Modern Parallel Languages
Kathy Yelick

Lecture 2: Data parallelism (part 1)
NESL

http://www.eecs.berkeley.edu/~yelick/cs294-f13
Data parallelism

• No widely-accepted clear definition
• Wikipedia: “data parallelism is typically expressed as a single thread of control operating on data sets distributed over all nodes”
• Wikipedia: “But it is said that a data parallel language has a notion of explicit parallelism too”
• Ask: Data parallelism focuses on distributing the data across different parallel computing nodes. It contrasts with task parallelism.
• Microsoft: Data parallelism refers to scenarios in which the same operation is performed concurrently (that is, in parallel) on elements in a source collection or array.
Data parallel algorithms / models

• Hillis and Steele
general communications. We call these algorithms data parallel algorithms because their parallelism comes from simultaneous operations across large sets of data, rather than from multiple threads of control. The intent is not so much to present new

• Blelloch
..data-parallel models, the parallel vector models. The definition is based on a machine that can store a vector in each memory location and whose instructions operate on these vectors as a whole—for example, elementwise adding two equal length vectors. In the model, each vector instruction requires one “program step”.
Our definition for this class

• A (pure) data parallel language has
 – A single thread of control, i.e., a serial semantics, which means all behaviors we can see in parallel can also be observed in the serial execution
 – It has operations on aggregate data structures (collections) to (implicitly) express parallelism

• These have a limited expressiveness, but clean and intuitive semantics

• Collections-oriented languages exist independent of parallelism
Collection-Oriented Languages

• Languages that support actions on large collections of data with a single operation

• Examples:
 – FORTRAN 90 and arrays
 – APL and arrays, Connection Machine LISP and xectors
 – PARALATION LISP and paralations
 – SETL and sets
 – Haskell / Miranda features, i.e., comprehensions

• Many of these were developed before parallelism became “important” (i.e., pre-1980s)

Features in Collection-Oriented Languages

- Unary Apply-to-each, e.g., negate elements of vector A
 - Implicit: \(-A\) (APL)
 - Explicit: \(\alpha\cdot [3,1,4]\) (CM Lisp) or \{-e : e in A\} (SETL)

- Non-unary Apply-to-each
 - E.g., implicit \(A+B\)
 - Element correspondence: which elements line up?
 - Element extension: adding a scalar to a vector

- Rearranging elements
 - E.g., Permute according to a list of indices (source or target)

- Nesting: can collections contain collections?

- Homogeneity: are all elements of the same type?
Examples of collection-oriented languages

FP

\[
\left(\frac{1}{x}\right) \circ (\alpha x) \circ \text{trans}
\]

\[
A = \begin{bmatrix} 1 & 0 & 5 & 3 \\
B = \begin{bmatrix} 3 & 4 & 3 & 7 \\
3 + 0 + 15 + 21 = 39
\end{bmatrix}
\end{bmatrix}
\]

Compute the dot product of two vectors

APL

\[
+/((A * (*/1,(((\rho A) - 1)\rho x)))
\]

\[
A = \begin{bmatrix} 1 & 2 & 3 & 4 \\
x = 2
\end{bmatrix}
\Rightarrow 1 + 2 \times 2 + 3 \times 2^2 + 4 \times 2^3 = 41
\]

Evaluate a polynomial with given coefficients \(A\) at value \(x\)

CM-LISP

\[
\text{let } (l (\text{length } A))
\]

\[
(p (\alpha (\beta+ A \rightarrow 1.0) \alpha L)))
\]

\[
(- (\beta+ (\alpha* p (\alpha lg p))))
\]

\[
A = \begin{bmatrix} a & b & c & d & b & d \\
\end{bmatrix}
\Rightarrow 2
\]

Compute Shannon entropy of \(A\):

\[
H(i) = - \sum p(i) \lg p(i)
\]

where \(p(i)\) is the probability that \(i\) occurs in the input string, for each \(i\).

More examples

```plaintext
SETL
a := [2..n];
result := {};
loop while #a > 0 do
  p := first a;
  a := [x in a | (x mod p) /= 0];
  result := result with p;
end;
print result;
```

Find prime numbers with the Sieve of Eratosthenes

```
```

Compute the second derivative of F given a vector of values

N = 10
⇒ [2 3 5 7]

NESL Goals

• Data-parallelism (based on sequences):
 - Apply functions to sequence
 - Operate on sequence (e.g., permute)

• To support complete nested parallelism
 - Nested sequences
 - Applying user-defined functions on sequences, including parallel functions

• Efficient code for SIMD and MIMD machines

• Good for describing parallel algorithms
 - Each function has two complexity measures: work and depth, which can be mapped to a VRAM model

Readability (no races)

Expressiveness (generality)

Performance & portability

Performance transparency
NESL Overview

- Strongly typed
- Functional
- Strict (vs. Lazy)
 - E.g., what does this statement do?
 print length([2+1, 3*2, 1/0, 5-4])
 - Is this just an implementation issue?
 - Why do we care?
- Nested Data-parallel
• A theoretical secret for turning serial into parallel

• Surprising parallel algorithms:

 If “there is no way to parallelize this algorithm!” …

 … it’s probably a variation on parallel prefix!
Outline

A partial list of algorithms that use scans

- A log n lower bound to compute any function in parallel
- Reduction and broadcast in O(log n) time
- Parallel prefix (scan) in O(log n) time
- Adding two n-bit integers in O(log n) time
- Multiplying n-by-n matrices in O(log n) time
- Inverting n-by-n triangular matrices in O(log^2 n) time
- Inverting n-by-n dense matrices in O(log^2 n) time
- Evaluating arbitrary expressions in O(log n) time
- Evaluating recurrences in O(log n) time
- “2D parallel prefix”, for image segmentation (Catanzaro & Keutzer)
- Sparse-Matrix-Vector-Multiply (SpMV) using Segmented Scan
- Parallel page layout in a browser (Leo Meyerovich, Ras Bodik)
- Solving n-by-n tridiagonal matrices in O(log n) time
- Traversing linked lists
- Computing minimal spanning trees
- Computing convex hulls of point sets…
Tricks with Trees
(revisited from CS267)

Some slides from John Gilbert, who borrowed some from Jim Demmel, Kathy Yelick 😊, Alan Edelman, and a cast of thousands …
Parallel Vector Operations

• Vector add: \(z = x + y \)
 - Embarrassingly parallel if vectors are aligned

• DAXPY: \(z = a \times x + y \) (a is scalar)
 - Broadcast \(a \), followed by independent \(*\) and +

• DDOT: \(s = x^\top y = \Sigma_j x[j] \times y[j] \)
 - Independent \(*\) followed by \textcolor{red}{reduction}
Broadcast and reduction

- **Broadcast** of 1 value to p processors with log p span
- **Reduction** of p values to 1 with log p span
- Takes advantage of associativity in +, *, min, max, etc.

![Broadcast and reduction diagram]

1 3 1 0 4 -6 3 2

Add-reduction
Example of a prefix

Sum Prefix

Input \(x = (x_1, x_2, \ldots, x_n) \)

Output \(y = (y_1, y_2, \ldots, y_n) \)

\[y_i = \sum_{j=1}^{i} x_j \]

Example

\(x = (1, 2, 3, 4, 5, 6, 7, 8) \)

\(y = (1, 3, 6, 10, 15, 21, 28, 36) \)

Prefix Functions—outputs depend upon an *initial* string
What do you think?

• Can we really parallelize this?

• It looks like this kind of code:

\[
y(0) = 0; \\
\text{for } i = 1:n \\
y(i) = y(i-1) + x(i);
\]

• The \(i \)th iteration of the loop depends completely on the \((i-1)\)st iteration.

• Impossible to parallelize, right?
A clue?

\[x = (1, 2, 3, 4, 5, 6, 7, 8) \]
\[y = (1, 3, 6, 10, 15, 21, 28, 36) \]

Is there any value in adding, say, 4+5+6+7?

If we separately have 1+2+3, what can we do?

Suppose we added 1+2, 3+4, etc. pairwise -- what could we do?
Prefix sum in parallel

(Recursively compute prefix sums)
Parallel prefix cost

• What’s the total work?

Pairwise sums

Recursive prefix

Update “odds”
Parallel prefix cost

- What’s the total work?

1 2 3 4 5 6 7 8
\[\begin{array}{cccccc}
1 & 3 & 6 & 10 & 15 & 21 \\
\end{array} \]

Pairwise sums

3 7 11 15

Recursive prefix

1 3 6 10 15 21 36

Update “odds”

- $T_1(n) = n/2 + n/2 + T_1(n/2) = n + T_1(n/2) = 2n – 1$
Parallel prefix cost: Work and Span

- What’s the total work?
 \[
 \begin{array}{ccccccc}
 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
 \hline
 3 & 7 & 11 & 15 \\
 10 & 21 & 36 \\
 1 & 3 & 6 & 10 & 15 & 21 & 28 & 36
 \end{array}
 \]

 Pairwise sums

 Recursive prefix

 Update “odds”

 - \(T_1(n) = \frac{n}{2} + \frac{n}{2} + T_1\left(\frac{n}{2}\right) = n + T_1\left(\frac{n}{2}\right) = 2n – 1 \)
 - \(T_\infty(n) = 2 \log n \)

Parallelism at the cost of more work (2x)
Historical: Hillis and Steele algorithm does \(n \) reductions
Non-recursive view of parallel prefix scan

- Tree summation: two phases

 - **up sweep**
 - get values L and R from left and right child
 - save L in local variable Mine
 - compute Tmp = L + R and pass to parent

 - **down sweep**
 - get value Tmp from parent
 - send Tmp to left child
 - send Tmp+Mine to right child

Up sweep:

mine = left

tmp = left + right

Down sweep:

tmp = parent (root is 0)
	right = tmp + mine

Blelloch algorithm (?)

```
3 1 2 0 4 1 1 3
```

```
4 6 9 5 4 4 1
```

```
3 1 2 0 4 1 1 3
```

```
0 3 3 4 2 6 6 10 11 12 15
```

```
0 4 6 6 10 11 6
```

```
+X = 3 1 2 0 4 1 1 3
```
Scan (Parallel Prefix) Operations

• Definition: the parallel prefix operation takes a binary associative operator \ominus, and an array of n elements $[a_0, a_1, a_2, \ldots a_{n-1}]$

 and produces the array $[a_0, (a_0 \ominus a_1), \ldots (a_0 \ominus a_1 \ominus \ldots \ominus a_{n-1})]$

• Example: add scan of

 $[1, 2, 0, 4, 2, 1, 1, 3]$ is $[1, 3, 3, 7, 9, 10, 11, 14]$
Any associative operation works

<table>
<thead>
<tr>
<th>Operation</th>
<th>Input Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum (+)</td>
<td>Reals</td>
</tr>
<tr>
<td>Product (*)</td>
<td>Reals</td>
</tr>
<tr>
<td>Max</td>
<td>Reals</td>
</tr>
<tr>
<td>Min</td>
<td>Reals</td>
</tr>
<tr>
<td>All (and)</td>
<td>Bits (Boolean)</td>
</tr>
<tr>
<td>Any (or)</td>
<td>Bits (Boolean)</td>
</tr>
</tbody>
</table>

Associative:

\[(a \oplus b) \oplus c = a \oplus (b \oplus c)\]

- MatMul: Input: Matrices
- Lexical analysis: Input: Strings
Lexical analysis (tokenizing, scanning)

- Given a language of:
 - Identifiers: string of chars
 - Strings: in double quotes
 - Ops: +,-,*,=,<,>,<=, >=

- Lexical analysis
 - Replace every character in the string with the array representation of its state-to-state function (column).
 - Perform a parallel-prefix operation with \oplus as the array composition. Each character becomes an array representing the state-to-state function for that prefix.
 - Use initial state (row 1) to index into these arrays.

Hillis and Steele, CACM 1986
Evaluating arbitrary expressions

• Let E be an arbitrary expression formed from +, -, *, /, parentheses, and n variables, where each appearance of each variable is counted separately

• Can think of E as arbitrary expression tree with n leaves (the variables) and internal nodes labelled by +, -, * and /

• Theorem (Brent): E can be evaluated with $O(\log n)$ span, if we reorganize it using laws of commutativity, associativity and distributivity

• Sketch of (modern) proof: evaluate expression tree E greedily by
 – collapsing all leaves into their parents at each time step
 – evaluating all “chains” in E with parallel prefix
E.g., Using Scans for Array Compression

• Given an array of n elements
 \[a_0, a_1, a_2, \ldots a_{n-1}\]
 and an array of flags
 \[1,0,1,1,0,0,1,\ldots\]
 compress the flagged elements into
 \[a_0, a_2, a_3, a_6, \ldots\]

• Compute an add scan of \([0, flags]\):
 \[0,1,1,2,3,3,4,\ldots\]

• Gives the index of the \(i^{th}\) element in the compressed array
 • If the flag for this element is 1, write it into the result
 array at the given position
Segmented Operations

Inputs = Ordered Pairs
 (operand, boolean)
 e.g. (x, T) or (x, F)

<table>
<thead>
<tr>
<th></th>
<th>+ 2</th>
<th>(y, T)</th>
<th>(y, F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x, T)</td>
<td></td>
<td>(x+y, T)</td>
<td>(y, F)</td>
</tr>
<tr>
<td>(x, F)</td>
<td></td>
<td>(y, T)</td>
<td>(x⊕y, F)</td>
</tr>
</tbody>
</table>

e.g. 1 2 3 4 5 6 7 8

Result
1 3 7 12 6 7 8

Change of segment indicated by switching T/F
The myth of log n

• The $\log_2 n$ span is **not** the main reason for the usefulness of parallel prefix.

• Say $n = 1000000p$ (1000000 summands per processor)

 Cost = (2000000 adds) + ($\log_2 P$ message passings)

 fast & embarassingly parallel

(2000000 local adds are serial for each processor, of course)

Key to implementing NESL Efficiently on Clusters, MPPs (aka MIMD machines)
VRAM Model: Vector Random-Access Machine

• VRAM from Blelloch, similar to PRAM
• Assumes scan operations can be done in $O(1)$ time

On a PRAM, a scan takes $O(\log n)$ time, so could apply an $O(\log n)$ factor to get PRAM complexity

• Assumption: organizing based on vectors makes complexity analysis easier, examples of performance:

 - # Vector (length) $O(1)$
 - Sum(Vector) $O(1)$
 - Permute (Vector, Index Vector) $O(1)$
 - Add $O(1)$
 - Scan (Vector) $O(1)$
 - Max (Vector) $O(1)$
NESL: In a nutshell

Simple Call-by-Value Functional Language
+ Built in Parallel type (nested sequences)
+ Parallel map (apply-to-each)
+ Parallel aggregate operations
+ Cost semantics (work and depth)

Sequential Semantics
Some non-pure features at “top level”
NESL: History

- Developed in 1990
- Implemented on CM, Cray, MPI, and sequentially using a stack based intermediate language
- Interactive environment with remote calls
- Over 100 algorithms and applications written – used to teach parallel algorithms
- Mostly dormant since 1997

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006
NESL: Parallel Operations on Sequences

• Sequences:
 - [1, 2, 9, -3]
 - \{\text{negate}(a) : a \text{ in } [2, -4, -9, 5]\} \mapsto [-2, 4, 9, -5]

• No restrictions on functions that can be applied
 - Why does this work?

• Nested parallelism
 - flatten ([[2, 1], [7, 3, 0], [4]]) \mapsto [2, 1, 7, 3, 0, 4]
NESL: Parallel Map

A = [3.0, 1.0, 2.0]
B = [[4, 5, 1, 6], [2], [8, 11, 3]]
C = “Yoknapatawpah County”
D = [“the”, “rain”, “in”, “Spain”]

Sequence Comprehensions:

{x + .5 : x in A} -> [3.5, 1.5, 2.5]
{sum(b) : b in B} -> [16, 2, 22]
{c in C | c < ‘n} -> “kaaaahc”
{w[0] : w in D} -> “triS”
A = [3.0, 1.0, 2.0]
D = [“the”, “rain”, “in”, “Spain”]
E = [(3,”Italy”), (1,”sun”)]

Parallel write: [‘a] * [int*‘a] -> [‘a]
D <- E -> [“the”,“sun”,“in”,“Italy”]

Prefix sum: (‘a*‘a->‘a)*‘a*[‘a] -> [‘a]*‘a
scan(‘+,2.0,A) -> ([2.0,5.0,6.0],8.0)
plus_scan(A) -> [0.0,3.0,4.0]
sum(A) -> 6.0
Combining for parallel map:

\[p_{\text{exp}} = \{ \exp(e) : e \in A \} \]

\[W_{p_{\text{exp}}} (A) = \sum_{i=0}^{n-1} W_{\exp} (A_i) \]

\[D_{p_{\text{exp}}} (A) = \max_{i=0}^{n-1} D_{\exp} (A_i) \]

Can prove runtime bounds for PRAM:

\[T = O(W/P + D \log P) \]
Example: Quicksort (Version 1)

function quicksort(S) =
if (#S <= 1) then S
else let
 a = S[rand(#S)];
 S1 = {e in S | e < a};
 S2 = {e in S | e = a};
 S3 = {e in S | e > a};
in quicksort(S1) ++ S2 ++ quicksort(S3);

D = O(n)
W = O(n log n)
Example: Quicksort

function quicksort(S) =
if (#S <= 1) then S
else let
 a = S[rand(#S)];
 S1 = {e in S | e < a};
 S2 = {e in S | e = a};
 S3 = {e in S | e > a};
 R = {quicksort(v) : v in [S1, S3]};
 in R[0] ++ S2 ++ R[1];

D = O(log n)
W = O(n log n)
function quicksort(S) =
 if (#S <= 1) then S
 else let a = S[rand(#S)];
 lesser = {e in S | e < a};
 equal = {e in S | e = a};
 greater = {e in S | e > a};
 R = {quicksort(v) : v in [lesser, greater]};
 in R[0] ++ equal ++ R[1];
Example: Representing Graphs

Edge List Representation:

\[(0,1), (0,2), (2,3), (3,4), (1,3), (1,0), (2,0), (3,2), (4,3), (3,1)\]

Adjacency List Representation:

\[
[1,2], [0,3], [0,3], [1,2,4], [3]\]
Example: Graph Connectivity

L = Vertex Labels, E = Edge List

function randomMate(L, E) =
if #E = 0 then L
else let
 FL = {randBit(.5) : x in [0:#L]};
 H = {(u,v) in E | FL[u] and not(FL[v])};
 L = L <- H;
 E = {(L[u],L[v]) : (u,v) in E | L[u] \= L[v]};
in randomMate(L,E);

Use hashing to avoid non-determinism

D = O(log n)
W = O(m log n)
Lesson 1: Sequential Semantics

- Debugging is much easier without non-determinism
- Analyzing correctness is much easier without non-determinism
- If it works on one implementation, it works on all implementations
- Some problems are inherently concurrent—these aspects should be separated
Lesson 2: Cost Semantics

- Need a way to analyze cost, at least approximately, without knowing details of the implementation
- Any cost model based on processors is not going to be portable - too many different kinds of parallelism

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006
Lesson 3: Too Much Parallelism

Needed ways to back out of parallelism

- Memory problem
- The “flattening” compiler technique was too aggressive on its own
- Need for Depth First Schedules or other scheduling techniques
- Various bounds shown on memory usage

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006
Limitations

Communication was a bottleneck on machines available in the mid 1990s and required “micromanaging” data layout for peak performance.

Language would need to be extended

- PSCICO Project (Parallel Scientific Computing) was looking into this

Hard to get users for a new language

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006
Relevance to Multicore Architecture

- Communication is hopefully better than across chips
- Can make use of multiple forms of parallelism (multiple threads, multiple processors, multiple function units)
- Schedulers can take advantage of shared caching [SPAA04]
- Aggregate operations can possibly make use of on-chip hardware support

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006
NESL Overview

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>FUNCTION name(args) = exp ;</code></td>
<td><code>FUNCTION double(a) = 2*a;</code></td>
</tr>
<tr>
<td><code>IF e1 THEN e2 ELSE e3</code></td>
<td><code>IF (a > 22) THEN a ELSE 5*a</code></td>
</tr>
<tr>
<td><code>LET binding* IN exp</code></td>
<td><code>LET a = b*6;</code></td>
</tr>
<tr>
<td><code>{e1 : pattern IN e2}</code></td>
<td><code>{a + 22 : a IN [2, 1, 9]}</code></td>
</tr>
<tr>
<td>`{pattern IN e1</td>
<td>e2}`</td>
</tr>
<tr>
<td><code>{e1 : p1 IN e2 ; p2 in e3}</code></td>
<td><code>{a + b : a IN [2,1]; b IN [7,11]}</code></td>
</tr>
</tbody>
</table>

Scalar Functions

<table>
<thead>
<tr>
<th>Type</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>logical</td>
<td><code>not or and xor nor nand</code></td>
</tr>
<tr>
<td>comparison</td>
<td><code>== /= < > <= >=</code></td>
</tr>
<tr>
<td>predicates</td>
<td><code>plusp minusp zerop oddp evenp</code></td>
</tr>
<tr>
<td>arithmetic</td>
<td><code>+ - * / rem abs max min</code></td>
</tr>
<tr>
<td></td>
<td><code>lshift rshift</code></td>
</tr>
<tr>
<td></td>
<td><code>sqrt isqrt ln log exp expt</code></td>
</tr>
<tr>
<td></td>
<td><code>sin cos tan asin acos atan</code></td>
</tr>
<tr>
<td></td>
<td><code>sinh cosh tanh</code></td>
</tr>
<tr>
<td>conversion</td>
<td><code>btoi code_char char_code</code></td>
</tr>
<tr>
<td></td>
<td><code>float ceil floor trunc round</code></td>
</tr>
<tr>
<td>random numbers</td>
<td><code>rand rand_seed</code></td>
</tr>
<tr>
<td>constants</td>
<td><code>pi max_int min_int</code></td>
</tr>
</tbody>
</table>