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Computing has transformed nearly every aspect of scientific 

inquiry — across disciplines and across scales — from the 

behavior of subatomic particles to the formation of structures 

in the early universe, from the assembly of the human genome 

to the evolution of earth systems. Over the past two decades, 

computing has become an integral part of how Berkeley Lab 

is “Bringing Science Solutions to the World.” Advances in 

computing and mathematics have been key, with new 

mathematical models of complex physical phenomena, 

new methods for analyzing complex data, new algorithms 

for accuracy and scaling and sophisticated software 

systems that encapsulate these techniques into open, reusable tools. The 

performance of NERSC computers and the ESnet network have grown by several 

orders of magnitude, along with our understanding of how to map scientific 

computations and workflows onto these systems.  From research to facility 

operations, the passion, talent and dedication of the Computing Sciences Area 

staff has been the cornerstone of our success. The plan outlined in this document 

describes the next step in a journey to expand the influence and impact of our 

efforts, building an increasingly connected global enterprise for science that 

places more powerful instruments in the hands of scientists, along with more 

powerful methods and tools for modeling, analysis and prediction.

Jonathan Carter, CSA  
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Division Director
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A Vision 
for Scientific Discovery 

In today’s research ecosystem, computation  
and mathematics are essential to scientific  
discovery. Over the next five years, their roles  
will continue to grow as the scientific process  
becomes increasingly automated, distributed  
and reproducible.
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Scientists in the future will increasingly pose high-level questions using domain-relevant terminology, 

and automated systems will respond by running a set of experiments or simulations. Computational 

methods will sift through the resulting data — large, noisy and complex — to extract features and 

construct models to interpret the data. The boundary between theoretical and experimental science will 

blur as scientists combine observational and simulation data and use a variety of first-principles and 

learned models to make predictions. The most powerful instruments will be accessed remotely, and online 

collaboration tools will support dynamically configured, distributed science teams. Finally, science will be 

more reproducible. Scientific data will be open, available and searchable, and complex workflows captured 

in electronic notebooks will adapt in robust ways to new inflows of data and new software and hardware. 

This vision requires advances in mathematical and statistical methods, as well as in programming 

systems, libraries and tools for analytics, simulation and learning (Figure 1). It will require more powerful 

networking and computational platforms, along with novel approaches to address the challenges in 

computing performance as device technologies reach the end of traditional scaling. Machine learning 

methods tailored to scientific data will provide powerful tools for analysis of complex data sets and the 

control of experiments, infrastructure and environmental processes. The use of learning for scientific 

inquiry will require improved methods that are consistent with physical laws, robust to gaps or anomalies 

in data and interpretable in ways that are meaningful and defensible to the scientific community. 

A promising lever to meet future performance needs is processor specialization, which will usher in a new 

era of co-design where hardware is tailored to a given algorithm or application. In order to satisfy broad 

science needs, mixtures of specialized processors will be deployed in heterogeneous high performance 

computing (HPC) systems, and computation will be embedded near experiments and throughout the 

network. Longer term, quantum technology will offer new capabilities for computation, communication 

and sensing, complementing traditional digital devices and offering unique capabilities for certain science 

questions. Experimental facilities and computing facilities will need to be tightly integrated with high-

speed networks, supporting real-time analytics from experiments and with large community data sets 

co-located with computing and data services, turning the network of facilities into a kind of superfacility. 

Figure 1: In the near future, algorithms and systems will respond to science inquiries 
with automated experiments and analysis on seamlessly integrated facilities. 
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Progress on the Computing Sciences 2015 Vision
In 2015, the Computing Sciences Area drafted a strategic vision outlining three critical, 

overarching areas: Exascale computing to satisfy performance demands up to 2025; 

Mathematics to address the ever-increasing complexity of scientific questions; and Data 

to meet the needs of experimental and observational science. Over the last four years we 

have made considerable progress in all three areas.

Exascale

DOE formed the Exascale Computing Project (ECP) in 2016 and began work to deliver 

exascale systems by the early 2020s. With a focus on scientific impact, Berkeley Lab 

defined a lab-wide priority in “Breakthrough Science at the Exascale” designed to 

combine the best mathematical methods with innovative software technology to deliver 

new science capabilities for future exascale systems. Berkeley Lab was chosen to lead or 

co-lead 11 of the 25 applications projects under the ECP and other key projects across the 

Laboratory. These cover all major scientific domains at the Lab: Physical Sciences, Earth 

and Environmental Sciences, Energy Sciences, Biosciences and Energy Technologies. The 

application areas cover cosmology, astrophysics, accelerator design, chemistry, subsurface 

flows, genomics, urban systems, carbon capture and earthquake simulations. 

Additionally, the Lab is playing a lead role in three ECP co-design centers, in which 

algorithms and applied math are developed and tailored for ECP applications and future 

exascale hardware. For example, the adaptive mesh refinement (AMR) methods developed 

by the Lab have been adapted for exascale use and, through the AMReX co-design center, 

have been incorporated into at least five of the ECP applications (Figure 2). Staff at the 

National Energy Research Scientific Computing Center (NERSC) launched exascale 

programs in simulation, data and learning applications to help its thousands of users 

prepare for NERSC’s series of pre-exascale systems in 2016 and 2020 that are deploying 

Figure 2: This image 
shows a simulation of an 
accelerator experiment 
using the Warp X soft-
ware developed as part 
of ECP. Warp X is using 
AMR software developed 
through the ECP co design 
center AMReX at  
Berkeley Lab.
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key technologies on the path to exascale. Combined with ECP software and co-design 

efforts from the Computational Research Division (CRD) and high-speed networking 

from the Energy Sciences Network (ESnet), these activities will broaden the impact of 

exascale computing to the science community beyond the 25 ECP applications. 

Math

Our focus on math in 2015 was designed to further extend the scientific impact of the 

Lab’s Applied Mathematics program. Berkeley Lab’s program is known for making 

fundamental advances in the development of new models and algorithms and for 

providing usable math tools for scientists. In addition to its traditional application 

areas, the applied math expertise at the Lab now comes to bear on a new class of 

problems through CAMERA, the Center for Advanced Mathematics for Energy Research 

Applications. CAMERA brings together applied mathematicians, image and signal 

processing experts, data scientists and experimental scientists to attack algorithmic 

and data challenges at DOE Basic Energy Sciences experimental facilities (including 

the light sources, neutron scattering sources and nanoscience centers) and to accelerate 

the transfer of new mathematical ideas that can significantly improve the analysis and 

understanding of experimental data.

As one example, CAMERA researchers contributed key algorithms that helped an 

international team achieve a goal first proposed more than 40 years ago: using angular 

correlations of X-ray snapshots from non-crystalline molecules to determine the 3D 

structure of important biological systems. The breakthrough resulted from a single-

particle diffraction experiment conducted at the DOE’s Linac Coherent Light Source 

(LCLS) by the Single-Particle Initiative organized by the SLAC National Accelerator 

Laboratory. The team used CAMERA’s multi-tiered iterative phasing (M-TIP) algorithm 

to perform the first successful 3D virus reconstructions from experimental data (Figure 3).

Data

Sometimes described as a tsunami, the onslaught of experimental and observational 

data has disrupted long-standing ideas about the design of computing centers which 

for years have focused primarily on producing and storing results from simulations. 

The ability to collect and understand these massive data sets, often generated at remote 

experimental facilities, requires new approaches to advanced computing and networking. 

NERSC and ESnet have been used in production analysis for data from the Large 

Hadron Collider (LHC) and the Joint Genome Institute (JGI); in supernova detection, 

Figure 3: The CAMERA 
team developed the 
M-TIP algorithm to show 
reconstructions of a rice 
dwarf virus (a-b) and  
a PR772 bacteriophage 
(c-d) from experimental 
correlation data, with  
  b and d showing asym-
metries in the internal 
genetic material for each 
virus reconstruction.

a b c d
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studies of the cosmic microwave background and more; and, most recently, have created 

real-time job scheduling for light sources and electron microscopes to support analytics 

during experiments. CRD has built tools to manage data pipelines, as well as analytics 

software for both experiments and simulations. These tools include custom software for 

projects in cosmology, particle physics, environmental science, materials science, imaging 

and biology, as well as general-purpose analysis and visualization software. Some of 

these tools help scientists perform live analyses on their data, enabling them to quickly 

determine the quality of the data and ascertain whether to repeat an experiment or move 

on to the next one. 

Ongoing upgrades to ESnet and NERSC also support the growing vision of 

interconnected facilities for science. In 2017, ESnet launched ESnet6, a major 

project to upgrade to terascale networking and provide more programmability and 

automation within the network. In 2018, NERSC announced the procurement of its 

next-generation supercomputer, a pre-exascale machine slated to be delivered in 2020. 

Named “Perlmutter” in honor of Berkeley Lab’s Nobel Prize winning astrophysicist 

Saul Perlmutter, it is the first NERSC system specifically designed to meet the needs 

of data streams from experimental and observational facilities and machine learning 

applications, as well as large-scale simulations.

The Computational Cosmology Center in CRD has worked closely with NERSC and 

ESnet to develop high performance tools to stream and analyze supernova images 

and cosmic microwave background (CMB) data for national and international science 

collaborations (Figure 4). With a leadership role in data analysis for the next major CMB 

experiment (CMB-S4), the team has generalized the problem of CMB map-making to 

the reduction of any pointed time-domain data with TOAST (Time Ordered Astrophysics 

Scalable Tools), a tool that is optimized to run at scale on NERSC’s pre-exascale systems. 

Figure 4: CRD is home  
to the Center for Com-
putational Cosmology, 
which produces scalable 
data science tools for 
cosmological analysis 
of phenomena such as 
the cosmic microwave 
background (pictured).
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2019: Moving Forward
While the progress in these three areas has led to new capabilities for science, work 

remains to be done to meet the goals of automation and reproducibility and to address 

the new challenges facing computing performance. This reality led us to reassess our 

position and our areas of future emphasis. The 2019 Strategic Plan details our objectives 

and motivations for three strategic initiatives to address the greatest needs and provide 

the greatest impact for the DOE research community over the next five years: Learning 

for Science, Beyond Moore and the Superfacility model. These interconnected initiatives 

are supported by our recognized expertise in applied mathematics, HPC, data science and 

networking, as well as existing investments in the physical infrastructure for computing 

and networking. 

Learning for Science: Machine learning has emerged as a powerful set of methods 

for learning predictive models, and it is rapidly moving into the analysis of scientific 

data and control of scientific experiments and systems. High performance computing 

has proven to be invaluable in scaling some of the largest learning methods, but 

methods need to be adapted for the complexity of scientific data, given that standards 

for understanding and explaining learned models is much higher in science than in 

commercial or social applications. We need much more robust and interpretable machine 

learning methods, and they need to scale with the data, models and machines being used. 

Most important, we can’t have methods that just give us a correlation or answer without 

any interpretation behind it.

Beyond Moore: DOE mission requirements will continue to demand increased computing 

performance even while the traditional performance gains we have come to expect 

from lithography improvements taper off as we approach atomic scale. We cannot keep 

scaling microelectronics performance without co-design that spans all layers — from 

atomic-scale materials to large-scale complex systems — to meet the needs of emerging 

mission scientific applications. We need multiple approaches to future hardware, 

including exploration of new transistor technologies, heterogeneous accelerators and 

fundamentally new approaches such as quantum computing.

The Superfacility Model: Increasingly, users of DOE’s national user facilities access HPC 

systems remotely, capturing the data and then moving it, analyzing it and repeating the 

whole process multiple times. But what if these steps could be woven into a seamless 

progression of phases? The superfacility concept is a blueprint for seamlessly integrating 

experimental, computational and networking resources to support reproducible science. 

This initiative is designed to go beyond the successful point demonstrations of the 

past and define an automated architectural model to support streaming data from 

experimental facilities, a single interface for users, improved resilience and integrated 

tools for sharing, searching and analyzing data for more productive, reproducible science.

These three 
initiatives will 
help Computing 
Sciences harness 
the expertise and 
resources of our 
three divisions — 
NERSC, ESnet and 
CRD — to deliver 
on our vision for 
science.
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Overview of 
Berkeley Lab and
Computing Sciences
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Berkeley Lab is known for its scientific excellence, with 13 associated 
Nobel prizes, 15 awardees of the National Medal of Science and  
91 memberships in the National Academies of Science, Engineering  
and Medicine. The Lab vision, “Bringing Science Solutions to the 
World,” goes beyond fundamental science to develop transformational 
impacts on society, particularly for energy and environmental challenges. 
Interdisciplinary, team-based science has been at the core of the  
Lab’s success for more than 85 years, emanating from founder Ernest 
Orlando Lawrence, who is often referred to as the “father of big science.”
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Overview of Berkeley Lab 
Berkeley Lab is a member of the DOE’s national laboratory complex, and its scientific 

preeminence is cemented by its proximity to the University of California at Berkeley, 

which has the largest number of top ten graduate programs of any university in the U.S. 

and is known around the world for excellence. We are a laboratory committed entirely 

to open, unclassified research and are the most collaborative of any laboratory, with 

nearly 10,000 publications jointly written with universities, industry and other national 

laboratories. The national laboratories all excel in designing, building and operating 

large, one-of-a-kind instruments for the science community, but in this aspect Berkeley 

Lab stands out. Not only do we develop some of the technology used worldwide in 

detectors, accelerators and other devices, but the five national user facilities at Berkeley 

Lab serve nearly 10,000 users each year, more than any other national laboratory.

Maintaining a global reputation for excellence in breakthrough science requires more 

than excellence in research. As an institution managed by the University of California 

for the benefit of the nation, Berkeley Lab is committed to the highest level of scientific 

integrity and dedicated to ensuring that all staff demonstrate impeccable ethical conduct 

in all aspects of their employment.

Underpinning all of Berkeley Lab’s research efforts is an ongoing commitment to the 

health and safety of employees through continuous training and awareness programs and 

regular efforts to remind staff that we are all responsible for our collective well-being. And 

just as in science, where differences in perspective and knowledge often meld and lead to 

bigger breakthroughs, Berkeley Lab is committed to building an inclusive, collaborative 

and open environment, honoring diversity in people and in ideas. Berkeley Lab is 

determined to increase the diversity of its workforce and to promote diversity in STEM for 

the nation’s next generation of engineers and scientists. Toward this end, Berkeley Lab was 

the first national lab to post its diversity statistics online and led the effort for all 17 DOE 

national labs to post their collective diversity statistics. The Lab also continues to build 

and expand its local and national outreach efforts in K- 12, higher education and diverse 

professional associations, targeting underrepresented communities in STEM.

Overview of Computing Sciences at Berkeley Lab
The Computing Sciences Area mission is to achieve transformational, breakthrough 

impacts in scientific domains through the discovery and use of advanced computational 

and mathematical methods and systems that are accessible to the broad science 

community.

This mission embodies our commitment to influence basic and applied science areas, 

using computation to solve societal and environmental problems, address national and 

international priorities and aid in the pursuit of fundamental scientific discovery. We are 

equally committed to advancing the field of computing writ large, including underlying 

https://nationallabs.org/staff/diversity/
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Figure 5: The Berkeley 
Lab Computing Sciences 
area has over 400 staff 
across three divisions: 
NERSC, ESnet and CRD.

mathematics, statistics and algorithms as well as computational devices, programming 

methods and systems. In keeping with Berkeley Lab’s tradition of broad impact, these 

capabilities are delivered to the community through world-leading facilities and widely 

used software that solves specific scientific challenges or is generic across a range  

of applications.

The Computing Sciences program at Berkeley Lab is anchored by two major user 

facilities — NERSC and ESnet — and CRD, the strongest computing research program 

across the national laboratory complex, with major activities in applied math, computer 

science, data science and domain-specific partnerships in computational modeling and 

data analysis. The facilities serve a large cross-section of the DOE science community, 

with NERSC supporting several thousand researchers from universities, national 

laboratories and industry working on DOE mission problems, and ESnet connecting the 

DOE community to each other and the rest of the Internet for distributed team science.

The strength of the research program and facilities rests on the ongoing excellence of the 

staff, who bring outstanding intellect, expertise and leadership to address a broad set of 

research and operational challenges. The Area has a number of activities to attract new 

talent, train them in the collaborative science model, instill a culture of inclusion and 

support their professional growth and careers. It has a rich set of weekly seminars to keep 

people informed of the latest work inside and outside the Area. In addition to leadership 

development programs run by DOE and the Lab, the Area has a biennial internal 

mentoring program that is open to all staff wishing to be a protege or a mentor, and this 

successful model has been adopted by other areas at the Lab. To expand the workforce 

vital to the DOE’s mission areas in advanced computing, Computing Sciences partners 

with the Sustainable Horizons Institute to bring more than 100 faculty and students 

from institutions historically under represented in the research community to Berkeley 

Lab. These faculty and student teams collaborate with Computing Sciences researchers 

in paid internships each summer, often returning for two or even three years to continue 

their work.



14  |  COMPUTING SCIENCES STRATEGIC PLAN 2019

The National Energy Research Scientific Computing Center (NERSC) is the mission high 

performance computing facility for the DOE’s Office of Science. NERSC supports more 

than 800 projects covering a diverse workload that represents every scientific discipline 

within the Office of Science. The scientific record of NERSC is exceptional, with users 

each year reporting more than 2,000 publications and about 20 cover stories stemming 

from their work at NERSC. In the past 15 years, six Nobel prizes have been awarded to 

scientists or projects affiliated with NERSC. 

In addition to delivering outstanding computational and data services, NERSC drives the 

industry toward innovation of high performance computing solutions, with first-of-a-kind 

systems designed to run a rich workload of applications, including those that require 

the full system capability. The NERSC Exascale Science Applications Program (NESAP) 

devotes personnel, computing resources and training programs to work closely with the 

user community to move their applications toward exascale architectures. 

NERSC procures supercomputing systems every few years and often has two in 

production to ensure smooth transitions for users. The NERSC-8 system, named after 

Nobel Laureate Gertrude Cori, arrived in 2016 using manycore compute nodes and  

a flash-based burst buffer to accelerate data-intensive applications. NERSC recently 

announced NERSC-9, a system named Perlmutter to be delivered in 2020 that will 

integrate both CPU-only and GPU-accelerated nodes with a Cray network designed to 

support the rapid ingest of data from external facilities and a system architecture that 

can be extended to include other types of accelerators. Perlmutter will have an all-flash 

file system to accelerate heavy I/O applications and, like NERSC-8, will include a robust 

application readiness program.

Figure 6: NERSC staff in front of Shyh Wang Hall at Berkeley Lab.
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The Energy Sciences Network (ESnet) fuels collaborations around the globe by connecting 

the DOE national laboratories to each other and to the rest of the national and international 

scientific world. ESnet exists to provide the specialized networking infrastructure and 

services required by the national laboratories, large science collaborations and the DOE 

research community. ESnet is recognized nationally and internationally as one of the 

premier science networks. It has a long track record of innovation in network design, 

performance and service delivery, highlighted by major contributions that are utilized 

by other research networks around the world. It offers novel services, such as bandwidth 

reservations to accelerate the transfer of very large data sets, and its widely adopted 

“Science DMZ” model ensures that benefits of high-speed networking and big data 

movement extend into the private networks of universities and laboratories worldwide. 

ESnet transferred close to an exabyte of data in 2018, with over two-thirds of the traffic 

composed of large data science data flows. ESnet is a national and international resource 

for collaborative science, with 80 percent of the data moving outside the DOE laboratories. 

Initiated in December 2014, and upgraded in 2017, ESnet put four trans-Atlantic links 

into production, giving U.S. and European researchers 400Gbps of dedicated bandwidth, 

ensuring the fastest connections between scientists in the U.S. and collaborators and 

facilities in Europe, such as the Large Hadron Collider. Late in 2016, DOE approved the 

start of the ESnet6 project, which is the next major upgrade to the network. The ESnet6 

project will achieve a transformational change in network capacity, resiliency and 

flexibility that will pay tangible benefits to the DOE mission and U.S. competitiveness. 

ESnet serves as a vital “circulatory system” for all DOE research facilities and major 

projects and for every mission space within the Office of Science. ESnet’s strong history 

of innovation in network architecture, software and science-driven services support 

breakthrough science with large, remote and distributed data.

Figure 7: ESnet staff  
at a group team-building 
meeting in January 2019.
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The Computational Research Division (CRD) is 

the Computing Science Area’s research arm. CRD’s 

research program is internationally recognized 

for excellence in applied mathematics, computer 

science, computational and data science.

CRD’s Applied Mathematics program rivals that of any university in scientific excellence, 

with six National Academies memberships, one National Medal of Science awardee, 

and seven SIAM Fellows. Leveraging the UC Berkeley connection, the program has 

consistently achieved fundamental breakthroughs in science-driven modeling, adaptive 

mesh refinement, interface methods and scalable algorithms. Just as mathematics is 

the universal language for science, the math program is the linchpin for collaborative 

research, with the latest methods used for everything from simulating the Lyman-alpha 

forest in cosmology to the formation of bubbles used in industrial foams. Berkeley Lab 

has shown strong leadership in modeling and simulation for DOE’s applied mathematics 

program and currently leads the DOE SciDAC (Scientific Discovery 

through Advanced Computing) FASTMath Institute. CRD has also 

led the community in establishing the mathematical foundations 

of scientific data analysis for the Office of Science. Building on 

Lab funding, DOE established CAMERA, the Center for Applied 

Mathematics for Energy Research Applications at Berkeley Lab, 

which includes work with the Advanced Light Source and other 

DOE Basic Energy Sciences scientific user facilities to enhance  

the analysis of data from beamline experiments using a rich set  

of advanced mathematical methods.

Computational and data science research within CRD has strong 

connections with other Berkeley Lab divisions, leading to computational and data 

activities in computational cosmology, biology, chemistry, materials, high energy physics 

and climate modeling. The boundaries between math, computer science, data science and 

domain science are fluid, with project teams drawing from expertise across the Lab. The 

research program and NERSC have a long history of collaboratively developing tools for 

major experiments as well as modeling and simulation software. The science engagement 

activities in both divisions draw upon user expertise to define their future directions and 

collaborate in deploying state-of-the-art computational systems and networking services. 

Several of the cross-disciplinary activities address the end-to-end science problem, 

delivering complete solutions to science communities. 

CRD’s computer science research activities are well-recognized across the Lab complex, 

with four ACM Distinguished Scientists or Fellows and best paper awards at all of the 

major conferences in high performance computing. Berkeley Lab computer scientists 

led two of the four DOE SciDAC Institutes in 2011-2016. The Lab conducts research 

across the core areas of computer systems research, including computer architectures, 

operating systems, programming models, parallel algorithms, performance modeling 

and optimization, as well as data science-related areas of visualization, graph analytics, 

machine learning, data management and collaboration tools. 

Figure 8a: Center for Applied Mathematics for Energy 
Research Applications
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Figure 8b: Computing Sciences Area and Computational Research Division Management

Helen Cademartori, CSA/CRD Deputy for Operations

David Brown, CRD Division Director 

Peter Nugent, CRD Computational Science Department Head

Kathy Yelick, CSA Associate Laboratory Director

Jonathan Carter, CSA Deputy for Science

John Shalf, CRD Computer Science Department Head

John Bell, CRD Chief Scientist

Deb Agarwal, CRD Data Science and Technology Department Head

Edmond Ng, Division Deputy (not shown) 

James Sethian, Head of CAMERA (not shown)
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Computing Sciences 
Strategic Initiatives
 •Learning
 •Beyond Moore
 •Superfacility
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The 2015 Computing Sciences initiatives are now ongoing 
activities in support of our vision for scientific discovery.  
In particular, the Exascale Computing Project and CAMERA are 
well-established DOE-funded activities, and there are multiple 
data-intensive science projects using ESnet, NERSC and CRD 
for experimental and observational science. 

For 2019, we have identified three new initiatives that deserve 
an area-wide focus, with the expectation that they will grow 
over the next five years into self-sustaining projects that will 
deliver scientific impacts for many years to follow: 
Learning, Beyond Moore and Superfacility.
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Learning Initiative
In scientific discovery, learning has become essential to identifying features of massive 

collections of images, genome sequences, text and simulation output, and it will 

increasingly be used to control complex energy and environmental systems. Predictions 

based on modeling and simulation of physical processes using first-principles applied 

mathematics (e.g., partial differential equations) will continue to play a critical role 

in science, and they will be augmented with models inferred from data, especially in 

scientific areas where first-principles are unknown or inaccessible. Applications of 

advanced computing will go beyond traditional foci on the physical sciences to  

problems that involve infrastructure management, human behavior, ecosystems and 

biological processes. 

In the CS Learning Initiative — which incorporates deep learning, traditional machine 

learning and statistical methods — our vision for the future includes scientific 

instruments controlled by intelligent, high-precision robotics; data analytics methods 

that learn models from noisy, complex, multi-modal and multi-scale data sets; high-

throughput simulation campaigns managed by algorithms; and computational and 

networking facilities that automatically adapt resources to user demand and respond to 

anomalous behavior. 

Learning methods will empower scientists by 

allowing computers to identify emergent or 

unexpected patterns in heterogeneous, complex 

datasets and find hidden signals recalcitrant to 

classical interrogation. Our approach is driven 

by the needs of science, so rather than limiting 

attention to one class of methods, our Learning 

Initiative very broadly includes deep learning, 

traditional machine learning, statistical methods 

and scalable analytics. We will use interdisciplinary 

application teams to solve open scientific questions 

using real data sets, addressing data paucity along 

with abundance, systematic errors along with noise 

and constraints due to laws of physics along with 

other known structures in the data. 

But answering fundamental questions on the 

foundations of machine learning is essential to 

their use and acceptance in scientific discovery. 

Deep learning methods result in highly accurate 

predictions, outperforming more traditional 

techniques, but they remain almost entirely “black 

boxes” — we can see that they work, but they 

Figure 9: This image 
shows a developing jet 
diffusion flame simula-
tion run at NERSC using 
Berkeley Lab’s PeleM 
code developed as part 
of the ECP’s combus-
tion application project 
and with adaptive mesh 
refinement methods 
and software from the 
ECP AMReX Co-Design 
Center. In fluid dynamics 
problems more broadly, 
applied math researchers 
have used optimization, 
statistical methods and 
deep learning to aid in 
parameter estimation 
and fast surrogates and 
to derive highly accurate 
models from data. 
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provide little or no insight to the systems they model. Further, they require substantial 

trial and error to use, the theoretical foundations are poorly understood and the resulting 

models are complex and lack natural interpretations. This may be acceptable for placing 

advertisements or finding cat videos, but it is a serious concern in scientific discovery. Our 

research program will therefore address these and other foundational questions, including 

possibilities for bias, lack of stability and open questions in explaining how, when and 

why particular methods work — all with the goal of enabling scientific discovery in 

regimes and at scales that have not previously been accessible to inference. 

For some of the largest and most challenging problems, the power of HPC systems will be 

needed, providing a unique capability in DOE to accelerate model training and inference. 

Berkeley Lab is already a leader in the use of HPC for machine learning in science 

and has a broad set of activities adapting and applying machine learning methods for 

scientific discovery. Our work on scalable linear algebra libraries, parallel algorithms and 

HPC systems software will enable new and existing learning methods to take advantage 

of the massive memory and compute power of systems at NERSC and other facilities. 

Berkeley Lab and the surrounding community are a powerhouse of machine learning 

talent and expertise, including UC Berkeley’s academic programs, local startups and large 

corporations, non-profits and other universities and laboratories. To catalyze a learning effort 

for scientific discovery, we will offer a set of seminars, training material, public data sets and 

benchmarks to empower scientists to use the best learning methods, software and systems. 

Our Learning Initiative forms the computational core of a broader Lab-wide initiative 

called ML4Sci that involves Laboratory Directed Research and Development (LDRD) 

funded application projects in learning from across the Lab. Playing to the strengths 

and ongoing activities in Computing Sciences, the four high-level goal categories for our 

initiative are:

1. Adapt and apply learning techniques to address the complexity of fundamental and 

applied science applications through cross-disciplinary collaborations.

2. Develop robust and interpretable learning methods.

3. Develop and deploy premier hardware, software and services for learning at NERSC.

4. Empower the science community with learning collaboration activities, training  

and seminars.

Figure 10: Researchers in Berkeley Lab’s CAMERA center have 
developed a mixed-scale dense convolution neural network 
(MS-D) that requires far fewer parameters than traditional  
machine-learning methods, converges quickly and has the ability 
to learn from small training sets. This image shows a slice of 
mouse lymphoblastoid cells, with raw data (a), corresponding 
manual segmentation (b) and output from an MS-D network 
with 100 layers. 

a b c
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1. Applications

Adapt and apply learning techniques to address 
the complexity of fundamental and applied 
science applications through cross-disciplinary 
collaborations.

In nearly every domain of science, researchers are considering machine 

learning algorithms for analyzing data, solving inverse problems, 

approximating time-consuming simulations or experiments, controlling 

complex systems and for design and engineering. Indeed, multiple DOE 

workshops and reports highlight the urgent need to apply and adapt 

learning techniques to solve our most pressing challenges. In recent years, 

significant progress has been made across CRD, NERSC and ESnet for 

some application areas. Examples include enabling interpretation of 

multispectral images from light sources; predicting real-time network 

behavior and avoiding data traffic congestion; and feature detection, 

classification, segmentation and generation for neutrinos, extreme climate 

events, supernovae, microbial genes and more, generally for data from 

experiments, observations, and simulations. Ongoing Lab efforts reach 

into new areas, including the use of machine learning to automatically 

label science data with metadata information for improved search, the 

development of surrogate models for managing groundwater and methods 

to analyze multi-modal sensor data from highly instrumented farmland for 

sustainable agriculture.

Expanding this effort, we will embark on in-depth engagements with key 

scientific partners to build learning algorithms directly into modeling and 

simulation applications, experimental and observation data (EOD) science 

pipelines and the operation of facilities and infrastructure. We will capture 

some of the best practices and common pitfalls in a lessons-learned report 

on learning in science. This report will include areas such as generative 

networks, weakly supervised deep learning, graph neural networks and 

large-scale learning, and will compare traditional analytics, deep learning 

and other forms of machine learning to provide a perspective from 

science. The report will go beyond summarizing existing efforts to identify 

infrastructure requirements, limitations faced with current methods, 

common computational and data access patterns and how the data 

characteristics affect the choice of techniques. This applications effort will 

take advantage of the lab-wide LDRD initiative in ML4Sci, the Exascale 

Computing Project’s (ECP’s) ExaLearn project and NERSC’s learning 

applications in the NESAP partnership program.

2-Year Milestones 
• Produce a website describing 

Berkeley Lab learning 
experience in science 
applications. 

• Demonstrate new learning 
applications across multiple 
EOD projects and simulation 
applications.

5-Year Milestones

• Develop an on-demand hub 
of pre-trained models and 
application-level services.

• Demonstrate new learning 
applications for engineering 
design and control of 
complex systems.
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For EOD pipelines, learning will be incorporated into all stages, including filtering, 

compression and reduction in situ at instrument; smart scheduling of facilities; 

advanced analytics; and statistics/machine learning on HPC machines. For modeling and 

simulation applications, we will build on our existing strength and ownership of these 

applications to use learning where data-driven models are needed, to analyze outputs or 

to manage ensemble calculations. Longer term, we will develop methods for facilities and 

infrastructure management, optimizing resource allocation and detecting problems such 

as component failures and cyber incidents. We will demonstrate these within our own 

computing and networking facilities operations and in infrastructure, such as the control 

of transportation or energy systems, and through the use of reduced order models for 

real-time prediction of water systems management. 

Guided by domain experts and this experience, we will implement common methods 

and processes in new libraries on top of popular frameworks and develop model 

hosting platforms (“hubs”) for publication of models, weights and data that can be 

reused for transfer learning across related problems with restricted or limited data. Our 

implementations will be optimized for heterogeneous hardware architectures, will use 

a variety of parallelism techniques for HPC scalability (e.g., model, data and domain 

parallelism) and will be available to the community through well-engineered and well-

supported software suites.

Ultimately, our goal is to ensure that all science projects from Lab researchers, NERSC 

users and the wider DOE community have access to state-of-the art learning approaches 

and necessary expertise that can be easily applied to their application at-scale 

throughout their pipelines.

Figure 11: Machine 
learning is being used to 
reconstruct the tracks of 
particles in high energy 
physics experiments at 
facilities such as the Large 
Hadron Collider at CERN. 
CRD and NERSC staff col-
laborated on the TrackML 
Challenge, a competition 
designed to inspire new 
algorithmic developments 
that can quickly recon-
struct particle tracks 
from three-dimensional 
coordinates left in silicon 
particle detectors following 
millions of particle  
collisions.
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2. Methods 

Develop robust and interpretable learning methods 
for science. 

Mathematically, all learning methods can be characterized as identifying 

and representing structure in the data. Geometrically we might be looking 

for low-dimensional spaces or sparse representations in some basis to 

characterize the data. Optimization is used to take advantage of the special 

structure in data, both for efficiency and quality of results. 

Deep learning and most learning techniques available today are able to 

identify complex and subtle patterns in data. However, those patterns 

remain locked away in the derived model — we are able only to glimpse 

aspects of the fitted functions and cannot yet extract internal data 

representations. Our goal is to improve foundational understanding 

of machine learning methods and to develop methods with improved 

interpretability; such methods will capture realistic mechanisms and not 

simply correlations, are consistent with known constraints such as  

physical laws and reveal quantifiable uncertainties and identifiable  

biases (Figure 12). 

We aim to go beyond correlation, or statistical association, to causation 

and mechanism. This research will focus on two paradigms: building 

methods that facilitate interpretation up front (e.g., produce models 

that have few parameters and satisfy known properties of the domain); 

and designing interpretation techniques for the interrogation of 

Figure 12: Berkeley Lab researchers are using interpretable machine learning methods to 
analyze and understand the interrelationships between soil chemistry, microbes, plant types, 
water and other factors in precision agriculture. 

2-Year Milestones
• Develop new strategies for 

building interpretability and 
explainability into machine 
learning methods (including 
deep learning modalities) 
with minimal impacts on 
performance.

• Develop new techniques for 
extracting the internal data 
representations learned by 
“black box” algorithms. 

• Develop frameworks for the 
quantification of uncertainty 
in data representations 
extracted from learning 
machines, including deep 
neural networks. 

5-Year Milestones
• Develop the mathematics to 

extract human-interpretable 
surrogate models that are 
robust to outliers and with 
quantifiable uncertainty.

• Apply new surrogate 
modeling techniques to 
enable adaptive optimization 
and control of complex 
systems, such as energy 
systems and watersheds.
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learned models, regardless of how they are constructed. An example of the first would be 

incorporating physical or mathematical knowledge to the learned models to capture “cause 

and effect” by design. On the other hand, black-box architectures, such as convolutional 

neural networks (CNN), will require extraction techniques where the underlying (hidden) 

model is exposed in a human-navigable surrogate amenable to visualization and inferential 

procedures. Figure 13 illustrates this type of interrogation scenario.

Interpretation is especially challenging for high-dimensional data where the underlying 

structure is not easily derived. Techniques such as topological analysis can help discover this 

structure and determine its inherent complexity. One might use such a structure as a guide 

to find better embeddings of the data (ones that amplify the low-dimensional structure) or to 

translate input data into a different representation on which learning would be effective. To 

advance our mathematical understanding and capabilities in learning, we will look for ways 

to leverage internal expertise and develop additional expertise in fields of importance to 

learning, such as measure theory and analysis, black-box and non-black-box optimization, 

differential geometry, algebraic topology, optimal transport (for comparing probability 

distributions), Hamiltonian Monte Carlo and linear algebra.

Developing stronger foundational insights into why and how predictive architectures 

function will enable us to enhance the efficiency of machine learning design and training 

and encapsulate user-defined hyperparameters in fitting routines. Future generations of 

learners will need to “know when they don’t know” — to adapt to, and correctly flag, 

unexpected or adversarial inputs. These capabilities, including the capacity to register 

“surprise,” are essential for the process of scientific discovery. We aim to improve 

uncertainty quantification, enable sensitivity analysis and, ultimately, statistical inference. 

Figure 13: Our vision for 
machine learning methods 
addresses data from a 
variety of instruments, 
simulations and feedback 
to control experiments. 
Methods need to produce 
models with natural inter-
pretations or techniques 
for interrogating those 
models.
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3. Deployment 

Develop and deploy premier hardware, software  
and services for scalable learning.

Powerful platforms designed for data management and analytics enable 

the DOE open science community to address problems at scale. This 

requires efficient use of existing and soon-to-be deployed supercomputing 

hardware. In collaboration with industry, and in coordination with the 

science user community, we will develop scalable learning libraries on 

the Cori and Perlmutter platforms. This will build on our work in scaling 

and optimization of dense and sparse linear algebra, graph algorithms, 

randomized algorithms, communication-avoiding techniques and data 

analytics frameworks. It also overlaps with our Beyond Moore initiative 

in the use of algorithms and software for next-generation hardware. 

Usability is a key consideration, and we will develop productive interfaces 

(e.g., notebooks) for running jobs at scale for distributed training, 

inference and hyper-parameter optimization. 

To aid in vendor partnerships and inform future procurements, we 

will develop a suite of learning benchmarks to evaluate emerging 

computing hardware and serve as use cases. New and existing vendor 

relationships will ensure that software works well on HPC systems and 

for science use cases, leveraging collaborations and lessons learned 

from application areas. The NERSC exascale partnership program 

2-Year Milestones 
• Deploy a rich learning stack 

at NERSC in partnership 
with software and hardware 
vendors. 

• Develop a comprehensive 
learning benchmark suite 
for future procurements to 
shape evaluation of emerging 
hardware and NERSC-10 
system design. 

5-Year Milestones 
• Design, build and adapt 

learning algorithms and 
software for scalability  
on next-generation  
HPC platforms.

• Deliver a NERSC-10 system 
with appropriate, highly 
optimized, energy-efficient 
technology for learning 
applications. 

• Deploy an expanded learning 
software stack on NERSC-
10 that includes scalable 
interpretable methods.

Figure 14: Trained deep learning neural networks can identify weather fronts, tropical  
cyclones and long narrow air flows that transport water vapor from the tropics, called  
“atmospheric rivers.”
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(NESAP) will include learning applications, which will further shape application 

benchmarks for configuring the NERSC-9 system and designing NERSC-10. 

Documentation and training events (linking with empowerment and application 

areas) will help ensure optimum use of each system. Finally, we will ensure that 

infrastructure hooks exist for enabling smarter facilities and computational steering. 

The five-year time frame will see evaluation and incorporation of machine/deep  

learning-focused hardware into systems, evaluated using the benchmarks 

and applications developed in the previous milestone. These may be 

deployed within NERSC-9 (Perlmutter) or as standalone testbeds and built 

into the procurement plans for NERSC-10. In addition, we will see full 

productization of the learning software stack, libraries and hubs developed in 

the application area for use by a large fraction of the NERSC user base.

Systems beyond NERSC-10 will be compelling platforms for learning, built 

through the enhanced vendor engagements and benchmarking efforts in the 

next few years. EOD and simulation pipelines will by then be able to seamlessly 

plug in to NERSC for their mission computing, gaining automated access to 

appropriate state-of-the-art models served on-demand. Creative applications 

of new methods will continue to be a focus, with close engagement with 

strategic science partners, but these will be made immediately available for 

use by the entire DOE community via productive interactive interfaces.

Figure 15: Horst Simon, 
Berkeley Lab Deputy 
Laboratory Director, 
gives opening remarks 
at the first ML4Science 
workshop in Septem-
ber 2018. This popular 
event brought together 
luminaries in machine 
learning with scientists 
across multiple domains.
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4. Empowerment 

Empower the science community and DOE Office 
of Science to use learning methods by establishing 
collaboration activities, training and seminars. 

To realize the potential of our work for scientific discovery, we will 

enable and drive adoption in the scientific community. We will create 

collaboration activities, training materials and sessions, seminars and 

symposia to make our learning algorithms easy to deploy and scale across 

HPC lab facilities. We will develop training materials and activities to 

help new users gain access to our interpretable methods, application hubs 

and high-performance software stack. We envision building a powerful 

community of learning experts and applications across the Lab that also 

leverages activities on the Berkeley campus, as well as the industry and 

research ecosystem physically and virtually surrounding Berkeley Lab.

Bringing together the DOE community across the Laboratory complex, 

and leveraging the expertise in local academic and industry leaders in 

machine learning, we will establish an annual symposium to highlight the 

latest results and trends in machine learning for science. This will include 

highlights of recent hardware and software platforms, new foundational 

work and methods relevant to science and scientific impact across a broad 

range of areas. It will also underscore limitations of current approaches 

and highlight remaining open questions, as well as lessons learned  

across facilities. 

We will focus on providing workshop and tutorial content appropriate 

to the conferences attended; examples of conferences we will target 

include Supercomputing (SC), International Conference on Machine 

Learning (ICML), Knowledge Discovery and Data Mining (KDD), ISC 

High Performance and Cray Users Group (CUG). We will also expand 

content to develop institutional forums for capabilities within the 

annual Machine Learning for Science workshop at the Lab. This work 

will include a number of outreach efforts, including a weekly seminar 

series to coordinate machine learning efforts with ECP projects (e.g., 

ExaLearn), other research projects, the machine-learning-focused 

summer program and NERSC tools (e.g., partnering with software 

carpentry or the LabIT team) to establish learning training within and 

outside DOE science domains.

2-Year Milestone
• Establish a Berkeley Lab-led 

annual symposium and 
workshop in learning  
for science.

5-Year Milestone
• Develop training materials 

that become cornerstone 
resources for the integration 
of learning algorithms and 
theory through the DOE 
science space.
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Beyond Moore Initiative
Moore’s Law is a techno-economic model that has enabled the information technology 

industry to nearly double the performance and functionality of digital electronics roughly 

every two years with fixed cost, power and area. As photolithography approaches atomic  

scale and fabrication costs continue to rise, the classical technological driver that has 

underpinned Moore’s Law for the past 50 years is already failing and is anticipated to  

flatten by 2025 (Figure 16).

But DOE mission requirements will continue to demand increases in computing performance 

in the absence of traditional technology scaling. Thus, the overarching goal of our Beyond 

Moore Initiative is to create new technologies and computing systems that transcend the 

performance limitations caused by the tapering of lithographic scaling.

The Beyond Moore Initiative is aligned with two broader Lab-wide initiatives: one in  

digital technologies, which includes advances in materials, devices, lithography and 

manufacturing; and a second in quantum information science (QIS), which is developing  

and using quantum sensors, computing and communication devices for science problems  

in materials, chemistry, high-energy physics and nuclear physics. Computing sciences is  

a key player in both of these Lab-wide initiatives, providing modeling capabilities for  

new materials, hardware design and evaluation, as well as algorithms and software 

developments to enable improvements in performance, energy efficiency, integration and 

scaling. Algorithms and software work will serve to enable emerging science problems,  

inform hardware designers of computational requirements and options and adapt to  

future hardware features. The introduction of quantum devices will require even more 

aggressive algorithms and software work, in addition to classical hardware for control  

and use in hybrid algorithms. 

Figure 16: The history 
of Moore’s Law, from 
the 2017 Turing Award 
lectures of David 
Patterson and  
John Hennessy. 
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These approaches are disruptive in varying degrees to applications and will therefore 

require cross-disciplinary research to develop algorithms and software solutions, while 

providing feedback on the performance, usability and deployment issues of specific 

hardware designs. We will attack the challenges to move beyond Moore’s Law through an 

integrated research, development and deployment program comprising the following five 

strategic goals: 

1. Develop and deploy application-specialized heterogeneous computing systems to 

deliver scalable performance to meet the demands of future scientific challenges 

(Figure 17).          

2. Advance algorithms, mathematical models and programming systems for future 

extreme heterogeneous-accelerated computers that will make the systems capable 

and usable by scientists.        

3. Develop accurate multi-scale modeling and simulation of post-CMOS devices to 

rapidly evaluate microelectronic technology alternatives in the context of system and 

application performance.       

4. Develop new quantum computing algorithms and software tools for the control and 

use of quantum systems for emerging scientific applications that are intractable 

using conventional computing technologies.     

5. Architect and deploy quantum computing testbeds using state-of-the-art qubit 

technologies with a flexible software stack and user support for the science 

community to enable effective use of quantum technology for scientific discovery. 

Figure 17: Programming 
support for heterogenous 
architectures needs to 
support the variety of 
specialized hardware. 
This has been done for 
low-power devices in the 
past, as in this heter-
ogenous, data-centric 
programming model from 
the Qualcomm SnapDrag-
on cell phone processor.
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1. Heterogeneous Accelerators 

Develop and deploy systems with heterogeneous  
processors that are specialized to accelerate 
emerging scientific applications. 

Specialization is the most promising technique for continuing to provide 

the year-on-year performance increases that all users of computing 

systems have come to expect over the last four decades. This creates 

a particular need for DOE to focus on the unique aspects of scientific 

computing for both analysis and simulation. Recent communications 

with computing industry leaders suggest that post-exascale HPC 

platforms will become increasingly heterogeneous environments. 

Examples of this trend exist in smartphone technologies, which 

contain dozens of specialized accelerators co-located on the same 

chip; in hardware deployed in massive data centers, such as Google’s 

Tensor Processing Unit that accelerates the Tensorflow programming 

framework for machine learning tasks; in-field programmable gate 

arrays (FPGAs) in the Microsoft cloud used for Bing search and other 

applications; and a vast array of other deep learning accelerators. 

Heterogeneous processor accelerators — whether they are commercial 

designs (evolutions of GPU or CPU technologies), emerging 

reconfigurable hardware or bespoke architectures that are customized 

for specific science applications — optimize hardware and software for 

particular tasks or algorithms and enable performance and/or energy 

efficiency gains that would not be realized using general-purpose 

approaches. These long-term trends in the underlying hardware 

technology (driven by the physics) are creating daunting challenges for 

maintaining the productivity and continued performance scaling of 

HPC codes on future systems.

Our strategy will be to accelerate the assimilation of emerging 

heterogeneous specialized technologies that extend far beyond GPUs. 

We will use workload analysis to identify bottlenecks and opportunities 

for targeted acceleration, co-develop (with industry) effective 

accelerator technologies and deploy these technologies in production of 

effective heterogeneously accelerated platforms that are specialized for 

mission scientific applications. Our strategy is designed to maximize the 

impact of these trends on scientific computing. 

2-Year Milestones
• Identify at least 3 application 

candidates by combining 
CRD core strengths with 
workload analysis for 
improved performance using 
heterogeneous accelerators 
(shared milestone with 
Algorithms/Software Thrust)

• Create a methodology to 
evaluate heterogeneous 
accelerators.

• Develop a heterogeneous 
accelerator testbed as part  
of NERSC-9 (Perlmutter) or  
as a standalone.

• Initiate 3 different efforts 
to evaluate the different 
accelerator options: 

° Lab-led: Accelerator 
circuit designs that can be 
implemented either in an 
FPGA or an ASIC. 

° Co-design with industry: 
Establish industry design 
collaborations.

° Industry-led: Refactor core 
algorithms for diverse 
accelerators.

5-Year Milestones
• Evaluate the performance, 

programmability and efficiency 
of the 3 potential accelerator 
options (lab-led, co-design and 
industry-led) in the context of 
the selected applications.

• Determine the viability of 
which of these accelerator 
options (lab-led, industry 
co-design and industry-led) 
should be included in the 
NERSC acquisition strategy for 
future extreme heterogeneous-
accelerated systems.

° Initiate FPGA or ASIC 
development for lab-led 
accelerator designs and/or

° Initiate NRE development for 
industry/lab co-developed 
design and/or

° Initiate NESAP for application 
refactoring and/or algorithm 
redesign to target industry 
led accelerators
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In the longer term, we expect our co-design methodology to be refined enough that 

domain scientists, application and software technology developers, hardware architects 

and industry partnerships will be established as U.S. Government best-practice. Berkeley 

Lab will drive the HPC ecosystem toward scientifically relevant heterogeneously 

accelerated solutions, and NERSC’s transition to revised procurement methodology to 

co-develop and acquire such systems will be complete. The transition of at least 50% 

of the NERSC workload to modern programming models that enable effective use of 

heterogeneous accelerators will be complete. 

 

Figure 18: In March 2018, Secretary of Energy Rick Perry visited Berkeley Lab  
to get a firsthand view of how the Lab combines team science with world-class  
facilities to develop solutions for the scientific, energy, and technological challenges 
facing the nation. During a tour of the NERSC computer room, he signed the  
center’s newest supercomputer, Cori, which features a combination of traditional  
and energy-efficient manycore nodes. NERSC’s next supercomputer, Perlmutter,  
will include GPU-accelerated nodes and allow other types of accelerators to be  
integrated into the HPC network.
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2. Algorithms and Software for Accelerators 
Develop and advance new mathematical algorithms 
and software implementations to take advantage of 
new heterogeneous systems for science. 

New software implementations, and in many cases new mathematical 

models and algorithmic approaches, are necessary to advance the science 

that can be done with new architectures. This trend will not only continue 

but will intensify; the transition from multicore systems to hybrid 

systems has already caused many teams to re-factor and redesign their 

implementations. But the next step — to systems that exploit not just one 

type of accelerator but a full range of heterogeneous architectures — will 

require more fundamental and disruptive changes in algorithm and 

software approaches. This applies to the broad range of algorithms used in 

simulation, data analysis and learning.

New programming models or low-level software constructs that hide 

the details of the architecture from the implementation can make future 

programming less time-consuming, but they will not eliminate or in many 

cases even mitigate the need to redesign algorithms. Key elements of  

a path forward include:

1. Understanding the impact of proposed architectures on current 

mathematical kernels and algorithms and using this knowledge to 

steer the HPC hardware deployment choices through feedback in an 

iterative co-design process.

2. Re-designing current algorithms in response to proposed 

architectures; hardware choices should be based not only on current 

algorithms but on the potential performance of new algorithms and 

even new science use cases.

3. Developing advanced programming environments that ease the 

implementation of these new algorithms and numerical libraries and 

are able to generate code for these diverse, heterogeneous accelerators. 

The NERSC facility will play a key role in the first thrust, in close 

collaboration with the mathematicians and scientists who design the 

algorithms and scientific applications that run on the machines. This 

will require performance analysis, modeling and optimization tools that 

allow application teams to map their algorithms and kernels to different 

potential components in a heterogenous system, and an understanding of 

the opportunities and limits for optimization.

2-Year Milestones 
• Identify at least 3 application 

candidates by combining 
CRD core strengths with 
workload analysis for 
improved performance using 
heterogeneous accelerators 
(shared milestone with 
Heterogeneous Accelerators 
Thrust).

• Select key computational 
motifs (patterns from key 
applications and algorithms) 
to use in assessing 
heterogeneous accelerator 
components.

° Create the initial software 
proxy applications 
demonstrating for motifs to 
use in hands-on testing.

• Determine mathematical 
models, algorithm options 
and programming system 
requirements based on deep 
analysis of the selected 
motifs and opportunities/
constraints of heterogeneous 
hardware accelerator 
components

.5-Year Milestones
• Develop and demonstrate 

programming environment(s) 
concepts and library/
framework interfaces that 
are used for proof-of-concept 
experiments to demonstrate 
superior performance and 
productivity advantages.

• Demonstrate mathematical 
/ algorithm / hardware 
co-design targeted at 
a single, specialized 
accelerator based on 
selected motifs.

• Design and release prototype 
programming environment(s) 
that enables targeting of 
multiple heterogeneous 
accelerators.

° Analyze performance 
and energy of combined 
hardware / software / 
algorithm for more than 
one emerging accelerator.
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The CRD Applied Mathematics program is critical to the second thrust, in which one 

can identify two types of applications that will need to be redesigned to run effectively. 

In the first type, a single computational motif or kernel is paramount, such as stencil 

computations with fixed spatial patterns. In this case, there is likely to be a single best 

choice of hardware design. Most of the success stories regarding specialized architectures 

fall into this category. The advances in numerical methods can be encapsulated in 

numerical libraries (such as SuperLU and STRUMPACK) and application frameworks 

(such as AMReX, GraphBLAS and Chombo) to make these advances broadly available to 

the community. 

The second, more complex type is that in which solving the science problem requires 

fundamentally heterogeneous operations. The heterogeneous operations can be staggered, 

as one might envision in a data pipeline; as the data moves through the pipeline, 

different operations are performed on it. In this scenario the data may also be moving 

physically in steps from source to destination, making the use of different architectures 

for different stages transparent and separable. Heterogeneous simulation algorithms 

place a different demand in that, unlike the data example, the flow is more fine-grained 

and tightly coupled. For example, in a simulation of a time-evolving state or any 

iterative solution procedure, each step may contain multiple heterogeneous substeps, 

with each step repeated multiple times, perhaps with different relative (i.e., dynamically 

changing) costs of the components. No single specialized architecture will be ideal for all 

stages, suggesting an architectural layout that allows a single code to exploit multiple 

specialized components. Existing hybrid CPU/GPU systems already allow this, and 

applications are being re-factored to use this capability; the current trend of offloading 

different algorithmic components to different specialized architectures will not only 

continue but become more important.

The Computer Science Department within CRD will play a lead role in the third thrust, 

which can make use of years of experience writing compilers and runtime systems for 

Global Address Space languages. This entails the co-design of new compiler technology 

and domain-specific languages (DSLs) designed around the requirements of the target 

computational motifs (the 13 motifs that extended Phil Colella’s original 7 Dwarfs of 

algorithmic methods; see “The Landscape of Parallel Computing Research: A view from 

Berkeley,” https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf). 

The higher levels of abstraction and declarative semantics offered by DSLs enables 

more degrees of freedom to optimally map the algorithms onto diverse hardware than 

traditional imperative languages that over-prescribe the solution. Because this will 

drastically increase the complexity of the mapping problem, new mathematics for 

optimization will be developed, along with better performance introspection (both 

hardware and software mechanisms for online performance introspection) through 

extensions to the roofline model. Use of machine learning/AI technologies will be 

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
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essential to enable analysis and automation of dynamic optimizations. 

New algorithms favoring less data movement or higher arithmetic intensity, such as 

communication-avoiding and high-order operators, are already being developed, and 

data-centric programming abstractions must be built into new PGAS programming 

systems in order to confer algorithmic information about data locality to the underlying 

software system. These capabilities are even more crucial for heterogeneous architectures 

where different accelerators have different memory/communication speeds. More 

complex algorithms increase the challenges of performance modeling, and tools such 

as the Roofline model need to be improved to take heterogeneity into account.

Although applied mathematicians must lead the effort to refactor core simulation  

and analysis algorithms, they should be working as part of collaborative teams  

containing algorithm, application, software, computer architecture and performance 

analysis expertise. 

Looking ahead, we expect to demonstrate algorithmic re-design of simulation 

algorithms that target multiple specialized architectures and refine the software 

prototypes to the point that they can transition to production release and 

adoption on leading-edge facilities. The goal is to have transitioned at least 50% 

of the workload over to the new algorithmic methods, libraries and supporting 

software environment to take advantage of NERSC-10 accelerators.
Figure 19: The ECP 
ChomboCrunch applica-
tion is used to simulate 
subsurface flow (shown 
here). The team is 
developing advanced 
programming support, 
including DSLs for exa-
scale systems, and will 
need even more aggres-
sive code generation and 
optimization methods to 
address heterogeneous 
accelerators.
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3. Multiscale Modeling of Post-CMOS Devices and Systems 

Enable DOE to rapidly evaluate emerging CMOS  
replacement technologies in the context of system  
and application performance. 

Typically, new electronic devices — such as new transistors or memory elements — 

are evaluated in isolation at a physical level, but this approach fails to capture the 

architectural-level impact of the device. It is essential to capture metrics that architects 

and system designers can use to reason about the impact of each to architectures, designs 

and their complex interactions with existing technologies. Existing hardware design tools 

do not account for the benefits, and limitations, of future devices. This creates an urgent 

and immediate need to efficiently and systematically explore the specialized architectural 

design space in combination with emerging device technologies to avoid stalling 

performance scaling while waiting for radical new technologies to mature. 

The ability to guide development of future devices requires evaluation of their 

performance based on ultimate outcomes for target applications. The value of new and 

novel materials or device technologies is not currently understood in a system context. 

Performance and behaviors at a system context are not currently understood at a device 

or materials context. True co-design to advance future systems containing novel devices 

and materials requires feedback that spans all layers, from atomic-scale materials to 

large-scale complex systems, to meet the needs of emerging scientific applications.

Figure 20: Advanced 
mathematics is critical  
to the design and use of  
future hardware systems, 
as in this petascale 
simulation of a fusion 
tokamak using scal-
able numerical solvers. 
Higher order methods 
can improve computa-
tional intensity and make 
them more amenable to 
hardware acceleration, 
while common patterns 
such as stencils can be 
“encoded” in hardware.
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Our vision is to develop a co-design framework that integrates the 

physical layers, logical layers and control. We must propagate the 

quantitative information to guide development of better solutions. 

The co-design framework would enable DOE to develop Unified 

Materials→Device→Circuit→System electronic design automation 

simulation tools to ensure resilience to variability and reduce the 

development timeline for mission-critical science. The long-term solution 

requires fundamental advances in our knowledge of materials and 

pathways to control and manipulate information elements at the limits  

of energy flow. 

As we approach the longer term, we will require groundbreaking 

advances in device technology going beyond CMOS (arising from 

fundamentally new knowledge of control pathways), system architecture 

and programming models to allow the energy benefits of scaling to be 

realized. A complete workflow will be constructed, linking device models 

and materials to circuits and then evaluating these circuits through 

efficient generation of specialized hardware architectural models such 

that advances can be compared for their benefits to ultimate system 

performance. The architectural simulations that result from this work will 

yield better understanding of the performance impact of these emerging 

approaches on target applications and enable early exploration of new 

software systems that would make these new architectures useful  

and programmable.

In the longer term, we will expand the modeling framework to include 

non-traditional computing models and accelerators, such as neuro-

inspired and quantum accelerators, as components in our simulation 

infrastructure. We will also develop the technology to automate aspects 

of the algorithm/architecture/software-environment system co-design 

process so developers can evaluate their ideas early in future hardware. 

Ultimately, we will close the feedback loop from the software all  

the way down to the device to make software an integrated part of  

this infrastructure.

2-Year Milestones
• Develop end-to-end 

co-design modeling/
simulation framework that 
fills in modeling gaps of 
projecting from materials and 
device scale to circuits and 
system-scale performance. 

° Initially for chip-scale 
simulation and moving 
toward system scale.

• Validate co-design 
framework models end-
to-end using existing 
characterized technologies 
internally and through 
industry collaborations.

• Develop hardware generators 
to enable agile creation and 
exploration of specialized 
architectures.

5-Year Milestones

• Use the co-design framework 
modeling infrastructure to 
model emerging devices 
developed by Berkeley Lab 
and provide feedback to 
device developers.

• Create the ability to flexibly 
adapt architectures to 
optimally use emerging 
microelectronic device 
technologies.

• Transfer technology to DOE 
advanced manufacturing 
office and industry to 
accelerate commercialization 
of promising technologies.
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NOISY INTERMEDIATE-SCALE QUANTUM (NISQ) DEVICES

Quantum computing offers the promise of performance significantly greater than that 
realizable by classical computing for certain classes of problems. However, the fundamental 

elements in quantum hardware – 
qubits – are currently a scarce and 
noisy resource. While the full scope of 
applicability of quantum computing is 
not completely understood, the areas 
of chemistry, materials, high-energy 
physics simulation, optimization 
and machine learning are some of 
the most fruitful targets for noisy 
intermediate-scale quantum (NISQ) 
devices. NISQ devices are quantum 
computers with 50-100 qubits that 
will be available in the next few 
years, where control over the qubits 
is imperfect and generates noise that 
limits what quantum devices can 
achieve. In the last few years, there 
have been many proof-of-principle 

“quantum computations” in these domains that indicate quantum computing might offer a 
viable Beyond Moore strategy. Developing and deploying improved qubits is a vital part of 
the overall strategy, but developing algorithms and software tool-chains to program these 
devices efficiently is also urgently needed. The close collaboration of both these research 
thrusts will enable us to co-design hardware, software and algorithms.

4. Quantum Computing Algorithms and Software Tools 
Making quantum computing accessible and productive  
for scientific discovery.

To make quantum computing relevant for DOE-mission science problems in the near 

term, we will need to design and build complete applications — incorporating basic 

and expanded quantum computing algorithmic building blocks — that will leverage the 

unique characteristics of our scientific problem domains (e.g., symmetries or conservation 

properties). With this focus, we can develop scalable algorithms and error-mitigation 

techniques that improve performance while avoiding the large qubit resources needed 

for full quantum error correction. A key synergy is to work with and use the resources of 

Berkeley Lab’s soon-to-be-deployed Quantum Computing Testbed, described in the next 

section, to enable the exploration of algorithm and qubit design-space together and allow 

the lowest level access to hardware devices.

Figure 21: A quantum core with 8 superconducting 
transmon qubits arranged in a ring topology, developed 
in UC Berkeley’s Quantum Nanoelectronics Laboratory.
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Few quantum algorithms showing provable asymptotic speedup over 

classical approaches have been developed. Many of these algorithms 

currently function as simple building blocks described only at a general 

level, often with implementation details missing. At present, much of the 

research is focused on limiting computational (gate) complexity in the 

asymptotic regime, assuming both many more, and much higher fidelity, 

“idealized” qubits than are likely to be available in the next 5-10 years. 

To fill these gaps, Computing Sciences aims to create new quantum 

algorithms to address problems of DOE mission relevance, and broaden the 

applicability and usability of existing algorithms, to make NISQ hardware 

as productive as possible for the scientific community. New approaches 

need to be developed to effectively transform mathematical models that 

emerge from science domains into simple operations that can be executed on 

quantum hardware platforms. A major mathematical challenge is the choice 

of algorithm decomposition into fundamental operations while minimizing 

the accumulation of quantum hardware errors. 

In order to ensure the success of quantum computing within DOE, we 

believe research is needed to design and develop high-level programming 

languages, compilation infrastructures and domain-science high-level 

infrastructures. In traditional HPC, a domain scientist can develop at least 

a basic simulation in a relatively short period of time without knowing 

many of the details of the underlying hardware. This is not yet the case 

for quantum computing, and program synthesizers are needed to make 

it usable to more than a handful of highly trained QIS experts. In the 

NISQ era, software toolchains need to expose and take into account many 

more hardware details than are necessary in conventional computing. In 

conventional computing stacks, layers of abstraction are commonplace and 

the small losses in performance are acceptable in exchange for a modular 

software development and user productivity. In contrast, on a NISQ device, 

a user may need to control in minute detail the exact qubit manipulations 

required to enable successful execution over failure. 

Now and going forward, our efforts are focused on NISQ devices, which we 

anticipate will dominate quantum computing over the next 10 years. We will 

develop scalable synthesis algorithms that incorporate error mitigation (an 

optimal solution for midsize circuits with error mitigation). Longer term, 

efforts need to be concentrated on providing scalability of the software 

stack, and developing partial evaluation and manipulation techniques. Our 

goal is to demonstrate a quantum advantage for scientific simulations in 

the fields of chemistry, materials and/or high energy physics, with quantum 

computing delivering a new discovery in one or more scientific fields. 

2-Year Milestones
• Develop algorithms and 

tools tailored to initial NISQ 
devices and optimized for 
small numbers of qubits, 
shallow circuits and targeted 
at hardware with noisy qubit 
operation and readout.

• Develop software tools for 
generating optimal gate 
sequences given broad 
information of the noise 
characteristics of the NISQ 
device (integration of error-
mitigation methodologies).

• Demonstrate new synthesis 
techniques that can be 
used for quantum circuit 
generation when starting 
from a domain science 
problem formulation.

• Demonstrate scientifically 
relevant simulations in 
chemistry and high energy 
physics with error mitigation 
on quantum computers with 
up to 16 qubits.

5-Year Milestones
• Reevaluate algorithms and 

tools for hardware with 
increased capabilities.

• Develop robust program 
synthesis techniques that 
incorporate effective error 
mitigation.

• Develop algorithms that 
enable simulation of novel 
new scientific simulations on 
quantum systems containing 
40-60 qubits, elucidate 
pathways to quantum 
supremacy and scientific 
discovery and lead to new 
approaches for quantum 
machine learning.
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5. Quantum Computing Testbeds 
Deploy state-of-the-art hardware targeted at science solutions.

Over the past few years, various implementations of NISQ devices have been built and 

used for small-scale simulations and benchmarking. A variety of quantum computing 

paradigms have emerged, including quantum annealing for optimization problems; 

analog quantum computing, in which a device has similar dynamics to the problem to be 

solved; and gate-based computing, in which a unitary operator that encodes a program is 

decomposed into a sequence of operations (or “gates”) acting on single or pairs of qubits.

Berkeley Lab’s Computing Sciences Area has elected to focus on gate-based quantum 

computing, being the most generally applicable to the modeling and simulation domain 

space. For gate-based devices, currently the two most promising qubit technologies are 

superconducting qubits and trapped ions, which have tradeoffs with respect to coherence 

time, gate execution time, qubit connectivity and scalable fabrication and construction. 

Figure 22: Berkeley Lab’s Quantum Computing Testbed will include a dilution 
refrigerator that will house superconducting qubits. Cooling the qubits to a few 
milliKelvin is required for superconducting to be maintained in the material and 
to prevent thermal fluctuations from destroying coherence. Photo courtesy of 
BlueFors Cryogenics.
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Our main effort will focus on superconducting technologies, owing to our 

strong Lab-wide and university collaborations’ expertise in this field. 

While some commercial near-term NISQ devices are being offered via 

cloud access, the ability of users to access the hardware at a low-level or 

propose changes such as connectivity of qubits is severely restricted. The 

roadmap of these commercial devices will, by necessity, be directed toward 

either early emerging “killer applications” or general requirements for 

universal quantum computing, and this roadmap may not be optimal for 

scientific simulation.

We aim to design, fabricate and deploy best-of-class NISQ devices that 

are targeted at scientific computing problems, with the ability to employ 

different tradeoffs than would be made by those focused on a more general 

application space. The testbed will target users who expect to explore the 

co-design space for near-term algorithms and toolchains coupled with 

our hardware. With current design and fabrication techniques, there are 

many tradeoffs in the design of these early devices in terms of number and 

connectivity of qubits on a chip, coherence time, gate sets, gate fidelities, 

etc., and this exposes a rich design space to make devices more broadly 

useful for scientific computation. We expect to deploy numerous chips 

with different design points and to custom-fabricate chips in response 

to the needs of algorithm and toolchain developers. In addition, we will 

deploy extensible hardware (with designs and fabrication from projects 

in other laboratory science areas) and software to serve as the complex 

layer converting digital signals representing gate operations into analog 

microwave pulses, and analog signal processing technology for qubit 

readout. A key feature will be flexible interfaces that are required to tune 

the timing and execution of operations at the lowest level.

We anticipate a number of different categories of users that could make 

use of the testbed. For example, a user focused on tool development 

could implement improvements to a compiler based on the low-level 

noise characterizations measured at the testbed, while a user focused 

on designing a better interface to classical hardware could substitute in 

their device to evaluate performance. In addition, an algorithm developer 

could request a chip with a specific topology or gate set that would make 

successful execution much more likely.

Our longer-term goal is to enhance testbed capabilities to demonstrate 

quantum advantage for modeling and simulation application and deploy  

an extensible testbed infrastructure targeted at selected problem domains  

in science.

2-Year Milestones 
• Deploy a superconducting 

16-qubit quantum computing 
testbed with a low-level 
software stack enabling 
access via one or more 
open-source programming 
stacks to be used.

• Explore a variety of qubit 
types in collaboration with 
other laboratory divisions and 
university partners, designing 
and fabricating chips using  
3D integration.

• Design and prototype 
customized hardware for 
quantum control (e.g., 
customized instruction-set 
architecture, digital-analog 
conversion, and packaging). 

• Develop and deploy a low-
level software stack allowing 
for tuning and optimizing 
testbed operation

• Provide multiple interfaces 
to the NISQ device, enabling 
fine-grained control by the 
algorithm writer.

5-Year Milestones
• Deploy increased capability 

with respect to qubit count  
and variety.

• Design and fabricate one or 
more superconducting qubit 
chips based on co-design 
with an algorithm developed 
by a collaborator in the 
testbed.

• Deploy customized hardware 
for quantum control.
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Superfacility Initiative
Large-scale analysis of experimental data has revolutionized our understanding of the 

physical world, from the discovery of elementary particles and the accelerating expansion 

of the universe to new insights into the microbiome and the ability to better predict 

extreme weather events. The Computing Sciences Superfacility Initiative is a framework 

for further integrating experimental and observational instruments with computational 

and data facilities, bringing the power of exascale systems to the analysis of real-time 

data from light sources, microscopes, telescopes and other devices. Data from these 

experiments will stream to large computing facilities where it will be analyzed, archived, 

curated, combined with simulation data and served to the science user community via 

powerful computing, storage and networking systems. Tied together with high-speed 

programmable networking, this superfacility model is more than the sum of its parts, 

allowing for discoveries across data sets, institutions and domains and democratizing 

science by making data from one-of-a-kind facilities and experiments broadly accessible. 

The Superfacility Initiative creates an integrated framework to provide automated 

allocation of compute, storage and networking resources; access to efficient and effective 

edge computing devices; optimized compute pipelines; and easy-to-use data management 

tools. Our vision will make it routine to rapidly provision rich, productive and broadly 

accessible environments for data-intensive discovery, coupling remote instruments to 

data and computing facilities via advanced networking services. We will demonstrate this 

model using ESnet and NERSC facilities, while addressing key research and engineering 

challenges in automation, resilience, specialized edge devices, data lifecycle management 

and the development of end-to-end science pipelines built in collaboration with domain 

experts. This initiative also leverages the expertise and research in mathematics, scalable 

algorithms, data management, programming methods and high performance software 

that will provide the next-generation analysis capabilities that makes this model a truly 

Figure 23: The super-
facility vision involves 
data streaming from 
experiments and embed-
ded sensor networks into 
supercomputing facilities 
like NERSC using the 
high-speed networking 
of ESnet, with a rich set 
of research questions 
around the data lifecycle.
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advanced capability for science. It ties together the novel computing technologies from 

the Beyond Moore Initiative with the methods and software from the Learning Initiative 

to deliver seamlessly integrated tools for scientists. 

While much of DOE’s past computing efforts have focused on modeling and simulation, 

Berkeley Lab Computing Sciences has a deep history of supporting experimental 

science as well. For example, ESnet has long supported high energy and nuclear physics 

experiments with bandwidth provisioning and customized services. In 2014, they built a 

transatlantic extension to Europe, in large part to support the large streams of data from 

the Large Hadron Collider, which now make up nearly a third of total ESnet traffic. Data 

transfer architectures designed by ESnet have seen widespread adoption across the ASCR 

supercomputing facilities (e.g., Petascale DTN project) and the university community 

through NSF’s Campus Cyberinfrastucture program. ScienceDMZ architectures have 

been deployed across hundreds of universities, as well as throughout the Pacific National 

Research Platform, a partnership of more than 50 institutions, including the University of 

California, NSF and DOE.

Similarly, from its inception as a general-purpose supercomputing facility, NERSC has run 

systems specifically for physics experiments (ATLAS, Daya Bay, STAR, Planck, PTF and 

others), and recently transferred these pipelines onto HPC systems using containerized 

software for better efficiency, scalability, performance and economies of scale (Figure 24). 

NERSC also supports science gateways for serving data from cosmology (unWISE catalog 

from the Sloan Digital Sky Survey), climate observations (the 20th Century Reanalysis 

Project), material simulations (the Materials Project) and imaging (SPOT suite for ALS 

tomography beamline, CXIDB for coherent X-ray imaging), among others, and has added 

real-time queues to support data streaming from experiments. 

CRD has built several customized workflow tools and data repositories for light source 

data, environmental monitoring, biology, cosmology and particle physics. The CAMERA 

project is an example of a highly successful collaboration to develop end-to-end 

application pipelines and is in use today at several labs around the world. Jointly 

funded by ASCR and BES, CAMERA partners with multiple labs to identify areas in 

experimental science that can be aided by new mathematical insights, develop the 

Figure 24: Timeline of prototype pipelines integrating multiple facilities.

http://cs.lbl.gov/news-media/news/2017/esnets-petascale-dtn-project-speeds-up-data-transfers-between-leading-hpc-centers/
http://fasterdata.es.net/science-dmz/
https://prp.ucsd.edu/
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needed algorithmic tools and deliver them as user-friendly software to the experimental 

community. To tackle the data challenges at these DOE light sources and nanoscience 

centers, CAMERA has been building some of the required infrastructure for algorithm 

and data curation, as well as efficient user interfaces, real-time streaming, workflows 

and data-driven environments to meet emerging needs across a broad range of U.S. and 

international synchrotron and nanoscience facilities. 

Thus, while progress has been made 

toward the vision of using combined 

experimental, networking and computing 

facilities, challenges — particularly 

around seamless use, automation and 

availability — will require a concerted 

effort and strategy to address. Today 

many of the data analysis and workflow 

pipelines from experiments have been 

developed for individual, custom 

applications that are domain-specific 

and cannot be reused or shared. Efforts 

to help a new experimental facility port 

their pipeline and analysis tools to a 

high performance computing facility like 

NERSC remain labor-intensive, often resulting in one-off solutions. A more unified, 

seamless environment for experimental science — where hardware solutions, analysis 

software and data management tools are usable by multiple projects and datasets 

are easily searchable — will provide a profound opportunity to capture insights and 

accelerate scientific discovery. 

Realizing the superfacility capabilities more fully will require significant research, strong 

partnerships with experimental facilities and innovations in networking, software stacks, 

compute architectures and high performance computing facilities policies. This section 

describes Computing Sciences’ vision and strategy for creating a superfacility network 

between DOE facilities and experiments.

Figure 25: The STAR 
Experiment at Brookhaven 
National Laboratory is 
one of several physics 
experiments already 
employing the superfacil-
ity model to stream data 
into NERSC and thereby 
improve efficiency, scal-
ability and performance.
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We see four main goals in achieving this vision: 

1. User Engagement: Engage with experimental, observational and distributed sensor 

user communities to deploy and optimize data pipelines for large-scale systems. 

2. Data Management: Manage the generation, processing, movement and analyses  

of data for scalability, efficiency, usability and reproducibility and enable data  

reuse and search to increase the impact of experimental, observational and 

simulation data.

3. Automated Resource Allocation: Deliver a framework for seamless resource 

allocation, calendaring and management of compute, storage and network assets 

end-to-end and across administrative boundaries.

4. Computing at the Edge: Design and deploy specialized edge devices required  

for real-time data handling and computation at experimental and  

computational facilities. 

COORDINATION, PLANNING AND MANAGEMENT OF THE SUPERFACILITY INITIATIVE 

In support of the Superfacility Initiative, we have created an internal Superfacility 
Project to coordinate cross-facility tasks and manage the diverse set of activities 
necessary to fulfill the goals of the Superfacility Initiative. While the Superfacility 
Project is focused on deploying infrastructure and creating software tools to 
support production workflows from experimental facilities, it also includes a 
research council to provide input and directions to the project. Approximately 
30-40 staff members from ESnet, NERSC and CRD are involved in the Superfacility 
Project, which is currently managed by NERSC. The team meets bi-weekly, provides 
updates to senior management monthly and has created a set of lower-level 
milestones to track progress on the goals of the initiative. 
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1. User Engagement

Engage with experimental, observational and 
distributed sensor user communities to deploy and 
optimize data pipelines for large-scale systems.

The success of the Superfacility Initiative hinges on close and active 

engagement with experimental facilities and major science experiments 

to build tools and optimize pipelines that are of genuine use to the 

experimental and observational science community. This engagement 

will fold in the efficient use of high performance computing, data 

lifecycle tools and general or specialized computing at the edge. These 

engagements will, in turn, identify the commonalities in the needs of these 

diverse experiments, which will drive the requirements in the goals of 

automation, networking, data management and edge device design.  

We plan to collaborate with a small number of partners (specified in 

the milestones) with the goal of enabling scientific discovery using the 

superfacility framework in such a way that the components developed 

can be used as the building blocks for other science projects. This will 

include developing a superfacility API for an application-independent 

services framework to enable cross-facility access to NERSC data and 

compute resources to meet challenges such as compute scheduling pattern 

for experimental facilities (e.g., advance planning, usage pattern during 

experimental running and resiliency planning), federated ID across 

facilities and new models for access to NERSC resources, including via an 

API and Jupyter.

2-Year Milestones
• Establish the base set of 

requirements to support 
current and future use 
cases in the superfacility 
framework by producing 
white papers describing the 
computing and data needs 
for multiple experimental 
facilties, including the 
mid-term partner facilities 
LSST-DESC and LCLS-IIs. 

• Develop the first iteration 
of a superfacility API for an 
application-independent 
services framework to 
enable cross-facility access 
to NERSC data and compute 
resources.

• Demonstrate initial 
deployment of a prototype 
infrastructure for four 
experimental pipelines 
including federated identity 
management, scheduling 
across facilities and failover 
resilience.

5-Year Milestones
• Demonstrate three new large 

experiments (including LSST-
DESC and LCLS-II) running 
their workflows seamlessly 
at NERSC with minimal 
human intervention, using 
the framework developed in 
the 2-year milestones. 

• Extend the superfacility 
framework and infrastructure 
to meet the needs of multiple 
experiments across HEP, BER 
and BES. 

• Optimize and demonstrate 
the framework of automated 
tools on ESnet6 and NERSC-9 
(Perlmutter). 
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Figure 26: The success of the Superfacility Initiative hinges on close and active engagement 
with experimental facilities such as the Linac Coherent Light Source at SLAC National  
Accelerator Laboratory.
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The time frames of the experiments in the DOE complex and at Berkeley Lab provide 

a natural timeline for the development of the infrastructure and software needed to 

support their application pipelines. The ALS and the JGI run production workloads at 

NERSC, and the Dark Energy Spectroscopic Instrument (DESI) and Lux-Zeplin (LZ) will 

be commencing operations at NERSC before the end of 2020. Some application teams, in 

collaboration with NERSC, ESnet and CRD, have already developed prototype pipelines 

integrating multiple facilities, and others, such as DESI and LZ, will be commencing 

operations at NERSC in 2020. Ensuring the success of these experiments will form the 

basis of our short-term milestones. The lessons learned from these experiences will 

inform mid-term engagements with the suite of facilities coming online in the near 

future, enabling us to build a comprehensive suite of pipeline tools that can be deployed 

for all new DOE experimental facilities. 

In the future, we envision pipelines connecting local compute resources to edge 

computing to HPC centers, where experimental data is automatically moved and 

analyzed by tools that hide the location of computing and the types of hardware being 

used and end users will not require supercomputing expertise. Moving beyond dedicated 

experiments, the Superfacility Initiative will extend to applications involving sensor 

networks, including the planned experimental pods at BioEpic, a new facility to be 

constructed for Biosciences and Environmental Sciences collaborations. 

JUPYTER NOTEBOOKS: A TRANSFORMATIVE TOOL

In 2018 the Project Jupyter team was honored with an Association of Computing 
Machinery Software System Award for Jupyter Notebook, an open-source web 
application that allows users to create and share documents that contain live code, 
equations, visualizations and narrative text. Project Jupyter evolved from IPython, 
an effort pioneered by Fernando Perez, an assistant professor of statistics at UC 
Berkeley and staff scientist in the Usable Software Systems Group in Berkeley Lab’s 
Computational Research Division. 

Today, more than 2 million Jupyter Notebooks are hosted on the popular GitHub 
service, covering technical documentation to course materials, books and 
academic publication. Jupyter has been transformative in scientific collaborations 
and reproducibility, as exemplified by its use at the LIGO observatory, whose 
discovery of gravitational waves was recognized with the 2017 Nobel Prize in 
Physics. The LIGO Open Science Center publishes Jupyter Notebooks that allow 
anyone to replicate their original analyses. Jupyter Notebooks also serves as a 
core infrastructure for research endeavors like the DOE-funded Kbase platform 
for predictive biology, the GenePattern Notebook project from the Broad Institute 
and UC San Diego and the European Union-funded OpenDreamKit project that is 
building virtual research environments for mathematics.
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2. Data Lifecycle

Manage the generation, processing, movement and 
analysis of data for scalability, efficiency, usability 
and reproducibility. Enable data reuse and search to 
increase the impact of experimental, observational 
and simulation data. 

The infrastructure at facilities will need to support management of 

the entire lifecycle of data from generation, processing, movement and 

dissemination to reuse. The expanding volume, variety, veracity and 

velocity of data drive the need to address specific research challenges in 

the data lifecycle. These challenges include:

• Programming the workflow pipelines

• Collecting provenance

• Managing the data for movement (i.e., filtering, compression  

and denoising) 

• Scheduling and resource management of HPC resources

• I/O and object stores to manage the data on HPC systems

• Innovative analyses and search methods that take into consideration 

the nature of the application

• Characteristics of the underlying systems.

These challenges need to be met to ensure that workflow pipelines 

spanning multiple facilities can operate efficiently across facilities. 

Data produced at experimental facilities or by instruments need to be 

pre-processed or reduced at the data collection site, efficiently streamed 

or moved to computing facilities and appropriate resources need to 

be allocated at the computing facility. Additionally, at present, data is 

accessed and analyzed primarily by those who generate or produce the 

data, since it is difficult for others to search and find relevant data sets and 

confirm their provenance. Capturing provenance of the data and processes, 

extracting metadata and using indexing to enable search on data will 

accelerate scientific discoveries through virtual experiments, as well as 

multidisciplinary and multimodal data assimilation by enabling  

data reuse. 

Recent cross-agency policies ensure that scientific data will be publicly 

available, but it will require infrastructure to organize, discover, transfer, 

merge and reanalyze data to make it scientifically useful. The changes 

2-Year Milestones 
• Develop innovative methods 

and libraries that allow users 
to easily process and analyze 
experimental data using 
superfacility resources.

• Develop innovative methods 
and libraries to capture, 
manage and share analytics 
pipelines.

• Develop tools and 
technologies to extract 
metadata and capture, 
preserve, share and 
reproduce the data, 
workflows and contextual 
information associated with  
an experimental setup. 

5-Year Milestones
• Develop methods for 

streaming analytics engines 
and interactive notebooks 
that allow near-real-time and 
interactive workflows to be 
processed on HPC systems.

• Develop data access, 
replication and placement 
services to match hardware 
architectures with analysis 
tools to facilitate real-time 
processing and analytics, 
whether remote or in situ.

• Collect and curate metadata 
and provenance of the data 
and pipelines to allow users 
the ability to reproduce 
existing workflows.

• Demonstrate analytics and 
data management tools that 
run on top of the superfacility 
API developed under 
applications engagements to 
allow experimental scientists 
to run these tools seamlessly 
across multiple platforms.

BERKELEY LAB  |  51



52  |  COMPUTING SCIENCES STRATEGIC PLAN 2019

to the underlying hardware at supercomputing facilities will require innovation in 

analysis methods, I/O management and workflow programming to achieve efficiency and 

scalability on future systems while maintaining usability; such methods could include in 

situ methods to overcome the I/O challenges, topological data analyses to identify salient 

methods, indexing, I/O library enhancements and object stores for faster data access, 

ensemble learning techniques for streaming analyses and interactive exploratory data 

analyses using Jupyter notebooks. The software stack at HPC centers will have to evolve 

to support the diverse workloads (i.e., batch and streaming, real-time) while balancing 

performance and utilization of HPC resources.

Looking ahead, a key aspect of our research and development efforts will be a focus 

on scale, which will address the data volumes and velocity while leveraging new 

methods and techniques. In addition, it will be possible for observational sensors to be 

auto-configured, allowing the real-time streaming data to be seamlessly processed at 

computing facilities. We ultimately envision a scenario where a scientist conducting an 

experiment at an experimental facility will be able to seamlessly and interactively search 

for other relevant simulation or experiment data, run real-time data analysis workflows 

on HPC machines to influence the experiment and reproduce existing pipelines with 

different parameters. Users will be able to search and access scientific data from one or 

more domains, reproduce a workflow, access the appropriate hardware resources and 

apply complex and advanced data analyses in a turnkey manner. 

Figure 27: Modern  
scientific experiments 
have complex data 
lifecycles, with data 
often being used, reused 
and analyzed at multiple 
points by multiple 
teams. This creates  
a number of challenges 
for research and soft-
ware development.
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3. Automated Resource Allocation

Deliver a framework for seamless resource 
allocation, calendaring and management of 
compute, storage and network assets across 
administrative boundaries.

Today, domain science applications and workflow processes are forced 

to view the infrastructure as static distinct resources (i.e., local compute, 

remote HPC, storage, network) that require manual coordination to 

support a complex, multi-facility workflow. There is little ability for 

applications to interact with infrastructure to exchange information, 

negotiate performance parameters, discover expected performance 

requirements or receive status/troubleshooting information in real time.  

As a result, domain science applications frequently suffer poor 

performance or require significant manual support to reserve network  

and compute resources and tune the performance of the end-to- 

end infrastructure. 

As part of its ESnet6 upgrade, ESnet will provide terascale networking 

necessary for streaming analytics across facilities. In addition, enabling 

end-to-end multi-domain resource provisioning requires three 

fundamental operations: 

1. Resource exchange information, which includes developing a resource 

model that can appropriately characterize domain resources (e.g., type, 

capability, availability, status, etc). 

2. Resource requisitioning through an agreed-upon programmatic 

interface (i.e., API) that is supported by the necessary domain-specific 

functions (e.g., AuthN/AuthZ, resource computation, provisioning, 

etc.) to enable inter-domain resource reservation. 

3. Performance evaluation using a suite of benchmarks that defines key 

metrics for measuring the performance of a superfacility.  

ESnet will support the first two operations with the deployment of 

software defined networking (SDN) for leveraging work in the DOE-

funded SENSE project, in addition to the existing ESnet bandwidth 

reservation services (OSCARS) and the Network Services Interface 

connection protocol adopted by multiple networks supporting scientific 

research. This functionality will be interoperable with the superfacility 

API that is actively being developed as part of the applications goal.

2-Year Milestones
• Implement a programmatic 

framework to securely 
exchange resource 
information, and negotiate 
and orchestrate the end-to-
end reservation of compute 
(e.g. local compute, remote 
HPC), storage and network 
resources.

• Deploy SDN for End-to-End 
Networking @ Exascale 
(SENSE) resource managers.

5-Year Milestones
• Develop techniques for 

resource management and 
optimization to decrease 
resource blocking, throttle 
workloads when necessary 
and provide resilient elastic 
compute, storage and 
network resources in  
real time.

• Adopt learning-based 
techniques that can detect 
anomalous resource behavior 
due to failures or cyber 
attacks.

• Develop resiliency strategies 
to prevent loss of data or 
minimize costly restart of 
jobs due to unforeseen 
failures. 
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Looking ahead, to ensure optimized operations between multiple experimental facilities, 

ESnet and HPC facilities simultaneously, each resource or application will need to be 

able to understand the current state of both its own resources and others with which it 

may need to communicate. To scale the number of experiments and facilities deployed 

across facilities, it will be necessary to develop intelligent, automated processes that are 

not restricted by human-scale limitations. Such processes could include instrumenting 

the infrastructure for performance and availability monitoring, providing input into 

analytics and learning engines to predict failures and resource congestion and proactively 

continuously optimizing resource allocations. Security will be enhanced by leveraging 

learning algorithms to react and protect against byzantine behavior, such as rogue 

network switches or denial-of-service attacks. 

To achieve these goals, we expect to build on a number of current research efforts, such 

as the ability of ESnet’s resources and links to be used optimally in high-traffic and 

high-bandwidth demands and an ESnet and CRD collaboration to investigate dynamic 

data movements in situations when NERSC supercomputing resources are down. These 

research methods will focus on optimizing resource utilization in real time and will be 

demonstrated through simulated and real infrastructure deployments. 

The ability for a science application to interact and negotiate with compute, storage 

and network infrastructure will be the hallmark of truly smart infrastructure and smart 

applications (Figure 28). Our goal is to implement such capabilities in the future ESnet 

and NERSC facilities, including ESnet6 and NERSC-9 (Perlmutter).

Figure 28: A vision of 
superfacility automation. 
The ability for a science 
application to interact and 
negotiate with compute, 
storage and network in-
frastructure would be the 
hallmark of truly smart 
infrastructure and smart 
applications.
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4. Computing at the Edge

Design and deploy specialized computing devices 
for real-time computing needs for streaming data.

Experimental and observational data is often collected at sites located a 

considerable distance from an available HPC center, and the volume and 

velocity of experimental data threatens to overwhelm both the wide area 

network and HPC center ingest rates, even with the upgraded ESnet6 

capacity. For example, a single microscope under development at the 

National Center for Electron Microscopy (NCEM) is already pushing the 

limits of what can be transferred to NERSC over the network; even though 

a dedicated 400Gb/s network connection was installed directly to NERSC, 

the detector frame rate of the electron microscopes is still limited by the 

available network bandwidth. 

Just as each experiment today frequently benefits from custom sensors and 

associated hardware to gather the data, the experiments of the future will 

benefit from custom hardware solutions to reduce, analyze and respond 

to collected experimental data in real time. Realizing the superfacility 

2-Year Milestones
• Deploy a framework to 

rapidly design, build 
and deliver specialized 
edge computing devices, 
increasing the impact 
and availability of custom 
computing.

• Work with end user facilities 
to complete an application 
and workflow analysis to 
understand the requirements 
for edge computing devices.  

• Leverage a combination 
of existing high-level 
hardware description 
languages and generators 
with novel programming 
models to prototype a 
general framework for rapid 
creation of FPGA-based edge 
computing devices.  

• Provide a proof-of-concept 
custom, on-site hardware 
solution for NCEM, providing 
data processing/reduction 
necessary to support higher 
data rates than are currently 
possible. 

5-Year Milestones
• Enhance the computing 

capabilities of experimental 
facilities and DOE HPC 
centers through the 
integration of custom edge-
computing devices for data 
reduction and analysis. 

• Complete an initial version 
of a hardware and software 
generation toolchain that 
enables rapid design and 
deployment of at least two 
edge computing devices in 
two different facilities. 
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Figure 29: A new 
detector is being built  
for NCEM’s Transmission 
Electron Aberration- 
corrected Microscope 0.5 
(TEAM 0.5) that allows 
researchers to access 
single-atom resolution 
for some samples. The 
new detector, unveiled  
in February 2019, will 
generate 4 terabytes of 
data per minute.
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vision will require hardware deployed throughout the experimental pipeline to increase 

scientific throughput, automate control of experiments (no human in the loop) and 

reduce the burden on networks and HPC data centers. At the same time, these specialized 

analytics accelerators will support increases in the quality (resolution, sampling 

frequency, signal-to-noise, etc.) of data collected.

Deploying commodity clusters or servers adjacent to experiments is useful for some 

workflows, but is neither a complete nor scalable solution as commercial platforms 

may exceed power, space or portability constraints. In addition, deploying a full custom 

solution for each experiment is undesirable as the cost to design, deploy and support 

these full custom solutions quickly becomes unwieldy. Field deployable sensors optimized 

for science have different requirements than commercial devices in terms of reliability, 

resilience and accuracy and often contain highly specialized functionality. Finally, as 

sensor data rates continue to increase, it can become impossible to get all measured 

data off the physical sensor due to the physical constraints of the package — namely, I/O 

pin limitations. In this case, we must aggressively integrate data-reduction processing 

directly on die requiring a robust hardware generation toolchain.

To address the unique needs presented by the diversity of experiments, a generalized 

framework must be developed to allow rapid design, prototyping and deployment of 

edge computing devices. We will work with science teams deploying sensor networks 

so that DOE-designed edge computing devices will be integrated directly onto sensors, 

in the field, in the network and inside the data center. These devices can range from 

tiny distributed sensors deployed in the environment, such as Smart Dust, to powerful 

FPGA or ASIC accelerator cards performing data reduction and analysis for large-

scale experiments. The creation of this framework creates the opportunity to use novel 

computing devices, including neuromorphic or other non-Von Neumann processors, to 

maximize the data reduction and analysis performed for minimal energy. 

The use of edge computing devices will help Computing Sciences realize the superfacility 

vision of ubiquitous computing seamlessly integrated throughout complex scientific 

workflows. The creation of custom computing devices will be combined with commodity 

hardware and integrated into complex workflows as transparently as any software-based 

library, enabling non-experts to design, deploy and utilize these devices. 
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Summary
Our vision for the future of scientific discovery encompasses more powerful computing,  

data and networking systems and more tightly integrated facilities for experimental 

and observational science. But even more important will be the need for human talent 

to design new methods and algorithms, develop software solutions, partner in cross 

disciplinary science teams, deploy and operate hardware and software systems and 

engage with users to empower the broader scientific community. 

The three initiatives in this strategy complement our traditional strengths in modeling 

and simulation, data-intensive science and HPC; moving aggressively into machine 

learning, digital electronics and quantum computing while having a focused effort in a 

superfacility model will enable more effective facilities and reproducible science. The 

combination of exploratory research, team science and engineering practice is well-

suited to a national laboratory environment, and the model of driving toward exciting 

breakthrough science while enabling a broad and open science community is well-aligned 

with Berkeley Lab’s history and culture.  

Figure 30: Each year the Computing Sciences Summer Student Program welcomes college  
graduates and undergraduates from around the world who work with mentors from NERSC,  
ESnet and CRD over 12 weeks, culminating with a poster session where they present their  
projects to staff and peers.
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Building on an excellent foundation of research and engineering expertise in Computing 

Sciences, this plan will evolve over several years and require a pipeline of talented 

personnel to lead and execute. We have a strong track record of hiring outstanding 

individuals, often as postdoctoral researchers or early career scientists, and mentoring 

them in the collaborative nature of our work and the value we place on high-impact 

research to serve the mission of the laboratory. To build the next generation of scientific 

leaders in computing, we have leveraged a large number of postdoctoral research 

initiatives, including our prestigious Alvarez Fellowship program, and we are a popular 

site for summer interns from DOE’s Computer Science Graduate Research Fellowship 

program. Both DOE and the Laboratory management have prioritized the career 

development pipeline with Early Career research programs run by DOE and as part of 

the Lab’s internal LDRD program.   

The pipeline for future leaders starts with students, and each year the Computing 

Sciences Summer Student Program welcomes college graduates and undergraduates from 

around the world who work with mentors from NERSC, ESnet and CRD over 12 weeks 

gaining invaluable science and engineering research experience. Launched in 2010, the 

program typically draws more than 100 students annually; for many, the highlight is the 

opportunity to present a poster sharing the results of their summer research projects with 

their peers and CS staff at the Poster Session that concludes their summer at the Lab. 

Team science benefits from diversity in perspectives and expertise, and Computing 

Sciences is in alignment with the rest of Berkeley Lab in its commitment to foster a 

diverse workforce — in experience, perspective, and background — along with a culture 

of equity and inclusion. In support of these goals, we have partnered with the Sustainable 

Horizons Institute on the Sustainable Pathways Program. This program recruits students 

and faculty from minority-serving institutions, junior colleges and other colleges 

supporting students from underrepresented or underprivileged backgrounds for summer 

research opportunities within the CS organization. As winners of the annual Sustainable 

Pathways Research Fellowships, these teams spend the summer collaborating with 

Berkeley Lab staff to further their own research. 

Our vision cannot be realized in isolation; it will require partnerships with universities, 

industry and other laboratories. We believe our initiatives will draw support from across 

the research community, united by a shared commitment to the mission of DOE and goals 

of scientific excellence. 
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