
Modern Parallel Languages!

Kathy Yelick

Lecture 2: Data parallelism (part 1)
NESL

http://www.eecs.berkeley.edu/~yelick/cs294-f13

Data parallelism

• No widely-accepted clear definition
• Wikipedia: “data parallelism is typically expressed as a

single thread of control operating on data sets distributed
over all nodes”

• Wikipedia: “But it is said that a data parallel language
has a notion of explicit parallelism too”

• Ask: Data parallelism focuses on distributing the data
across different parallel computing nodes. It contrasts
with task parallelism.

• Microsoft: Data parallelism refers to scenarios in which
the same operation is performed concurrently (that is, in
parallel) on elements in a source collection or array.

9/3/13" 2"

Data parallel algorithms / models

• Hillis and Steele

• Blelloch
•  ..data-parallel models, the parallel vector models. The

definition is based on a machine that can store a vector
in each memory location and whose instructions operate
on these vectors as a whole—for example, elementwise
adding two equal length vectors. In the model, each
vector instruction requires one “program step”.

9/3/13" 3"

Our definition for this class

• A (pure) data parallel language has
- A single thread of control, i.e., a serial
semantics, which means all behaviors we can
see in parallel can also be observed in the
serial execution
- It has operations on aggregate data
structures (collections) to (implicitly) express
parallelism

• These have a limited expressiveness, but clean
and intuitive semantics

• Collections-oriented languages exist
independent of parallelism
9/3/13" 4"

Collection-Oriented Languages

• Languages that support actions on large collections
of data with a single operation

• Examples:
- FORTRAN 90 and arrays
- APL and arrays,
- Connection Machine LISP and xectors
- PARALATION LISP and paralations
- SETL and sets
- Haskell / Miranda features, i.e., comprehensions

• Many of these were developed before parallelism
became “important” (i.e., pre-1980s)

9/3/13" 5"

Sipelstein, Jay M. and Blelloch, Guy E., "Collection-oriented
languages" (1990). Computer Science Department. Paper 2006.
http://repository.cmu.edu/compsci/2006

Features in Collection-Oriented Languages

• Unary Apply-to-each, e.g., negate elements of vector A
- Implicit: -A (APL)
- Explicit: α- [3,1,4] (CM Lisp) or {-e : e in A } (SETL)

• Non-unary Apply-to-each
- E.g., implicit A+B
- Element correspondence: which elements line up?
- Element extension: adding a scalar to a vector

• Rearranging elements
-  E.g., Permute according to a list of indices (source

or target)
• Nesting: can collections contain collections?
• Homogeneity: are all elements of the same type?

9/3/13" 6"
Sipelstein, Jay M. and Blelloch, Guy E., "Collection-oriented languages" (1990). Computer
Science Department. Paper 2006. http://repository.cmu.edu/compsci/2006

Tradeoffs?

Examples of collection-oriented languages

9/3/13" 7"
Sipelstein, Jay M. and Blelloch, Guy E., "Collection-oriented languages" (1990). Computer
Science Department. Paper 2006. http://repository.cmu.edu/compsci/2006

More examples

9/3/13" 8"
Sipelstein, Jay M. and Blelloch, Guy E., "Collection-oriented languages" (1990). Computer
Science Department. Paper 2006. http://repository.cmu.edu/compsci/2006

NESL Goals

• Data-parallelism (based on sequences):
- Apply functions to sequence
- Operate on sequence (e.g., permute)

• To support complete nested parallelism
-  Nested sequences
- Applying user-defined functions on

sequences, including parallel functions
• Efficient code for SIMD and MIMD machines
• Good for describing parallel algorithms

- Each function has two complexity
measures: work and depth, which can
be mapped to a VRAM model

Readability
(no races)

Expressive-
ness
(generality)

Performance
& portability

Performance
transparency

NESL Overview

• Strongly typed
• Functional
• Strict (vs. Lazy)

- E.g., what does this statement do?
 print length([2+1, 3*2, 1/0, 5-4])
- Is this just an implementation issue?
- Why do we care?

• Nested Data-parallel

Readability
Safety
Performance?

Readability
(modularity)

Performance?

•  A theoretical secret for turning serial into parallel

•  Surprising parallel algorithms:

 If “there is no way to parallelize this algorithm!” …

 … it’s probably a variation on parallel prefix!

Claim: NESL is for “Hard” Parallel Algorithms

02/07/2013

Outline
A partial list of algorithms that use scans
•  A log n lower bound to compute any function in parallel
•  Reduction and broadcast in O(log n) time
•  Parallel prefix (scan) in O(log n) time
•  Adding two n-bit integers in O(log n) time
•  Multiplying n-by-n matrices in O(log n) time
•  Inverting n-by-n triangular matrices in O(log2 n) time
•  Inverting n-by-n dense matrices in O(log2 n) time
•  Evaluating arbitrary expressions in O(log n) time
•  Evaluating recurrences in O(log n) time
•  “2D parallel prefix”, for image segmentation (Catanzaro & Keutzer)
•  Sparse-Matrix-Vector-Multiply (SpMV) using Segmented Scan
•  Parallel page layout in a browser (Leo Meyerovich, Ras Bodik)
•  Solving n-by-n tridiagonal matrices in O(log n) time
•  Traversing linked lists
•  Computing minimal spanning trees
•  Computing convex hulls of point sets…

Tricks with Trees  
(revisited from CS267)!

Some slides from John Gilbert, who
borrowed some from Jim Demmel,

Kathy Yelick J, Alan Edelman,  
and a cast of thousands …"

"
"

Parallel Vector Operations

• Vector add: z = x + y
- Embarrassingly parallel if vectors are aligned

• DAXPY: z = a*x + y (a is scalar)
- Broadcast a, followed by independent * and +

• DDOT: s = xTy = Σj x[j] * y[j]
- Independent * followed by + reduction

Broadcast and reduction

• Broadcast of 1 value to p processors with log p span

• Reduction of p values to 1 with log p span
• Takes advantage of associativity in +, *, min, max, etc.

a

8

 1 3 1 0 4 -6 3 2!

Add-reduction!

Broadcast!

Example of a prefix

Sum Prefix
 Input x = (x1, x2, . . ., xn)
 Output y = (y1, y2, . . ., yn)

 yi = Σj=1:i xj

Example
 x = (1, 2, 3, 4, 5, 6, 7, 8)
 y = (1, 3, 6, 10, 15, 21, 28, 36)

Prefix Functions-- outputs depend upon an initial string

What do you think?

• Can we really parallelize this?

•  It looks like this kind of code:

 y(0) = 0;
 for i = 1:n

 y(i) = y(i-1) + x(i);

• The ith iteration of the loop depends completely on the
(i-1)st iteration.

•  Impossible to parallelize, right?

A clue?

 x = (1, 2, 3, 4, 5, 6, 7, 8)
 y = (1, 3, 6, 10, 15, 21, 28, 36)

Is there any value in adding, say, 4+5+6+7?

If we separately have 1+2+3, what can we do?

Suppose we added 1+2, 3+4, etc. pairwise -- what could

we do?

19"

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 3 7 11 15 19 23 27 31
 (Recursively compute prefix sums)

 3 10 21 36 55 78 105 136

 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136

Prefix sum in parallel

Algorithm: 1. Pairwise sum 2. Recursive prefix 3. Pairwise sum

•  What’s the total work?
 1 2 3 4 5 6 7 8
 Pairwise sums
 3 7 11 15
 Recursive prefix
 3 10 21 36
 Update “odds”
 1 3 6 10 15 21 28 36

• T1(n) = n/2 + n/2 + T1 (n/2) = n + T1 (n/2) = 2n – 1

at the cost of more work! 20"

Parallel prefix cost

•  What’s the total work?
 1 2 3 4 5 6 7 8
 Pairwise sums
 3 7 11 15
 Recursive prefix
 3 10 21 36
 Update “odds”
 1 3 6 10 15 21 28 36

• T1(n) = n/2 + n/2 + T1 (n/2) = n + T1 (n/2) = 2n – 1

 Parallelism at the cost of more work! 21"

Parallel prefix cost

•  What’s the total work?
 1 2 3 4 5 6 7 8
 Pairwise sums
 3 7 11 15
 Recursive prefix
 3 10 21 36
 Update “odds”
 1 3 6 10 15 21 28 36
• T1(n) = n/2 + n/2 + T1 (n/2) = n + T1 (n/2) = 2n – 1
• T∞(n) = 2 log n

22"

Parallel prefix cost: Work and Span

Parallelism at the cost of more work (2x)
Historical: Hillis and Steele algorithm does n reductions

23"

Non-recursive view of parallel prefix scan

•  Tree summation: two phases
- up sweep

•  get values L and R from left and right child
•  save L in local variable Mine
•  compute Tmp = L + R and pass to parent

- down sweep
•  get value Tmp from parent
•  send Tmp to left child
•  send Tmp+Mine to right child

6
5 4

3 2 4 1

Up sweep:

 mine = left

 tmp = left + right

4

6 9

5 4

3 1 2 0 4 1 1 3

6
5 4

3 2 4 1

0 6

0

0 3

3 4 6 6 10 11 12 15

+X = 3 1 2 0 4 1 1 3

4

4 6 6 10 11

6 11

12

Down sweep:

 tmp = parent (root is 0)

 right = tmp + mine

Blelloch algorithm (?)

24"

Scan (Parallel Prefix) Operations

• Definition: the parallel prefix operation takes a binary
associative operator , and an array of n elements

 [a0, a1, a2, … an-1]
 and produces the array
 [a0, (a0 a1), … (a0 a1 ... an-1)]

• Example: add scan of

 [1, 2, 0, 4, 2, 1, 1, 3] is [1, 3, 3, 7, 9, 10, 11, 14]

All (and)

Any (or)

Input: Bits
(Boolean)

Sum (+)

Product (*)

Max

Min

Input: Reals

Any associative operation works

Associative:

(a ⊕ b) ⊕ c = a ⊕ (b ⊕ c)

MatMul

Input: Matrices

Lexical analysis

Input: Strings

Lexical analysis (tokenizing, scanning)

• Given a language of:
- Identifiers: string of chars
- Strings: in double quotes
- Ops: +,-,*,=,<,>,<=, >=

•  Lexical analysis
- Replace every character in the string with the array

representation of its state-to-state function (column).
- Perform a parallel-prefix operation with ⊕ as the

array composition. Each character becomes an array
representing the state-to-state function for that prefix.
- Use initial state (row 1) to index into these arrays.

9/3/13" 26"Hillis and Steele, CACM 1986

27"

Evaluating arbitrary expressions

•  Let E be an arbitrary expression formed from +, -, *, /,
parentheses, and n variables, where each appearance of
each variable is counted separately

• Can think of E as arbitrary expression tree with n leaves
(the variables) and internal nodes labelled by +, -, * and /

• Theorem (Brent): E can be evaluated with O(log n) span,
if we reorganize it using laws of commutativity, associativity
and distributivity

• Sketch of (modern) proof: evaluate expression tree E
greedily by
- collapsing all leaves into their parents at each time step
- evaluating all “chains” in E with parallel prefix

28"

E.g., Using Scans for Array Compression

• Given an array of n elements
 [a0, a1, a2, … an-1]
 and an array of flags
 [1,0,1,1,0,0,1,…]
 compress the flagged elements into
 [a0, a2, a3, a6, …]

• Compute an add scan of [0, flags] :
 [0,1,1,2,3,3,4,…]

• Gives the index of the ith element in the compressed array

•  If the flag for this element is 1, write it into the result
array at the given position

29"

Segmented Operations

2 (y, T) (y, F)

 (x, T) (x y, T) (y, F)

 (x, F) (y, T) (x⊕y, F)

e. g. 1 2 3 4 5 6 7 8

T T F F F T F T

1 3 3 7 12 6 7 8 Result

Inputs = Ordered Pairs
 (operand, boolean)
e.g. (x, T) or (x, F)

Change of
segment indicated
by switching T/F

+	

+	

30"

•  The log2 n span is not the main reason for the
usefulness of parallel prefix.

•  Say n = 1000000p (1000000 summands per
processor)
- Cost = (2000000 adds) + (log2P message passings)

 fast & embarassingly parallel
 (2000000 local adds are serial for each processor, of course)

The myth of log n

Key to implementing NESL Efficiently on Clusters,
MPPs (aka MIMD machines)

VRAM Model: Vector Random-Access Machine

• VRAM from Blelloch, similar to PRAM
• Assumes scan operations can be done in O(1) time

• On a PRAM, a scan takes O(log n) time, so could apply
an O(log n) factor to get PRAM complexity

• Assumption: organizing based on vectors makes
complexity analysis easier, examples of performance
- # Vector (length) O(1)
- Sum(Vector) O(1)
- Permute (Vector, Index Vector) O(1)
- Add O(1)
- Scan (Vector) O(1)
- Max (Vector) O(1)

9/3/13" 31"

32"

NESL : In a nutshell

Simple Call-by-Value Functional Language
 + Built in Parallel type (nested sequences)
 + Parallel map (apply-to-each)
 + Parallel aggregate operations
 + Cost semantics (work and depth)

Sequential Semantics
Some non-pure features at “top level”

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006

33"

NESL : History

•  Developed in 1990
•  Implemented on CM, Cray, MPI, and sequentially

using a stack based intermediate language
•  Interactive environment with remote calls
•  Over 100 algorithms and applications written –

used to teach parallel algorithms
•  Mostly dormant since 1997

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006

NESL: Parallel Operations on Sequences

• Sequences:
- [1, 2, 9, -3]
- {negate(a) : a in [2, -4, -9, 5]} à [-2, 4, 9, -5]

• No restrictions on functions that can be applied
- Why does this work?

• Nested parallelism
- flatten ([[2, 1], [7, 3, 0], [4]]) à [2, 1, 7, 3, 0, 4]

9/3/13" 34"

35"

NESL: Parallel Map
 A = [3.0, 1.0, 2.0]

 B = [[4, 5, 1, 6], [2], [8, 11, 3]]

 C = “Yoknapatawpah County”

 D = [“the”, “rain”, “in”, “Spain”]

Sequence Comprehensions:
 {x + .5 : x in A} -> [3.5, 1.5, 2.5]

 {sum(b) : b in B} -> [16, 2, 22]

 {c in C | c < ‘n} -> “kaaaahc”

 {w[0] : w in D} -> “triS”

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006

36"

NESL : Aggregate Operations

 A = [3.0, 1.0, 2.0]

 D = [“the”, “rain”, “in”, “Spain”]

 E = [(3,”Italy”), (1,“sun”)]

Parallel write : [‘a] * [int*‘a] -> [‘a]
 D <- E -> [“the”,“sun”,“in”,“Italy”]

Prefix sum : (‘a*‘a->‘a)*‘a*[‘a] -> [‘a]*‘a
 scan(‘+,2.0,A) -> ([2.0,5.0,6.0],8.0)

 plus_scan(A) -> [0.0,3.0,4.0]

 sum(A) -> 6.0

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006

37"

NESL: Cost Model

Combining for parallel map:
 pexp = {exp(e) : e in A}

∑
−

=

=
1

0
exppexp)()(

n

i
iAWAW

)()(exp
1

0pexp max i
n

i ADAD −

=
=

Can prove runtime bounds for PRAM:
 T = O(W/P + D log P)

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006

38"

Example : Quicksort (Version 1)

function quicksort(S) =
if (#S <= 1) then S
else let
 a = S[rand(#S)];
 S1 = {e in S | e < a};
 S2 = {e in S | e = a};
 S3 = {e in S | e > a};
in quicksort(S1) ++ S2 ++ quicksort(S3);

D =O(n)
W = O(n log n)

39"

Example : Quicksort

function quicksort(S) =
if (#S <= 1) then S
else let
 a = S[rand(#S)];
 S1 = {e in S | e < a};
 S2 = {e in S | e = a};
 S3 = {e in S | e > a};
 R = {quicksort(v) : v in [S1, S3]};
in R[0] ++ S2 ++ R[1];

D = O(log n)
W = O(n log n)

Quicksort Example

function quicksort(S) =
if (#S <= 1) then S

else let a = S[rand(#S)];
lesser = {e in S | e < a};
equal = {e in S | e = a};
greater = {e in S | e > a};
R = {quicksort(v) : v in [lesser, greater]};

in R[0] ++ equal ++ R[1];

9/3/13" 40"

41"

Example : Representing Graphs

Edge List Representation:
 [(0,1), (0,2), (2,3), (3,4), (1,3),

(1,0), (2,0), (3,2), (4,3), (3,1)]

Adjacency List Representation:
 [[1,2], [0,3], [0,3], [1,2,4], [3]]

0

1 3

2

4

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006

42"

Example : Graph Connectivity

L = Vertex Labels, E = Edge List

function randomMate(L, E) =
if #E = 0 then L
else let
 FL = {randBit(.5) : x in [0:#L]};
 H = {(u,v) in E | Fl[u] and not(Fl[v])};
 L = L <- H;
 E = {(L[u],L[v]): (u,v) in E | L[u]\=L[v]};
in randomMate(L,E);

Use hashing to avoid
non-determinism

D = O(log n)
W = O(m log n)

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006

43"

Lesson 1: Sequential Semantics
- Debugging is much easier without non-determinism
- Analyzing correctness is much easier without non-

determinism
- If it works on one implementation, it works on all

implementations
- Some problems are inherently concurrent—these

aspects should be separated

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006

44"

Lesson 2: Cost Semantics
- Need a way to analyze cost, at least

approximately, without knowing details of the
implementation
- Any cost model based on processors is not going

to be portable – too many different kinds of
parallelism

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006

45"

Lesson 3: Too Much Parallelism
Needed ways to back out of parallelism

- Memory problem
- The “flattening” compiler technique was too

aggressive on its own
- Need for Depth First Schedules or other

scheduling techiques
- Various bounds shown on memory usage

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006

46"

Limitations

Communication was a bottleneck on machines
available in the mid 1990s and required
“micromanaging” data layout for peak
performace.

Language would needs to be extended
"   PSCICO Project (Parallel Scientific

Computing) was looking into this
Hard to get users for a new language

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006

47"

Relevance to Multicore Architecture
• Communication is hopefully better than across chips
• Can make use of multiple forms of parallelism

(multiple threads, multiple processors, multiple
function units)

• Schedulers can take advantage of shared caching
[SPAA04]

• Aggregate operations can possibly make use of on-
chip hardware support

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006

NESL Overview

9/3/13" 48"

