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Segmentation of Multi-Model Distribution

parking-lot movie
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Classification of Multi-Model Distribution
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Face Recognition: “Where amazing happens!”

Figure: Steve Nash, Yao Ming, Tim Duncan.
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Problem Statement: Seeking Compact Representation of HD Data

Determine a class of models and the number of mixture.

Curse of dimensionality! [Bellman 1957]

1 In the 1950s, beyond 10-D space is high.

2 Until 2005, face recognition uses < 100-D features.

3 Today, applications beyond thousands of dimensions.

Robust to high noise and outliers.
mixture model
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Distributed Sensing and Perception (DSP)

In resource-constrained sensor environments

Centralized Perception

powerful processors
(virtually) unlimited memory

(virtually) unlimited bandwidth
simple sensor management

Distributed Perception

mobile processors
limited onboard memory

band-limited communications
complex sensor networks
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CITRIC: Wireless Smart Camera Platform

CITRIC platform Available library functions

1 Full support Intel IPP Library and OpenCV.

2 JPEG compression: 10 fps.

3 Edge detector: 3 fps.

4 Background Subtraction: 5 fps.

5 SIFT detector: 10 sec per frame.

Early adopters
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DexterNet: Wireless Body Sensor Network

Heterogeneous body sensors

Layout

Applications

1 Distributed wearable action recognition
(d-WAR)

2 Adopted by Oakland Children’s Hospital
and Vanderbilt Hospital
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Outline

1 Unsupervised segmentation/clustering
Partition samples drawn from A = S1 ∪ S2 ∪ . . .∪ SK in RD , and estimate model parameters.

2 Supervised recognition
Assume training examples {A1, · · · , AK} for K models. Given a test sample y, determine its
membership label(y) ∈ [1, 2, · · · , K ].
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Affine Motion Segmentation

Assume 3-D objects are far away from the camera

Points p1, . . . , pN ∈ R3 are tracked in F image
frames.

Image of pi in jth frame:

mij
.
=
h

xij
yij

iT
= Ajpi + bj ∈ R2, j = 1, . . . , F . parking-lot movie

Stack images of pi in all F frames

xi =

2
64

mi1

...
miF

3
75 =

2
64

A1 b1

...
AF bF

3
75
�
pi
1

�
∈ R2F .

Challenge: Affine Motion Segmentation ⇒ Subspace Segmentation

Each motion satisfies a 4-D subspace model.
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Generalized Principal Component Analysis (GPCA)

1 For a single subspace

V⊥1 : (x3 = 0)

V⊥2 : (x1 = 0)&(x2 = 0) V1

V2

R3x3

x1

x2

2 For A = V1 ∪ V2

∀z = (x1, x2, x3)
T , z ∈ V1 ∪ V2 ⇔ {x3 = 0}|{(x1 = 0)&(x2 = 0)}

3 By De Morgan’s law

{x3 = 0}|{(x1 = 0)&(x2 = 0)} ⇔ (x1x3 = 0)&(x2x3 = 0) ⇔
n

x1x3=0
x2x3=0

4 Vanishing polynomials: p1 = x1x3, p2 = x2x3
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Equivalence Relation

K th-degree vanishing polynomials IK (A) as a global signature

IK (A) is a polynomial subspace.

Subspace Properties

If p1, p2 ∈ IK (A), p1(x) = 0 and p2(x) = 0

1 Closed under addition: (p1 + p2)(x) = 0⇒ (p1 + p2) ∈ IK (A).

2 Closed under scalar multiplication: ∀a ∈ R, ap1(x) = 0⇒ ap1 ∈ IK (A).

IK (A) is determined by a linearly-independent polynomial basis.

Closed-form solution:

dim(IK (A)) =
X
S

(−1)|S|
�

i + D − 1− cS

D − 1− cS

�
,

where cS =
P

j∈S cj and the sum is over all S ⊆ {1, . . . , n}.

Reference:

Yang, et al., Estimation of subspace arrangements with applications in modeling and segmenting mixed data, SIAM Review, 2008.
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Estimation of Vanishing Polynomials

1 Veronese embedding: Given N samples x1, . . . , xN ∈ R3,

L2
.
= [ν2(x1), . . . , ν2(xN)] ∈ RM

[3]
2 ×N

=

2
6664

··· (x1)2 ···
··· (x1x2) ···
··· (x1x3) ···
··· (x2)2 ···
··· (x2x3) ···
··· (x3)2 ···

3
7775

2 The null space of L2 is
c1 = [0, 0, 1, 0, 0, 0]
c2 = [0, 0, 0, 0, 1, 0]

⇒ p1 = c1ν2(x) = x1x3

p2 = c2ν2(x) = x2x3

V1

V2

R3x3

x1

x2

Figure: 2nd-degree vanishing polynomials: p1 = x1x3, p2 = x2x3.
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Calculate Subspace Basis Vectors using Polynomial Derivatives

1 V⊥
1 , · · · , V⊥

K recovered by the derivatives

∇xP = [∇xp1 ∇xp2 ] =

�
x3 0
0 x3
x1 x2

�
.

2 Pick z = [1, 1, 0]T ∈ V1, then ∇xP(z) =
h

0 0
0 0
1 1

i
.

Pick z = [0, 0, 1]T ∈ V2, then ∇xP(z) =
h

1 0
0 1
0 0

i
.

V1

V2

R3x3

x1

x2

Figure: P(x)
.
= [p1(x) p2(x)] = [x1x3, x2x3].

Diagram of GPCA

V1

V2 RD

=⇒
νn(x) Null(Ln)

p(x) = cTx

=⇒ =⇒
∇x

Rank(Ln) = M
[D]
n − hI (n)

V1

V2RM
[D]
n RM

[D]
n RD
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Robust GPCA

1 Stability: Principal Component Analysis (PCA)

V1

V2 RD

=⇒
νn(x) Null(Ln)

=⇒ =⇒
∇x

V1

V2RM
[D]
n RM

[D]
n

p(x) = cTx RD

2 Robustness: Robust PCA

V1

V2 RD

=⇒
νn(x) Null(Ln)

=⇒

RM
[D]
n

p(x) = cTx

RM
[D]
n
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Robust GPCA

Outlier Elimination

Figure: Elimination of outliers.

References:
Yang, Estimation of subspace arrangements: Its algebra and statistics, Dissertation, 2006.

MATLAB toolboxes available on my website.
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Summary: (Robust) GPCA

Advantages:

Closed-form algebraic solution, not iterative.

Segment subspaces with mixed dimensions.

Robust to noise and outliers.

Limitations:

Only apply to mixture linear subspaces.
Question: How about mixture nonlinear manifolds?

User provides correct subspace number and dimensions.
Question: How to select a good mixture model?
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Perspective Motion Segmentation

Given two image correspondences x1, x2 ∈ R3

Epipolar

xT
2

�
f11 f12 f13
f21 f22 f23
f31 f32 f33

�
x1 = 0

Homography

x2 ×
�

h11 h12 h13
h21 h22 h23
h31 h32 h33

�
x1 = 0

Each perspective constraint is linear w.r.t. (x1, x2), but in different form!

Classical solution: Random Sample Consensus (RANSAC).
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Quadratic Manifolds in Joint Image Space

Joint image space: Stack x1 = (x1, y1, 1)T and x2 = (x2, y2, 1)T

y = (x1, y1, x2, y2, 1)T ∈ R5

Quadratic fundamental manifold (QFM)

yT Ay
.
= yT

0
B@

0 0 f11 f21 f31
0 0 f12 f22 f32

f11 f12 0 0 f13
f21 f22 0 0 f23
f31 f32 f13 f23 2f33

1
CA y = 0. (1)

Quadratic homograpy manifold (QHM)

yT B1y
.
= yT

0
@

0 0 0 h31 −h21
0 0 0 h32 −h22
0 0 0 0 0

h31 h32 0 0 h33
−h21 −h22 0 h33 −2h23

1
A y = 0,

yT B2y
.
= yT

0
@

0 0 −h31 0 h11
0 0 −h32 0 h12

−h31 −h32 0 0 −h33
0 0 0 0 0

h11 h12 −h33 0 2h13

1
A y = 0,

yT B3y
.
= yT

0
B@

0 0 h21 −h11 0
0 0 h22 −h12 0

h21 h22 0 0 h23
−h11 −h12 0 0 −h13

0 0 h23 −h13 0

1
CA y = 0.

(2)
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Introduction Algebraic Segmentation Lossy MDL Classification Conclusion

Segmentation of Quadratic Manifolds

Convert mixture perspective motion as
segmentation of mixture quadratic manifolds
defined by

pj (y)
.
= yT Qjy = 0. (3)

Vanishing polynomials uniquely determine A = S1 ∪ · · · ∪ SK .

Robust Algebraic Segmentation

Y = {y1, · · · , yn} ⇒ I2K (A) ⇒ A⇒ {S1, · · · , SK}

Reference:

Yang, et al., Robust Algebraic Segmentation of Mixed Rigid-Body and Planar Motions, IJCV (submitted), 2008.
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Introduction Algebraic Segmentation Lossy MDL Classification Conclusion

Experiment

1 Visualization

2 Faster than RANSAC!
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Introduction Algebraic Segmentation Lossy MDL Classification Conclusion

boxes MLESAC MC-RANSAC RAS RAS+RANSAC

FPR 9.24% 0.84% 1.68% 0.84%
VR 36.97% 84.87% 100% 87.39%

carsnbus3 MLESAC MC-RANSAC RAS RAS+RANSAC

FPR 45.75% 12.55% 2.83% 1.62%
VR 83.81% 90.28% 97.17% 85.83%

deliveryvan MLESAC MC-RANSAC RAS RAS+RANSAC

FPR 23.23% 10.63% 5.91% 0.39%
VR 97.64% 96.85% 100% 94.09%

desk MLESAC MC-RANSAC RAS RAS+RANSAC

FPR 9.00% 2.50% 3.00% 0.50%
VR 55.50% 93.50% 91.50% 93.50%

lightbulb MLESAC MC-RANSAC RAS RAS+RANSAC

FPR 39.52% 0.00% 0.00% 0.00%
VR 76.19% 82.86% 100% 99.52 %

manycars MLESAC MC-RANSAC RAS RAS+RANSAC

FPR 30.56% 22.22% 0.00% 0.00%
VR 90.28% 95.83% 100% 88.89%

man-in-office MLESAC MC-RANSAC RAS RAS+RANSAC

FPR 20.56% 34.58% 20.56% 11.21%
VR 89.72% 95.33% 84.11% 82.24%

nrbooks3 MLESAC MC-RANSAC RAS RAS+RANSAC

FPR 12.38% 9.05% 5.48% 0.95%
VR 41.19% 65.48% 94.29% 88.33%

office MLESAC MC-RANSAC RAS RAS+RANSAC

FPR 2.28% 0.33% 10.42% 0.00%
VR 89.59% 90.55% 86.97% 93.49%

parking-lot MLESAC MC-RANSAC RAS RAS+RANSAC

FPR 7.86% 5.00% 3.57% 2.86%
VR 98.57% 96.43% 100% 97.86%

posters-checkerboard MLESAC MC-RANSAC RAS RAS+RANSAC

FPR 20.58% 1.06% 9.23% 0.00%
VR 49.87% 97.36% 70.71% 95.25%

posters-keyboard MLESAC MC-RANSAC RAS RAS+RANSAC

FPR 8.59% 0.25% 10.61% 0.51%
VR 56.06% 83.33% 78.03% 88.13%

toys-on-table MLESAC MC-RANSAC RAS RAS+RANSAC

FPR 38.10% 38.10% 15.08% 7.94%
VR 91.27% 92.86% 81.75% 77.78%
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Introduction Algebraic Segmentation Lossy MDL Classification Conclusion

Summary: Robust Algebraic Segmentation

Advantages:

Extends the algebraic framework of GPCA.

Closed-form solution to segment quadratic manifolds with mixed dimensions.

More accurate than RANSAC, two to three times faster.

Limitations:

Algorithm grows exponentially with model number and dimensions.

How to determine an optimal mixture model?
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Introduction Algebraic Segmentation Lossy MDL Classification Conclusion

Natural Image Segmentation

(a) Nature

(b) Urban

(c) Portraits

(d) Water
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Introduction Algebraic Segmentation Lossy MDL Classification Conclusion

Lossy Minimum Description Length

1 Lossy coding length Lε(V ,A):
Quantize V = (v1, · · · , vN) ∈ RD×N as a sequence of binary bits up to a distortion

E[‖vi − v̂i‖2] ≤ ε2.

2 Lossy MDL
A∗(ε) = arg min{Lε(V ,A) + Overhead(A)}.
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Introduction Algebraic Segmentation Lossy MDL Classification Conclusion

Lossy MDL for Mixture Subspaces

1 Model Vi as a (degenerate) Gaussian model

Bit rate: R(Vi ) =
1

2
log2 det(I +

D

ε2Ni
ViV

T
i ).

2 Coding length for Vi of Ni samples

L(Vi ) = NiR(Vi ) +
D

2
log2 det(1 +

1

ε2
µiµ

T
i ) + Ni (− log2(Ni/N)).

3 Total coding length: Ls(V1, · · · , VK ) =
P

i L(Vi ).

Ideal Optimization is NP-Hard

The process must exhaust all possible combinations of N samples.
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Introduction Algebraic Segmentation Lossy MDL Classification Conclusion

A Greedy Optimization

1 Initialize: Assume N samples as individual groups.

2 Iteration: Merge two groups that reduces largest coding length.

3 Stop: If any further merging cannot reduces Ls .

4 Output: Estimation of K and the grouping.

animation
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Simulation
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Introduction Algebraic Segmentation Lossy MDL Classification Conclusion

Quantitative Comparison on Berkeley Segmentation Dataset

Figure: Precision vs Recall for texture region boundaries.

References:
Yang et al., Unsupervised Segmentation of Natural Images via Lossy Data Compression, CVIU, 2008.

MATLAB implementation available on my website.
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Introduction Algebraic Segmentation Lossy MDL Classification Conclusion

Multi-Model Classification

Applications

Figure: Face Recognition

Figure: Object Recognition

Figure: Action
Recognition

Face recognition under distortion, occlusion, & disguise
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Introduction Algebraic Segmentation Lossy MDL Classification Conclusion

Sparse Representation

Sparsity

A signal is sparse if most of its coefficients are (approximately) zero.

1 Sparsity in frequency domain

Figure: 2-D DCT transform.

2 Sparsity in spatial domain

Figure: Gene microarray data.
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Introduction Algebraic Segmentation Lossy MDL Classification Conclusion

Classification of Mixture Subspace Model

1 Face-subspace model: Assume y belongs to Class i in K classes.

y = αi,1vi,1 + αi,2vi,2 + · · ·+ αi,n1
vi,ni

,
= Aiαi ,

where Ai = [vi,1, vi,2, · · · , vi,ni
].

2 Nevertheless, Class i is the unknown variable we need to solve:

Sparse representation y = [A1, A2, · · · , AK ]

2
4

α1
α2

...
αK

3
5 = Ax.

3 x∗ = [ 0 ··· 0 αT
i 0 ··· 0 ]T ∈ Rn.

Sparse representation x∗ encodes membership!
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Introduction Algebraic Segmentation Lossy MDL Classification Conclusion

`1-Minimization

1 Ideal solution: `0-Minimization (NP-hard)

(P0) x∗ = arg min
x
‖x‖0 s.t. y = Ax.

‖ · ‖0 simply counts the number of nonzero terms.

2 Compressive Sensing: Under mild condition, `0-minimization is equivalent to

(P1) x∗ = arg min
x
‖x‖1 s.t. y = Ax,

where ‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|.
3 `1-Ball

Solution equal to `0-minimization.

`1-Minimization is convex.

1 Matching pursuit [Mallat 1993]
2 FOCUSS [Rao 1995]
3 Lasso [Tibshirani 1996]
4 Basis pursuit [Chen 1998]

5 Reweighted `1 [Candes 2007]
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Introduction Algebraic Segmentation Lossy MDL Classification Conclusion

Stability of `1-Minimization

`1 near solution
y = Ax + e s.t. ‖e‖2 < ε.

Bounded data noise produces bounded `1 solution

(P′1) x∗ = arg min
x
‖x‖1 s.t. ‖y − Ax‖2 < ε.

Restricted Isometry Property [Candès, Romberg, Tao 2004]: ‖x∗ − x0‖2 < Cε.
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Introduction Algebraic Segmentation Lossy MDL Classification Conclusion

Occlusion Compensation: Unbounded Data Noise

1 Sparse representation + sparse innovation

y = Ax + e

2 Occlusion compensation

y =
�
A | I

� �x
e

�
= Bw
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Introduction Algebraic Segmentation Lossy MDL Classification Conclusion

Dense Error Correction: High-Dimensional Regime

Reference:

Yang et al., Robust face recognition via sparse representation, PAMI, 2009.
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Introduction Algebraic Segmentation Lossy MDL Classification Conclusion

Summary: Sparse Representation

1 Convert curse of dimensionality to blessing of dimensionality
in high-dimensional geometry and statistics.

2 State-of-the-art performance: bounded and unbounded image noise.

3 Industrial licensees

4 Extensions abound in object recognition, action recognition, super-resolution,
and sensor networks.

Yang et. al., Multiple-view object recognition in band-limited distributed camera networks, (submitted) ICDSC, 2009.
Yang et. al., Distributed sensor perception via sparse representation, (submitted) Proceedings of IEEE, 2009.
Yang et. al., Distributed compression and fusion of nonnegative sparse signals for multiple-view object recognition,
Fusion, 2009.
Yang et. al., Distributed Recognition of Human Actions Using Wearable Motion Sensor Networks, JAISE, 2009.

http://www.eecs.berkeley.edu/∼yang High-Dimensional Multi-Model Estimation

http://www.eecs.berkeley.edu/~yang


Introduction Algebraic Segmentation Lossy MDL Classification Conclusion

Summary: Sparse Representation

1 Convert curse of dimensionality to blessing of dimensionality
in high-dimensional geometry and statistics.

2 State-of-the-art performance: bounded and unbounded image noise.

3 Industrial licensees

4 Extensions abound in object recognition, action recognition, super-resolution,
and sensor networks.

Yang et. al., Multiple-view object recognition in band-limited distributed camera networks, (submitted) ICDSC, 2009.
Yang et. al., Distributed sensor perception via sparse representation, (submitted) Proceedings of IEEE, 2009.
Yang et. al., Distributed compression and fusion of nonnegative sparse signals for multiple-view object recognition,
Fusion, 2009.
Yang et. al., Distributed Recognition of Human Actions Using Wearable Motion Sensor Networks, JAISE, 2009.

http://www.eecs.berkeley.edu/∼yang High-Dimensional Multi-Model Estimation

http://www.eecs.berkeley.edu/~yang


Introduction Algebraic Segmentation Lossy MDL Classification Conclusion

Summary: Sparse Representation

1 Convert curse of dimensionality to blessing of dimensionality
in high-dimensional geometry and statistics.

2 State-of-the-art performance: bounded and unbounded image noise.

3 Industrial licensees

4 Extensions abound in object recognition, action recognition, super-resolution,
and sensor networks.

Yang et. al., Multiple-view object recognition in band-limited distributed camera networks, (submitted) ICDSC, 2009.
Yang et. al., Distributed sensor perception via sparse representation, (submitted) Proceedings of IEEE, 2009.
Yang et. al., Distributed compression and fusion of nonnegative sparse signals for multiple-view object recognition,
Fusion, 2009.
Yang et. al., Distributed Recognition of Human Actions Using Wearable Motion Sensor Networks, JAISE, 2009.

http://www.eecs.berkeley.edu/∼yang High-Dimensional Multi-Model Estimation

http://www.eecs.berkeley.edu/~yang


Introduction Algebraic Segmentation Lossy MDL Classification Conclusion

Summary: Sparse Representation

1 Convert curse of dimensionality to blessing of dimensionality
in high-dimensional geometry and statistics.

2 State-of-the-art performance: bounded and unbounded image noise.

3 Industrial licensees

4 Extensions abound in object recognition, action recognition, super-resolution,
and sensor networks.

Yang et. al., Multiple-view object recognition in band-limited distributed camera networks, (submitted) ICDSC, 2009.
Yang et. al., Distributed sensor perception via sparse representation, (submitted) Proceedings of IEEE, 2009.
Yang et. al., Distributed compression and fusion of nonnegative sparse signals for multiple-view object recognition,
Fusion, 2009.
Yang et. al., Distributed Recognition of Human Actions Using Wearable Motion Sensor Networks, JAISE, 2009.
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Take-Home Messages: Compact Representation of Complex, HD Data

1 Goal: Recover low-dim, mixture model (subspaces, Gaussians, and manifolds).
2 Confluence of Algebra, Statistics, and Sparse Representation

Algebra: Minimizing discrete dimensions via vanishing polynomials.

Information Theory: Lossy coding length as sub-optimal smooth approximation.

Sparse Representation: `1-minimization is convex, and exact under mild conditions.

Seek best proxy (surrogate, relaxation) to approximate HD mixture models suboptimally.
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Bigger Picture: Distributed Sensing and Perception

Pattern Analysis

Signal Processing Sensor Networks

(Multi-Model Estimation)

(Lossy Coding,
L-1 Minimization)

(Sensors,
Communications,
Systems)

DSP

References:
Yang et al., CITRIC: A low-bandwidth wireless camera network platform, ICDSC, 2008.

Yang et al., DexterNet: An open platform for heterogeneous body sensor networks and its applications, BSN, 2009.
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Massive, Distributed Data in Computer, Sensor, Social Networks

1 Opportunistic Sensing

2 Perception in Smartphone Networks

3 Protect Renewable Power Networks
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Robust Statistics

Three approaches to eliminate “outliers”
1 Probability-based: small-probability samples.

Probability plots: [Healy 1968, Cox 1968]
PCs: [Rao 1964, Ganadesikan & Kettenring 1972]
M-estimators: [Huber 1981, Campbell 1980]
multivariate trimming (MVT): [Ganadesikan & Kettenring 1972]

2 Influence-based: large influence on model parameters.
Parameter difference with and without a sample: [Hampel et al.
1986, Critchley 1985]

3 Consensus-based: not consistent with models of high consensus.
Hough: [Ballard 1981, Lowe 1999]
RANSAC: [Fischler & Bolles 1981, Torr 1997]
Least Median Estimate (LME): [Rousseeuw 1984, Steward 1999]

V1

V2

R3x3

x1

x2
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Dynamic Texture

1 Dynamic texture as ARMA model for image I (t) of D pixels

x(t + 1) = Ax(t) + Bu(t) ∈ Rd

I (t) = Cx(t) + w(t) ∈ RD

2 Subspace constraint on F frames, t = 1, · · · , F

L = [I (1) · · · I (F )] = C [x(1) · · · x(F )] ∈ RD×F ;

⇒ Rank(L) = d.

trackers movie

Mixture of two dynamic texture regions

[i(1) · · · i(F )] ∈ Sys(A1, B1, C1) or [i(1) · · · i(F )] ∈ Sys(A2, B2, C2)
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`1-Minimization Routines

Matching pursuit [Mallat 1993]
1 Find most correlated vector vi in A with y: i = arg max 〈y, vj〉.
2 A← A(i), xi ← 〈y, vi 〉, y← y − xivi .
3 Repeat until ‖y‖ < ε.

Basis pursuit [Chen 1998]
1 Start with number of sparse coefficients m = 1.
2 Select m linearly independent vectors Bm in A as a basis

xm = B†my.

3 Repeat swapping one basis vector in Bm with another vector not in Bm if improve ‖y − Bmxm‖.
4 If ‖y − Bmxm‖2 < ε, stop; Otherwise, m← m + 1, repeat Step 2.

Quadratic solvers: y = Ax0 + z ∈ Rd , where ‖z‖2 < ε

x∗ = arg min{‖x‖1 + λ‖y − Ax‖2}

[LASSO, Second-order cone programming]: Much more expensive.

Matlab Toolboxes for `1-Minimization

`1-Magic by Candes

SparseLab by Donoho

cvx by Boyd
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Mild Conditions for `1/`0 Equivalence

(P1) x∗ = arg min
x
‖x‖1 s.t. y = Ax

Solve `1-minimization achieves the optimal sparse solution under the following conditions

Short answer: For most underdetermined systems A, such as random matrices, the
equivalence holds

Asmyptotically with
k ↑
d ↑

< 0.5

Long answers
1 (In)-coherence [Gribvonel & Nielsen 2003, Donoho & Elad 2003]:

µ(A, B)
.
= sup

a∈A,b∈B

|〈a, b〉|
‖a‖‖b‖

‖x‖0 ≤ 1
2 (1 + 1

µ(A,B) ) suffices. A and B have to be incoherent.

2 Restricted Isometry [Candes & Tao 2005]:
Define δk (A)

.
= minδ such that

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22 ∀k-sparse x.

δ2k (A) ≤
√

2− 1 suffices. The columns of A should be uniformly well-spread.
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k-Neighborlyness [Donoho 2006]

Define cross polytope C and quotient polytope P such that P = AC .

If x is k-sparse, x lie in a (k − 1)-face of C in Rn.

Necessary and Sufficient: If `1/`0 holds for all k-sparse x, all (k − 1)-faces of C must be the
faces of P on the boundary.
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Sparse Representation in Classification: a Cross-and-Bouquet Model

Traditional compressive sensing focuses on

y = Ax + e

1 A is component-wise Gaussian.
2 A is sparse Bernoulli.
3 A is megadictionary [I |F ], where F is Fourier or wavelets.

Solving sparse representation for recognition purpose represents a special model

y = [ A | I ] [ x
e ]

Reference:

John Wright and Yi Ma, Dense Error Correction via l1 Minimization.
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