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Data parallelism 

• No widely-accepted clear definition 
• Wikipedia: “data parallelism is typically expressed as a 

single thread of control operating on data sets distributed 
over all nodes” 

• Wikipedia: “But it is said that a data parallel language 
has a notion of explicit parallelism too” 

• Ask: Data parallelism focuses on distributing the data 
across different parallel computing nodes.  It contrasts 
with task parallelism.  

• Microsoft: Data parallelism refers to scenarios in which 
the same operation is performed concurrently (that is, in 
parallel) on elements in a source collection or array. 
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Data parallel algorithms / models 

• Hillis and Steele 

 
• Blelloch 
•  ..data-parallel models, the parallel vector models. The 

definition is based on a machine that can store a vector 
in each memory location and whose instructions operate 
on these vectors as a whole—for example, elementwise 
adding two equal length vectors. In the model, each 
vector instruction requires one “program step”.  
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Our definition for this class 

• A (pure) data parallel language has  
- A single thread of control, i.e., a serial 
semantics, which means all behaviors we can 
see in parallel can also be observed in the 
serial execution  
- It has operations on aggregate data 
structures (collections) to (implicitly) express 
parallelism 

• These have a limited expressiveness, but clean 
and intuitive semantics 

• Collections-oriented languages exist 
independent of parallelism 
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Collection-Oriented Languages 

• Languages that support actions on large collections 
of data with a single operation 

• Examples:  
- FORTRAN 90 and arrays 
- APL and arrays, 
- Connection Machine LISP and xectors 
- PARALATION LISP and paralations 
- SETL and sets 
- Haskell / Miranda features, i.e., comprehensions 

• Many of these were developed before parallelism 
became “important” (i.e., pre-1980s) 
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Sipelstein, Jay M. and Blelloch, Guy E., "Collection-oriented 
languages" (1990). Computer Science Department. Paper 2006. 
http://repository.cmu.edu/compsci/2006  



Features in Collection-Oriented Languages 

• Unary Apply-to-each, e.g., negate elements of vector A 
- Implicit: -A (APL) 
- Explicit: α- [3,1,4] (CM Lisp) or {-e : e in A } (SETL) 

• Non-unary Apply-to-each 
- E.g., implicit A+B 
- Element correspondence: which elements line up? 
- Element extension: adding a scalar to a vector 

• Rearranging elements 
-  E.g., Permute according to a list of indices (source 

or target) 
• Nesting: can collections contain collections? 
• Homogeneity: are all elements of the same type? 
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Tradeoffs? 



Examples of collection-oriented languages 
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More examples 
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NESL Goals  

• Data-parallelism (based on sequences): 
- Apply functions to sequence 
- Operate on sequence (e.g., permute) 

• To support complete nested parallelism 
-  Nested sequences 
- Applying user-defined functions on             

sequences, including parallel functions 
• Efficient code for SIMD and MIMD machines 
• Good for describing parallel algorithms 

- Each function has two complexity 
measures: work and depth, which can 
be mapped to a VRAM model  

Readability 
(no races) 
 
 
 
Expressive-
ness 
(generality) 
 
 
Performance 
& portability 
 
Performance 
transparency 



NESL Overview 

• Strongly typed 
• Functional 
• Strict (vs. Lazy) 

- E.g., what does this statement do? 
     print length([2+1, 3*2, 1/0, 5-4]) 
- Is this just an implementation issue? 
- Why do we care?  

• Nested Data-parallel 

Readability 
Safety 
Performance? 
 
Readability 
(modularity) 
 
Performance? 
 



•  A theoretical secret for turning serial into parallel 

•  Surprising parallel algorithms:   
 

 If “there is no way to parallelize this algorithm!” … 

 … it’s probably a variation on parallel prefix! 

Claim: NESL is for “Hard” Parallel Algorithms 
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Outline 
A partial list of algorithms that use scans 
•  A log n lower bound to compute any function in parallel 
•  Reduction and broadcast in O(log n) time 
•  Parallel prefix (scan) in O(log n) time 
•  Adding two n-bit integers in O(log n) time 
•  Multiplying n-by-n matrices in O(log n) time 
•  Inverting n-by-n triangular matrices in O(log2 n) time 
•  Inverting n-by-n dense matrices in O(log2  n) time 
•  Evaluating arbitrary expressions in O(log n) time 
•  Evaluating recurrences in O(log n) time 
•  “2D parallel prefix”, for image segmentation (Catanzaro & Keutzer) 
•  Sparse-Matrix-Vector-Multiply (SpMV) using Segmented Scan 
•  Parallel  page layout in a browser (Leo Meyerovich, Ras Bodik) 
•  Solving n-by-n tridiagonal matrices in O(log n) time 
•  Traversing linked lists  
•  Computing minimal spanning trees 
•  Computing convex hulls of point sets… 



Tricks with Trees   
(revisited from CS267)!

Some slides from John Gilbert, who 
borrowed some from Jim Demmel, 

Kathy Yelick J, Alan Edelman,  
and a cast of thousands …"
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Parallel Vector Operations 

• Vector add:   z = x + y  
- Embarrassingly parallel if vectors are aligned 

• DAXPY:   z = a*x + y  (a is scalar) 
- Broadcast  a, followed by independent * and + 

• DDOT:    s = xTy = Σj x[j] * y[j] 
- Independent * followed by + reduction 



Broadcast and reduction 

• Broadcast of 1 value to p processors with log p span 

• Reduction of p values to 1 with log p span 
• Takes advantage of associativity in +, *, min, max, etc. 

a 

8 

  1   3  1  0  4 -6 3   2!

Add-reduction!

Broadcast!



Example of a prefix 

Sum Prefix 
   Input           x = (x1, x2, . . ., xn) 
   Output          y = (y1, y2, . . ., yn) 
     
                     yi =  Σj=1:i  xj 
 
Example 
   x = ( 1, 2, 3,  4,   5,   6,   7,  8 ) 
   y = ( 1, 3, 6, 10, 15, 21, 28, 36) 
  

Prefix Functions-- outputs depend upon an initial string 
 
 



What do you think? 

• Can we really parallelize this? 

•  It looks like this kind of code: 

               y(0) = 0; 
               for i = 1:n 

                  y(i) = y(i-1) + x(i);   
 
 
 

• The ith iteration of the loop depends completely on the 
(i-1)st iteration.   

•  Impossible to parallelize, right? 



A clue? 

        x = ( 1, 2, 3,  4,   5,   6,   7,  8 ) 
       y = ( 1, 3, 6, 10, 15, 21, 28, 36) 
 
Is there any value in adding, say, 4+5+6+7? 
 
If we separately have 1+2+3, what can we do? 
 
Suppose we added 1+2, 3+4, etc. pairwise -- what could 

we do? 
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   1   2   3   4      5      6     7     8     9    10   11   12   13   14      15     16 

 

        3    7       11    15     19    23    27     31 
        (Recursively compute prefix sums) 

         3   10     21    36     55   78    105    136 
 

   1   3   6   10   15   21   28   36   45   55   66   78   91   105   120   136 

Prefix sum in parallel 

Algorithm:   1. Pairwise sum     2. Recursive prefix    3. Pairwise sum 



•  What’s the total work? 
    1  2  3  4   5  6    7  8 
                                             Pairwise sums 
       3      7      11    15 
                                             Recursive prefix 
       3     10     21    36 
                                             Update “odds” 
     1  3  6 10 15 21 28 36 
 
• T1(n) = n/2 + n/2 + T1 (n/2)  =  n + T1 (n/2)  = 2n – 1 
 
at the cost of more work! 20"

Parallel prefix cost 



•  What’s the total work? 
    1  2  3  4   5  6    7  8 
                                             Pairwise sums 
       3      7      11    15 
                                             Recursive prefix 
       3     10     21    36 
                                             Update “odds” 
     1  3  6 10 15 21 28 36 
 
• T1(n) = n/2 + n/2 + T1 (n/2)  =  n + T1 (n/2)  = 2n – 1 

            Parallelism at the cost of more work! 21"

Parallel prefix cost 



•  What’s the total work? 
    1  2  3  4   5  6    7  8 
                                             Pairwise sums 
       3      7      11    15 
                                             Recursive prefix 
       3     10     21    36 
                                             Update “odds” 
     1  3  6 10 15 21 28 36 
• T1(n) = n/2 + n/2 + T1 (n/2)  =  n + T1 (n/2)  = 2n – 1 
• T∞(n) = 2 log n 
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Parallel prefix cost:  Work and Span 

Parallelism at the cost of more work (2x) 
Historical: Hillis and Steele algorithm does n reductions 
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Non-recursive view of parallel prefix scan 

•  Tree summation:  two phases 
- up sweep 

•  get values L and R from left and right child 
•  save L in local variable Mine 
•  compute Tmp = L + R and pass to parent 

- down sweep 
•  get value Tmp from parent 
•  send Tmp to left child 
•  send Tmp+Mine to right child 

6 
5 4 

3 2 4 1 

Up sweep: 

  mine = left 

  tmp = left + right 

4 

6 9 

5 4 

3         1   2        0      4         1    1        3 

6 
5 4 

3 2 4 1 

0 6 

0 

0 3 

3         4   6        6      10      11  12      15 

+X = 3         1   2        0      4         1    1        3 

4 

4 6 6 10 11 

6 11 

12 

Down sweep: 

  tmp = parent (root is 0) 

  right = tmp + mine 

Blelloch algorithm (?) 
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Scan (Parallel Prefix) Operations 

• Definition: the parallel prefix operation takes a binary 
associative operator    , and an array of n elements 

               [a0, a1, a2, … an-1] 
    and produces the array 
              [a0, (a0    a1), … (a0     a1    ...     an-1)] 

• Example: add scan of  

        [1, 2, 0, 4, 2, 1, 1, 3]    is     [1, 3, 3, 7, 9, 10, 11, 14] 



All  (and)  

Any  ( or) 

 

Input: Bits 
(Boolean) 

Sum (+) 

Product (*) 

Max 

Min 

Input: Reals 

 

Any associative operation works 

Associative: 

(a ⊕ b) ⊕ c = a ⊕ (b ⊕ c) 

MatMul 

Input: Matrices 

Lexical analysis 

Input: Strings 



Lexical analysis (tokenizing, scanning) 

• Given a language of: 
- Identifiers: string of chars 
- Strings: in double quotes 
- Ops: +,-,*,=,<,>,<=, >= 

•  Lexical analysis 
- Replace every character in the string with the array 

representation of its state-to-state function (column).  
- Perform a parallel-prefix operation with ⊕ as the 

array composition. Each character becomes an array 
representing the state-to-state function for that prefix.  
- Use initial state (row 1) to index into these arrays.  

9/3/13" 26"Hillis and Steele, CACM 1986  
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Evaluating arbitrary expressions 

•  Let E be an arbitrary expression formed from +, -, *, /, 
parentheses, and n variables, where each appearance of 
each variable is counted separately 

• Can think of E as arbitrary expression tree with n leaves 
(the variables) and internal nodes labelled by +, -, * and / 

• Theorem (Brent): E can be evaluated with O(log n) span,  
if we reorganize it using laws of commutativity, associativity 
and distributivity 

• Sketch of (modern) proof: evaluate expression tree E 
greedily by 
- collapsing all leaves into their parents at each time step 
- evaluating all “chains” in E with parallel prefix 
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E.g., Using Scans for Array Compression 

• Given an array of n elements 
               [a0, a1, a2, … an-1] 
    and an array of flags 
              [1,0,1,1,0,0,1,…] 
    compress the flagged elements into 
              [a0, a2, a3, a6, …] 

• Compute an add scan of   [0, flags] : 
  [0,1,1,2,3,3,4,…] 

 
• Gives the index of the ith element in the compressed array 

•  If the flag for this element is 1, write it into the result 
array at the given position 
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Segmented Operations 

2   (y, T)   (y, F)     

     (x, T)   (x  y, T)  (y, F) 

     (x, F)   (y, T)   (x⊕y, F) 

 

e. g.  1  2  3  4  5  6  7  8 

T  T       F  F  F       T       F       T 

1  3   3  7         12  6  7  8      Result 

Inputs = Ordered Pairs 
              (operand, boolean) 
e.g. (x, T) or (x, F) 
 

Change of 
segment indicated  
by switching T/F 

+	


+	
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•  The log2 n span is not the main reason for the 
usefulness of parallel prefix.   

•  Say n = 1000000p (1000000 summands per 
processor) 
- Cost = (2000000 adds) + (log2P message passings) 

     fast & embarassingly parallel 
 (2000000 local adds are serial for each processor, of course) 

The myth of log n 

Key to implementing NESL Efficiently on Clusters, 
MPPs (aka MIMD machines) 



VRAM Model: Vector Random-Access Machine 

• VRAM from Blelloch, similar to PRAM 
• Assumes scan operations can be done in O(1) time 

• On a PRAM, a scan takes O(log n) time, so could apply 
an O(log n) factor to get PRAM complexity 

• Assumption: organizing based on vectors makes 
complexity analysis easier, examples of performance 
- # Vector (length)                              O(1) 
- Sum(Vector)                                    O(1) 
- Permute (Vector, Index Vector)       O(1) 
- Add                                                  O(1) 
- Scan (Vector)                                   O(1) 
- Max (Vector)                                    O(1) 
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NESL : In a nutshell 

Simple Call-by-Value Functional Language 
   + Built in Parallel type (nested sequences) 
   + Parallel map (apply-to-each) 
   + Parallel aggregate operations 
   + Cost semantics (work and depth) 
 
*Sequential Semantics* 
Some non-pure features at “top level” 
 

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006 
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NESL : History 

•  Developed in 1990 
•  Implemented on CM, Cray, MPI, and sequentially 

using a stack based intermediate language 
•  Interactive environment with remote calls 
•  Over 100 algorithms and applications written – 

used to teach parallel algorithms 
•  Mostly dormant since 1997 

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006 



NESL: Parallel Operations on Sequences 

• Sequences:  
- [1, 2, 9, -3] 
- {negate(a) : a in [2, -4, -9, 5]}  à [-2, 4, 9, -5] 

• No restrictions on functions that can be applied 
- Why does this work?   

• Nested parallelism 
- flatten ([[2, 1], [7, 3, 0], [4]]) à [2, 1, 7, 3, 0, 4] 
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NESL: Parallel Map 
  A = [3.0, 1.0, 2.0] 

  B = [[4, 5, 1, 6], [2], [8, 11, 3]] 

  C = “Yoknapatawpah County” 

  D = [“the”, “rain”, “in”, “Spain”] 

Sequence Comprehensions: 
  {x + .5 : x in A} -> [3.5, 1.5, 2.5] 

  {sum(b) : b in B} -> [16, 2, 22] 

  {c in C | c < ‘n} -> “kaaaahc” 

  {w[0] : w in D}   -> “triS” 

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006 
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NESL : Aggregate Operations 

     A = [3.0, 1.0, 2.0] 

     D = [“the”, “rain”, “in”, “Spain”] 

     E = [(3,”Italy”), (1,“sun”)] 

Parallel write :  [‘a] * [int*‘a] -> [‘a] 
  D <- E   -> [“the”,“sun”,“in”,“Italy”] 

Prefix sum : (‘a*‘a->‘a)*‘a*[‘a] -> [‘a]*‘a 
  scan(‘+,2.0,A) -> ([2.0,5.0,6.0],8.0) 

    plus_scan(A)   -> [0.0,3.0,4.0] 

    sum(A)         -> 6.0 

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006 
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NESL: Cost Model 

Combining for parallel map: 
       pexp = {exp(e) : e in A} 

∑
−

=

=
1

0
exppexp )()(

n

i
iAWAW

)()( exp
1

0pexp max i
n

i ADAD −

=
=

Can prove runtime bounds for PRAM: 
                 T = O(W/P + D log P) 
    

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006 
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Example : Quicksort (Version 1) 

function quicksort(S) = 
if (#S <= 1) then S 
else let 
  a = S[rand(#S)]; 
  S1 = {e in S | e < a}; 
  S2 = {e in S | e = a}; 
  S3 = {e in S | e > a}; 
in quicksort(S1) ++ S2 ++ quicksort(S3); 
 
 

D =O(n) 
W = O(n log n) 
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Example : Quicksort 

function quicksort(S) = 
if (#S <= 1) then S 
else let 
  a = S[rand(#S)]; 
  S1 = {e in S | e < a}; 
  S2 = {e in S | e = a}; 
  S3 = {e in S | e > a}; 
  R = {quicksort(v) : v in [S1, S3]}; 
in R[0] ++ S2 ++ R[1]; 
 
 

D = O(log n) 
W = O(n log n) 



Quicksort Example 

function quicksort(S) =  
if (#S <= 1) then S  

else let a = S[rand(#S)];  
lesser = {e in S | e < a};  
equal = {e in S | e = a};  
greater = {e in S | e > a};  
R = {quicksort(v) : v in [lesser, greater]};  

in R[0] ++ equal ++ R[1];  
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Example : Representing Graphs 

Edge List Representation: 
  [(0,1), (0,2), (2,3), (3,4), (1,3),  

(1,0), (2,0), (3,2), (4,3), (3,1)]  

Adjacency List Representation: 
  [[1,2], [0,3], [0,3], [1,2,4], [3]] 

0 

1 3 

2 

4 

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006 
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Example : Graph Connectivity 

L = Vertex Labels,  E = Edge List 
 
function randomMate(L, E) = 
if #E = 0 then L 
else let 
  FL = {randBit(.5) : x in [0:#L]}; 
  H = {(u,v) in E | Fl[u] and not(Fl[v])}; 
  L = L <- H; 
  E = {(L[u],L[v]): (u,v) in E | L[u]\=L[v]}; 
in randomMate(L,E); 

Use hashing to avoid 
non-determinism 

D = O(log n) 
W = O(m log n) 

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006 
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Lesson 1: Sequential Semantics 
- Debugging is much easier without non-determinism 
- Analyzing correctness is much easier without non-

determinism 
- If it works on one implementation, it works on all 

implementations 
- Some problems are inherently concurrent—these 

aspects should be separated 

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006 
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Lesson 2: Cost Semantics 
- Need a way to analyze cost, at least 

approximately, without knowing details of the 
implementation 
- Any cost model based on processors is not going 

to be portable – too many different kinds of 
parallelism 

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006 
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Lesson 3: Too Much Parallelism 
Needed ways to back out of parallelism 

- Memory problem 
- The “flattening” compiler technique was too 

aggressive on its own 
- Need for Depth First Schedules or other 

scheduling techiques 
- Various bounds shown on memory usage 

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006 
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Limitations 

Communication was a bottleneck on machines 
available in the mid 1990s and required 
“micromanaging” data layout for peak 
performace. 

Language would needs to be extended 
"   PSCICO Project (Parallel Scientific 

Computing) was looking into this 
Hard to get users for a new language 

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006 
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Relevance to Multicore Architecture 
• Communication is hopefully better than across chips 
• Can make use of multiple forms of parallelism 

(multiple threads, multiple processors, multiple 
function units) 

• Schedulers  can take advantage of shared caching 
[SPAA04] 

• Aggregate operations can possibly make use of on-
chip hardware support 

Slide: Blelloch “NESL Revisited”, Intel Workshop 2006 



NESL Overview 
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