum, R. A. Fa-

toohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan,
and S. K. Weeratunga. The NAS Parallel Benchmarks. The International Journal of Super-
computer Applications, 5(3):63–73, Fall 1991.

4. D. Bonachea. GASNet specification, v1.1. Technical Report UCB/CSD-02-1207, University
of California, Berkeley, November 2002.



5. W. Carlson, J. Draper, D. Culler, K. Yelick, E. Brooks, and K. Warren. Introduction to UPC
and language specification. Technical Report CCS-TR-99-157, IDA Center for Computing
Sciences, 1999.

6. A. Darte and R. Schreiber. A linear-time algorithm for optimal barrier placement. In PPoPP
’05: Proceedings of the tenth ACM SIGPLAN symposium on Principles and practice of par-
allel programming, pages 26–35, New York, NY, USA, 2005. ACM.

7. K. Datta. The NAS Parallel Benchmarks in Titanium. Master’s thesis, University of Califor-
nia, Berkeley, December 2005.

8. K. Datta, D. Bonachea, and K. Yelick. Titanium performance and potential: an NPB ex-
perimental study. In Proceedings of the 18th International Workshop on Languages and
Compilers for Parallel Computing (LCPC), 2005.

9. D. Gay. Barrier Inference. PhD thesis, University of California, Berkeley, May 1998.
10. T. Jeremiassen and S. Eggers. Static analysis of barrier synchronization in explicitly parallel

programs. In Proceedings of the IFIP WG10.3 Working Conference on Parallel Architectures
and Compilation Techniques, August 1994.

11. A. Kamil. Problems with the titanium type system for alignment of collectives, Febru-
ary 2006. http://www.cs.berkeley.edu/∼kamil/titanium/doc/single.
pdf.

12. A. Kamil, J. Su., and K. Yelick. Making sequential consistency practical in Titanium. In
Supercomputing 2005, November 2005.

13. A. Kamil and K. Yelick. Concurrency analysis for parallel programs with textually aligned
barriers. In Proceedings of the 18th International Workshop on Languages and Compilers
for Parallel Computing, October 2005.

14. A. Krishnamurthy and K. Yelick. Analyses and optimizations for shared address space pro-
grams. 1996.

15. Y. Lin. Static Nonconcurrency Analysis of OpenMP Programs. In First International Work-
shp on OpenMP (IWOMP 2005), June 2005.

16. R. Numwich and J. Reid. Co-Array Fortran for parallel programming. Technical Report
RAL-TR-1998-060, Rutherford Appleton Laboratory, 1998.

17. M. O’Boyle and E. Stohr. Compile time barrier synchronization minimization. Parallel and
Distributed Systems, IEEE Transactions on, 13(6):529–543, Jun 2002.

18. S. F. Siegel and G. S. Avrunin. Modeling wildcard-free MPI programs for verification. In
PPoPP ’05: Proceedings of the tenth ACM SIGPLAN symposium on Principles and practice
of parallel programming, pages 95–106, New York, NY, USA, 2005. ACM.

19. C.-W. Tseng. Compiler optimizations for eliminating barrier synchronization. SIGPLAN
Not., 30(8):144–155, 1995.

20. K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy, P. Hilfinger,
S. Graham, D. Gay, P. Colella, and A. Aiken. Titanium: A high-performance Java dialect. In
Workshop on Java for High-Performance Network Computing, Stanford, California, Febru-
ary 1998.

21. Y. Zhang and E. Duesterwald. Barrier matching for programs with textually unaligned bar-
riers. In PPoPP ’07: Proceedings of the 12th ACM SIGPLAN symposium on Principles and
practice of parallel programming, pages 194–204, New York, NY, USA, 2007. ACM.

22. Y. Zhang, E. Duesterwald, and G. R. Gao. Concurrency analysis for shared memory pro-
grams with textually unaligned barriers. In Languages and Compilers for Parallel Comput-
ing, 20th International Workshop, LCPC 2007, volume 5234 of Lecture Notes in Computer
Science, pages 95–109, 2008.


