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Introduction
®0

Motivation

o Modern data in HD applications are often characterized as multimodal, multivariate:
Subsets of the data are modeled by different distributions.

@ Face recognition @ MR image segmentation

@ MR video segmentation

trackers movie
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Introduction
oe

Estimation of Mixture Models

Keep these questions in mind:
@ How to determine a class of models and the number of models?
@ Robust to high noise and outliers?

@ Purpose of segmentation and classification for higher-level applications?
e.g., motion segmentation, image categorization, object recognition.
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Outline

Pattern analysis in two domains

@ Unsupervised segmentation
Segment samples drawn from A= V4 U VL U...U Vi in RP, and estimate subspace models.
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Outline

Pattern analysis in two domains

@ Unsupervised segmentation
Segment samples drawn from A= V4 U VL U...U Vi in RP, and estimate subspace models.

@ Supervised recognition
Assume training examples {A1,--- , Ak} for K subspaces. Given a test sample y, determine
its membership label(y) € [1,2,--- , K].
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Outline

Literature Overview:
@ Unsupervised Segmentation:

o PCA [Pearson 1901, Eckart-Young 1930, Hotelling 1933, Jolliffe 1986]
o EM [Dempster 1977, McLachlan 1997]
o RANSAC [Fischler 1981, Torr 1997, Schindler 2005]

@ Supervised Classification:

o Nearest neighbors
o Nearest subspaces [Kriegman 2003]
o Support vector machines (SVMs) [Vapnik 1995, Cover 1965]
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Outline

Literature Overview:
@ Unsupervised Segmentation:

o PCA [Pearson 1901, Eckart-Young 1930, Hotelling 1933, Jolliffe 1986]
o EM [Dempster 1977, McLachlan 1997]
o RANSAC [Fischler 1981, Torr 1997, Schindler 2005]

@ Supervised Classification:

o Nearest neighbors
o Nearest subspaces [Kriegman 2003]
o Support vector machines (SVMs) [Vapnik 1995, Cover 1965]

Presentation

O References

o Generalized Principal Component Analysis, (in press) SIAM Review, 2008.
o Image Segmentation using Mixture Subspace Models, (in press) CVIU, 2008.
o Robust Face Recognition via Sparse Representation, (in press) PAMI, 2008.

@ All MATLAB codes are free download at: http://www.eecs.berkeley.edu/~yang/
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Mixture Subspace Segmentation

@ Application: Motion Segmentation

@ Object features p;,...,py € R? are tracked in F frames.

@ Denote mj; as image of p; under 3-D affine projection:

. T 2 .
m; = (xj,y5) = Ap;+b R, j=1,...,F

parking-lot movie
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Mixture Subspace Segmentation

@ Application: Motion Segmentation

@ Object features p;,...,py € R? are tracked in F frames.

@ Denote mj; as image of p; under 3-D affine projection:

. T 2 .
mj = (xj,y5) = Ajp; +b; R,

© For each p; in space, represent all images in F frame

mj1

Challenge: Affine-Camera Motion Segmentation

parking-lot movie
-
fﬁ%&”” %o oog,g%§gq,,3.§~
o

0
o0 %

° o
o
oS 3% 2o

o Segment N points xi,--- , Xy into K groups that belong to different motions.
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Mixture Subspace Segmentation

@ Application: Motion Segmentation

@ Object features p;,...,py € R? are tracked in F frames.

@ Denote mj; as image of p; under 3-D affine projection:

. T 2 .
mj = (xj,y5) = Ajp; +b; R,

© For each p; in space, represent all images in F frame

mj1

Challenge: Affine-Camera Motion Segmentation

parking-lot movie
-
fﬁ%&”” %o oog,g%§gq,,3.§~
o

0
o0 %

° o
o
oS 3% 2o

o Segment N points xi,--- , Xy into K groups that belong to different motions.

o Each motion in fact satisfies a 4-D subspace model. Therefore it is a subspace segmentation

problem.
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Generalized Principal Component Analysis

If one wishes to shrink it, one must first expand it.
— Lao Tzu J
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Generalized Principal Component Analysis

If one wishes to shrink it, one must first expand it.
— Lao Tzu J

@ For a single subspace V C RP: d = dim(V)

o Vit (x3=0)
o Vit (1 = 0)&(x2 = 0)
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Generalized Principal Component Analysis

If one wishes to shrink it, one must first expand it.
— Lao Tzu J

@ For a single subspace V C RP: d = dim(V)

o Vit (x3=0)
o Vit (1 = 0)&(x2 = 0)

Q For A=ViUV,
Vz = (x1,x,x3), Z€ ViU Ve & {x3 =0}|{(x1 = 0)&(x2 = 0)}
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Generalized Principal Component Analysis

If one wishes to shrink it, one must first expand it.
— Lao Tzu J

@ For a single subspace V C RP: d = dim(V)

o Vit (x3=0)
o Vit (1 = 0)&(x2 = 0)

Q For A=ViUV,
Vz = (x1,x,x3), Z€ ViU Ve & {x3 =0}|{(x1 = 0)&(x2 = 0)}

© By De Morgan's law

{xs = 0}{(x = 0)&(x = 0)} & (xxs = 0)&(xxs = 0) & { 13
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Generalized Principal Component Analysis

If one wishes to shrink it, one must first expand it.
— Lao Tzu J

@ For a single subspace V C RP: d = dim(V)

o Vit (x3=0)
o Vit (1 = 0)&(x2 = 0)

Q For A=ViUV,
Vz = (x1,x,x3), Z€ ViU Ve & {x3 =0}|{(x1 = 0)&(x2 = 0)}

© By De Morgan's law

{xs = 0}{(x = 0)&(x = 0)} & (xxs = 0)&(xxs = 0) & { 13

@ Vanishing polynomials: p; = x1x3, p2 = x2X3

Berkeley
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Equivalence Relation

@ The equivalence between mixture subspaces and its vanishing polynomials
o Given p; = x1x3, p2 = x2x3, V1 U V3 uniquely determined.
e Given Vi U V5, all vanishing polynomials of arbitrary degree generated by p1 = x1x3, p» = x2x3.
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Equivalence Relation

@ The equivalence between mixture subspaces and its vanishing polynomials
o Given p; = x1x3, p2 = x2x3, V1 U V3 uniquely determined.
e Given Vi U V5, all vanishing polynomials of arbitrary degree generated by p1 = x1x3, p» = x2x3.

A global signature

The set of linearly independent vanishing polynomials is a global signature for mixture K
subspaces.
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Equivalence Relation

@ The equivalence between mixture subspaces and its vanishing polynomials
o Given p; = x1x3, p2 = x2x3, V1 U V3 uniquely determined.
e Given Vi U V5, all vanishing polynomials of arbitrary degree generated by p1 = x1x3, p» = x2x3.

A global signature

The set of linearly independent vanishing polynomials is a global signature for mixture K
subspaces.

@ Number of linearly independent vanishing polynomials [Derksen 2005]
K+D—1—
h(K) = (-1 (K501,
S

where S C {1,---, K} is an index set and ¢ denotes codimension.
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Equivalence Relation

@ The equivalence between mixture subspaces and its vanishing polynomials
o Given p; = x1x3, p2 = x2x3, V1 U V3 uniquely determined.
e Given Vi U V5, all vanishing polynomials of arbitrary degree generated by p1 = x1x3, p» = x2x3.

A global signature

The set of linearly independent vanishing polynomials is a global signature for mixture K
subspaces.

@ Number of linearly independent vanishing polynomials [Derksen 2005]
K+D—1—
h(K) = (-1 (K501,
S

where S C {1,---, K} is an index set and ¢ denotes codimension.

© Example: linearly independent 3rd degree vanishing polynomials for 3 mixture subspaces

[dh & d; || h(3) ]

Figure: Four possible configurations in R3.
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7
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Estimation of Vanishing Polynomials

@ Veronese embedding: Given N samples xi, ..

XN € R3,

. Bl
L = [w(x),...,v(xn)] € RM2 N

. (X1)2
- (ax)
e (xax3) e
- (e)?

< (oxs)
C(3)? -
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@ Veronese embedding: Given N samples xg,...,xy € R3,

. Bl
L = [w(x),...,v(xn)] € RM2 N

p1 = c1v2(X) = x1x3

. € [
@ The null space of Ly is o= ps = Cova(x) = xox3

Figure: 2nd-degree vanishing polynomials: p; = x1x3, p» = X2Xx3.

Estimation of Mixture Subspace Models
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o VIL, ceey VKL recovered by the derivatives

X1 X2

x3 0
VP = [prl VXPQ] = |:0 X3:| .

@ Pick z=[1,1,0]7 € V4, then V,P(z) = [

E
]

OO O
OO~ OO

H — T _
Pick2 = [0,0,117 € v then VsP(2) = | Figure: P(x) = [p1(x) p2(x)] = [xi, xo].

Berkeley
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o VIL, ceey VKL recovered by the derivatives

x3 0
VP = [prl VXPQ] = |: 0 X3:| .
X1 X2
. T 00
@ Pick z=[1,1,0]" € V4, then VxP(z) = [??] .
Pick z = [0,0,1]7 € Va, then VxP(z) = [ég] .
Diagram of GPCA
i
B A —c'x
L ]
Null(L,)

Rank(L,) = MY — hy(n
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Stability and Robustness of GPCA

o GPCA is stable to moderate data noise

(a) .08 (b) .12 (c) 16 / (a) .08 (b) .12 (c) 16

Figure: (2,1, 1) with various noise-to-signal ratios Figure: (2,2, 1) with various noise-to-signal ratios
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Stability and Robustness of GPCA

o GPCA is stable to moderate data noise

(a) .08 (b) .12 (c) 16 / (a) .08 (b) .12 (c) 16

Figure: (2,1, 1) with various noise-to-signal ratios Figure: (2,2, 1) with various noise-to-signal ratios

o GPCA is not robust to outliers: single outlier can arbitrarily perturb Null(L,)

w7
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Stability and Robustness of GPCA

o GPCA is stable to moderate data noise

(a) .08 (b) .12 (c) 16 / (a) .08 (b) .12 (c) 16

Figure: (2,1, 1) with various noise-to-signal ratios Figure: (2,2, 1) with various noise-to-signal ratios

o GPCA is not robust to outliers: single outlier can arbitrarily perturb Null(L,)

w7
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Robust GPCA

Breakdown of PCA is 0% =- Replace with robust PCA to estimate Null(L,)

@ One plane and two lines.

Outlier Elimination

Figure: Elimination of outliers.

(a) 12% (b) 32%

Reference: Jolliffe, Principal Component Analysis, Springer.

Berkeley
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GPCA

o0

Affine Motion Segmentation

Sequences:
i e
g g

RANSAC:
5 £
b §

RGPCA:

Reference: Robust statistical estimation and segmentation of multiple subspaces. CVPR Workshop on 25 Years of RANDAC,
2006.
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Dynamic Texture

© Dynamic texture as ARMA model for image /(t) of D pixels

x(t +1) = Ax(t) + Bu(t) € R?
I(t) = Cx(t) + w(t) € RP
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amic Texture

© Dynamic texture as ARMA model for image /(t) of D pixels
x(t +1) = Ax(t) + Bu(t) € R?
I(t) = Cx(t) + w(t) € RP
@ Subspace constraint on F frames, t =1, -, F trackers movie

L=T[I(1)---I(F)] = C[x(1)--- x(F)] € RP*F;
= Rank(L) = d.
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amic Texture

© Dynamic texture as ARMA model for image /(t) of D pixels
x(t+1) = Ax(t) + Bu(t) € RY
I(t) = Cx(t) + w(t) € RP
@ Subspace constraint on F frames, t=1,--- , F trackers movie
L= 1) I(F)] = Clx(1) - x(F)] € RO*
= Rank(L) =d.
Mixture of two dynamic texture regions

[f(l) ce i(F)] S SyS(Al, Bl, Cl) or [f(].) “ee i(F)] S SyS(Ag, B27 Cg)

Berkeley
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Dynamic Texture

@ Dynamic texture as ARMA model for image /(t) of D pixels
x(t +1) = Ax(t) + Bu(t) € R?
I(t) = Cx(t) + w(t) € RP
@ Subspace constraint on F frames, t=1,--- , F trackers movie
L=[10) - 1(F)] = Clx(1) - x(F)] € RPXF,
= Rank(L) =d.
Mixture of two dynamic texture regions

[i(1)- - i(F)] € Sys(A1, By, 1) or [i(1)--i(F)] € Sys(Az, Ba, o)

Reference: Ravichandran, et al., Segmenting a beating heart using polysegment and spatial GPCA, Int Sym Biomedical

Imaging, 2006. Berkeley
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GPCA
e0

GPCA Website: http://perception.csl.uiuc.edu/gpca/

(/.;mn i u/ /w.'u"rl/ About GPCA

( empenent / {#fﬂé‘f\n
/

In many scientific and engineering problems, the data of interest can be viewed as drawn from a mixture of
geometric or statistical models instead of a single one. Such data are often referred to in different contexts as
]/[/{K(}”“, “mixed," or “multi-modal,” or "“multi-model," or “heterogeneous," or “hybrid." For instances, a natural image
normally consists of multiple regions of different texture, a video sequence may contains multiple independently
‘moving objects, and a hybrid dynamical system may arbitrarily switch among different subsystems.

//[f/?{‘{éfrf(lo‘/[» Generalized Principal Component Analysis (GPCA) is a general method for modeling and segmenting such
(et mixed data using a collection of subspaces, also known in mathematics as a subspace arrangement. By
introducing certain new algebraic models and techniques into data clustering, traditionally a statistical problem,

S* / (w {/ - GPCA offers a new spectrum of algorithms for data modeling and clustering that are in many aspects more

Qdngle Ldde efficient and effective than (or complementary to) traditional methods (e.g. Expectation Maximization and
K-Means).

P /) . The goal of this site is to promote the use of the GPCA algorithm to improve segmentation performance in many

/‘1 22 ECL fg Vi) application domains. Tutorials and sample code are provided to help researchers and practitioners decide if the
algorithm can be applied to their application domain, and to help get their implementation set up quickly and
correctly.

7
ZJ[{ /AL‘{(Z‘(&‘/{J Browsing through the links on the left, you will find a brief overview of the fundamental concepts behind GPCA

in the Introduction section; numerical implementations of several variations of the GPCA algorithm in the Sample
Code section; examples of real applications in the areas of computer vision, image processing; and system
identification in the Applications section; and finally all the related literature in the Publications section.

Website Credits

Sponsors This site is jointly developed and maintained by the research groups of

JHLU ® Professor YiMa of the Electrical & Computer Engineering Department at the University of Illinois at
] Urbana-Champaign xle

® Professor Rene Vidal of the Biomedical Engineering Department at the Johns Hopkins University o y
BEI](E]E ® Professor Kun Huang of the Biomedical Informatics Department at the Ohio State University
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Summary

Advantages:
o A global algebraic framework. Solution is not iterative.
o If the subspace models are known, likely outperforms other classical solutions.

o Robust to noise and outliers.
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Summary

Advantages:
o A global algebraic framework. Solution is not iterative.
o If the subspace models are known, likely outperforms other classical solutions.
@ Robust to noise and outliers.
Limitations:
@ Need to provide correct subspace number.

o High-dimensional polynomial space brings high computation complexity.
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Summary

Advantages:
o A global algebraic framework. Solution is not iterative.
o If the subspace models are known, likely outperforms other classical solutions.
@ Robust to noise and outliers.
Limitations:
@ Need to provide correct subspace number.
o High-dimensional polynomial space brings high computation complexity.
Next Section:

@ Novel segmentation method that operates on original data space, and simultaneously
estimate subspace number.

Berkeley
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Lossy Compression
e0

Image Segmentation based on Texture

TuH
iy
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Lossy Compression

e0

Image Segmentation based on Texture
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Lossy Compression
e0

Image Segmentation based on Texture

@ Minimum Description Length (MDL): Given V = (vi,--- ,vy) € RP*N 3 lossy coding
function maps the vectors to a binary sequence

1,0,0,1,1/0,0,1,0,- --
such that V can be recovered up to a distortion E[||v; — V;||?] < €2.

Optimal segmentation V = V; U --- U Vi produces the shortest coding length. J

asvane e
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Lossy Compression
o] ]

Lossy MDL for Mixture Subspace Models

O Coding length for i-th Gaussian model of N; samples

1 D D 1
L(Vi) = (N + D)E log, det(/ + mViViT) T3 log, det(1 + ZM:’M,'T) + Ni(— logy(Ni/N)).
1

Berkeley
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Lossy Compression
o] ]

Lossy MDL for Mixture Subspace Models

O Coding length for i-th Gaussian model of N; samples

1 D D 1
L(Vi) = (N + D)E log, det(/ + mViViT) T3 log, det(1 + ZM:’M,'T) + Ni(— logy(Ni/N)).
1

@ Total coding length for mixture K Gaussians

(Vi V)= > L(V)

=1, ,K

Berkeley
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Lossy Compression
o] ]

Lossy MDL for Mixture Subspace Models

O Coding length for i-th Gaussian model of N; samples

1 D D 1
L(Vi) = (N + D)§ log, det(/ + WVIV,'T) T3 log, det(1 + 67#/#7—) + Ni(— logy(Ni/N)).
1

@ Total coding length for mixture K Gaussians

(Vi V)= > L(V)

=1, ,K

© Minimization/segmentation via region-merging optimization

animation

Berkeley
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Lossy Compression
@00

Simulation

Figure: General mixture Gaussians and degenerate subspaces.
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Lossy Compression
@00

Simulation
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Lossy Compression
(o] le}

Natural Image Segmentation

39

Nature

(d) Water
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Lossy Compression
[o]e] ]

www.eecs.berkeley.edu/~yang/software/lossy_segmentation/

Unsupervised Segmentation of Natural Images

via Lossy Data Compression

Allen Y. Yang, John Wright, Yi Ma, and Shankar Sastry

@ Copyright Notice: It is important that you read and understand the copyright of the following software packages as specificd in the individual items. The copyright
varies with each package due o its contributor(s). The packages should NOT be used for any commercial purposes without direct consent of their author(s).

ABSTRACT:

‘We cast natural-image segmentation as a problem of clustering texure features as multivariate mixed data. We model the
distribution of the texture features using a mixture of Gaussian distributions. Unlike most existing clustering methods, we allow
the mixture components to be degenerate or nearly-degenerate. We contend that this assumption 1s particularly important for
mid-level image segmentation, where degeneracy is typically introduced by using a common feature representation for different
textures in an image. We show that such a mixture distribution can be effectively segmented by a simple agglomerative
clustering algorithm derived from a lossy data compression approach. Using either 2D texture filter banks or simple fixed-size
windows as texture features, the algorithm effectively segments an image by minimizing the overall coding length of the feature
vectors. We conduct comprehenswe experiments to measure the performance of the algorithm in terms of visual evaluation and

a variety of quantitative indices for image segmentation. The algorithm compares favorably against other well-known image
segmentation methods on the Berkeley image database.

@ Publications:

Allen Y. Yang, John Wright, Yi Ma, and Shankar Sastry. Unsupervised segmentation of natural images via lossy data compression. To
appear in CVIU 2007. [PDF]
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Classification
[ Jele]e]

Face Recognition: “Where amazing happens”
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Face Recognition: “Where amazing happens”
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Classification
[ Jele]e]

Face Recognition: “Where amazing happens”
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Face Recognition: “Where amazing happens”
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Classification
[ Jele]e]

Face Recognition: “Where amazing happens”

Figure: Steve Nash, Kevin Garnett, Jason Kidd, Yao Ming.
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Classification
[e] le]e]

Problem Formulation

@ Notation
o Training: For K classes, collect training samples {vy 1, - - ,v17,,1}, e {vka, ,VK1,,K} € RP.
o Test: Present a new y € RP, solve for label(y) € [1,2,--- , K].
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Classification
[e] le]e]

Problem Formulation

@ Notation
o Training: For K classes, collect training samples {vy 1, - - ,v17n1}, e {vka, ’VK«"K} € RP.
o Test: Present a new y € RP, solve for label(y) € [1,2,--- , K].

@ Data representation in (long) vector form via stacking

1

Figure: Assume 3-channel 640 x 480 image, D = 3 - 640 - 480.

Berkeley
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Classification
[e] le]e]

Problem Formulation

@ Notation
o Training: For K classes, collect training samples {vy 1, - - ,v17n1}, e {vka, ’VK«"K} € RP.
o Test: Present a new y € RP, solve for label(y) € [1,2,--- , K].

@ Data representation in (long) vector form via stacking

1

Figure: Assume 3-channel 640 x 480 image, D = 3 - 640 - 480.

@ Mixture subspace model for face recognition [Belhumeur et al. 1997, Basri & Jocobs 2003]

W ﬂ . Berkeley
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Sparse Representation

A signal is sparse if most of its coefficients are (approximately) zero.
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Sparse Representation

A signal is sparse if most of its coefficients are (approximately) zero.

@ Sparsity in frequency domain

Figure: 2-D DCT transform.

@ Sparsity in spatial domain

Figure: Gene microarray data.
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o Sparsity in human visual cortex [Olshausen & Field 1997, Serre & Poggio 2006]
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o Sparsity in human visual cortex [Olshausen & Field 1997, Serre & Poggio 2006]
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el AT
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response no response

@ Feed-forward: No iterative feedback loop.

@ Redundancy: Average 80-200 neurons for each feature representation.

© Recognition: Information exchange between stages is not about individual neurons, but
rather how many neurons as a group fire together.
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Classification of Mixture Subspace Model

© Assume y belongs to Class i

.
. : | Yy = @iVi1+aioVio+ -+ Qi Vin,
N = A,
01 v
o o | where A; = [vj1,Vi2, -+ ,Vin]
N 008 »
05 018 -
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Classification of Mixture Subspace Model

© Assume y belongs to Class i

Qj1Vi1+ QjaVio+ -+ Qo Vi,
= A,

. A where A; = [vj1,Vi2, -+ ,Vin]

005

<
|

@ Nevertheless, Class i is the unknown variable we need to solve:
o
Sparse representation y = [A1,A2,--- ,Ak] | - | = Ax.

aK
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Classification of Mixture Subspace Model

© Assume y belongs to Class i

© m
o y

Qj1Vi1+ QjaVio+ -+ Qo Vi,
= A,

o A where A; = [vj1,Vi2, -+ ,Vin]

05018 o

@ Nevertheless, Class i is the unknown variable we need to solve:
(e
ap
Sparse representation y = [A1,A2,--- ,Ak] | - | = Ax.

aK

3] xoz[ou. 0al0--- O]TER".
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1-Minimization

O Ideal solution: ¢°-Minimization

(Pp) x* =argmin||x||o s.t. y = Ax.
X

[ - llo simply counts the number of nonzero terms.
However, generally £°-minimization is NP-hard.
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1-Minimization

O Ideal solution: ¢°-Minimization

(Pp) x* =argmin||x||o s.t. y = Ax.
X

[ - llo simply counts the number of nonzero terms.
However, generally £°-minimization is NP-hard.

@ Compressed sensing: Under mild condition, £-minimization is equivalent to

(P1) x* =argmin||x||; s.t. y = Ax,
X

where ||x||1 = |x1| + |x2| + -+ - + |xn].
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1-Minimization

O Ideal solution: ¢°-Minimization

(Pp) x* =argmin||x||o s.t. y = Ax.
X

[ - llo simply counts the number of nonzero terms.
However, generally £°-minimization is NP-hard.

@ Compressed sensing: Under mild condition, £-minimization is equivalent to

(P1) x* =argmin||x||; s.t. y = Ax,
X

where ||x||1 = |x1| + |x2| + -+ - + |xn].
@ (-Ball

y = Ax

o £*-Minimization is convex.

o Solution equal to £°-minimization. ‘ 1-0 ball
i' M b
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1-Minimization Routines

o Matching pursuit [Mallat 1993]
@ Find most correlated vector v; in A with y: i = argmax (y, vj).
Q@ A—AD x — (y,v)), y —y — xvi.
© Repeat until ||y|| < e.

o Basis pursuit [Chen 1998]

@ Start with number of sparse coefficients m = 1.
@ Select m linearly independent vectors B, in A as a basis

Xm = B;y.

© Repeat swapping one basis vector in B, with another vector not in By, if improve ||y — BmXm|.
Q If |ly — Bmxml||2 < €, stop; Otherwise, m < m + 1, repeat Step 2.

o Quadratic solvers: y = Axg +z € RY, where ||z|2 < €

*

x* = argmin{|[x[l1 + Ally — Ax|l2}

[LASSO, Second-order cone programming]: Much more expensive.

Matlab Toolboxes for £X-Minimization

o /-Magic by Candes
@ SparseLab by Donoho
@ cvx by Boyd
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Partial Features on Extended Yale B Database

Features Nose | Right Eye | Mouth & Chin
Dimension 4,270 5,040 12,936
SRC [%] 87.3 93.7 983
nearest-neighbor [%] | 49.2 68.8 72.7
nearest-subspace [%] | 83.7 78.6 94.4
Linear SVM [%] 708 85.8 953

SRC: sparse-representation classifier
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Occlusion Compensation

@ Sparse representation + sparse error

@ Occlusion compensation

Allen Y. Yang <yangQeecs.be: Estimation of Mixture Subspace Models


<yang@eecs.berkeley.edu>

Classification
[e]e] o]

AR Database: 100 subjects, illumination, expression, occlusion

Figure: Training samples for Subject 1.
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(a) random corruption
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AR Database: 100 subjects, illumination, expression, occlusion

(b) occlusion

Estimation of Mixture Subspace Models


<yang@eecs.berkeley.edu>

Classification
[e]e] o]

AR Database: 100 subjects, illumination, expression, occlusion

:

(a) random corruption (b) occlusion

sunglasses scarves
[ 975% [ 935% |
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Monday Morning Algorithm Part 3: Compressed Sensing
meets Machine Learning / Recognition via Sparse
Representation Classification Algorithm

[Wired readers, you may want
to read this summary]

The whole list of Monday
Morning Algorithms is listed here
with attendant .m files. If you
want contribute, like Jort
Gemmeke just did, please let
me know. For those reading this
on Sunday, well, it's Monday
somewhere. Now on today's algorithm:

Figure: Blog: Monday Morning Algorithm

Also cited:

@ Rice University Compressive Sensing Resources

sciENcE ; DiscovemiEs )

Engineers Test Highly Accurate Face Recognition

By Bryan Gardiner @ 03:24.08 | 600 7

3 % .|
] %
- * b
« Ednat
| 7
| * mbdahe
: Ent

Figure: News: Wired.com
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Estimation of Mixture Subspace Models
O GPCA
@ Minimum Lossy Coding Length

© Sparse Representation & ¢!-Minimization
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Estimation of Mixture Subspace Models
O GPCA
@ Minimum Lossy Coding Length
© Sparse Representation & ¢!-Minimization
References
o Generalized Principal Component Analysis, SIAM Review, 2008.
o Image Segmentation using Mixture Subspace Models, CVIU, 2008.
@ Robust Face Recognition via Sparse Representation, PAMI, 2008.
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Conclusion

Estimation of Mixture Subspace Models
O GPCA
@ Minimum Lossy Coding Length
© Sparse Representation & ¢!-Minimization
References
o Generalized Principal Component Analysis, SIAM Review, 2008.
o Image Segmentation using Mixture Subspace Models, CVIU, 2008.
@ Robust Face Recognition via Sparse Representation, PAMI, 2008.

Confluence of Algebra and Statistics

In estimation of mixture (subspace) models,
o Algebra makes statistical algorithms well-conditioned;

o Statistics makes algebraic algorithms robust.
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