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Key Technical Problems
1 3-D Scene Analysis in Dense Urban Environments

(a) Image (b) Object (c) Motion

2 “Closing the Loop”: Sensing on mobile platforms and control

3 The most important mobile platform is human: Egocentric sensing, body sensor networks
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Image Segmentation via Lossy Coding Length

http://www.eecs.berkeley.edu/~yang Multiple-View Object Recognition

http://www.eecs.berkeley.edu/~yang


Introduction Random Projection Distributed Object Recognition Experiment Conclusion

Lossy Minimum Description Length

1 Lossy coding length Lε(V ,A):
Quantize V = (v1, · · · , vN) ∈ RD×N as a sequence of binary bits up to a distortion

E[‖vi − v̂i‖2] ≤ ε2.

2 Lossy MDL
A∗(ε) = arg min{Lε(V ,A) + Chain Code(B)}.

Compression-based Image Segmentation

Optimal image segmentation gives rise to the shortest coding length to encode images.
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Quantitative Comparison on Berkeley Segmentation Dataset

Figure: Precision vs Recall for texture region boundaries.

References:
Shankar Rao et al., Natural Image Segmentation with Adaptive Texture and Boundary Encoding, ACCV, 2009. (best
student paper)
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DexterNet: A Wearable Body Sensor Platform

References:
Yang, et al., DexterNet: An open platform for heterogeneous body sensor networks and its applications, BSN 2009.

Yang, et al., Distributed Recognition of Human Actions Using Wearable Motion Sensor Networks, JAISE 2009.

http://www.eecs.berkeley.edu/~yang Multiple-View Object Recognition

http://www.eecs.berkeley.edu/~yang


Introduction Random Projection Distributed Object Recognition Experiment Conclusion

Wearable Action Recognition Database

Free for noncommercial users.

5 motion sensors, each carries an accelerometer and gyroscope sampled at 30 Hz.

20 test subjects (13 male & 7 female) ages 19-75.

Data processed in Matlab. Visualization tool is included.
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CITRIC: Wireless Smart Camera Platform

CITRIC platform Available library functions

1 Full support Intel IPP Library and OpenCV.

2 JPEG compression: 10 fps.

3 Edge detector: 3 fps.

4 Background Subtraction: 5 fps.

5 SIFT detector: 10 sec per frame.

Academic users:
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Demo: Topological Recovery of a Camera Network
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Motivation: Object Recognition

Affine invariant features, SIFT.

SIFT Feature Matching [Lowe 1999, van Gool 2004]

(a) Autostitch (b) Recognition

Bag of Words [Nister 2006]
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Object Recognition in Band-Limited Sensor Networks

1 Compress scalable SIFT tree [Girod et al. 2009]

Observation: SIFT histogram is largely sparse (up to 106-dim)

R : Sequence of consecutive zero bins.
S : Sequence of nonzero bin values.

2 Multiple-view SIFT feature selection [Darrell et al. 2008]
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Problem Statement

1 L camera sensors observe a single object in 3-D.

2 The mutual information between cameras are unknown, cross-sensor communication is
prohibited.

3 On each camera, seek an encoding function for a nonnegative, sparse histogram xi

f : xi ∈ RD 7→ yi ∈ Rd

4 On the base station, upon receiving y1, y2, · · · , yL, simultaneously recover

x1, x2, · · · , xL,

and classify the object class in space.
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Key Observations

(a) Histogram 1 (b) Histogram 2

All histograms are nonnegative and sparse.

Multiple-view histograms share joint sparse patterns.

Classification is based on the similarity measure in `2-norm (linear kernel) or `1-norm
(intersection kernel).
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Random Projection as Encoding Function

y = Ax

Coefficients of A ∈ Rd×D are drawn from zero-mean Gaussian distribution.

Johnson-Lindenstrauss Lemma [Johnson & Lindenstrauss 1984, Frankl 1988]

For n number of point cloud in RD , given distortion threshold ε, for any

d > O(ε2 log n),

a Gaussian random projection f (x) = Ax ∈ Rd preserves pairwise `2-distance

(1− ε)‖xi − xj‖2
2 ≤ ‖f (xi )− f (xj )‖2

2 ≤ (1 + ε)‖xi − xj‖2
2.
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From J-L Lemma to Compressive Sensing

(a) J-L lemma (b) Compressive sensing

1 Problem I: J-L lemma does not provide means to reconstruct histogram hierarchy.

2 Problem II: Gaussian projection does not preserve `1-distance (for intersection kernels).

3 Problem III: Difficult (if not possible) to incorporate multiple-view information.

Compressive sensing provides principled solutions to the above problems.
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Compressive Sensing

Noise-free case: Assume x0 is sufficiently k-sparse and mild condition on A,

(P1) : min ‖x‖1 subject to y = Ax

recovers the exact solution.

k-Neighborliness

Define cross polytope C and quotient polytope P such that P = AC .
x is k-sparse ⇔ x lie in a unique (k − 1)-face of C .
Necessary and Sufficient:

1 If the (k − 1)-face where x lies maps to a face of P, then `1/`0 holds for this specific x.

2 If all (k − 1)-faces of C map to the faces of P on the boundary, `1/`0 holds for all k-sparse x.
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Matching Pursuit [Mallat & Zhang, 1993]

1 Initialization:

y = [A;−A]x̃, where x̃ ≥ 0

k ← 0; x̃← 0; r0 ← y; Sparse support
I = ∅

y

a1

a2

a3

−a1
−a2

−a3

2 k ← k + 1:

i = arg maxj 6∈I{aT
j rk−1}

Update: I = I ∪ {i}; xi = aT
i rk−1;

rk = rk−1 − xi ai

−a3

y

a1

x1a1

r1

a2

a3

−a1
−a2

3 If: ‖rk‖2 > ε, go to STEP 2;
Else: output x̃

Fail to search sparse solution on the
boundary of the quotient polytope.

x3a3

y

a1

x1a1

r1

a2

a3

−a1
−a2

−a3
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Fast `1-Min Routines

1 Homotopy Methods:
Polytope Faces Pursuit (PFP) [Plumbley 2006]
Least Angle Regression (LARS) [Efron-Hastie-Johnstone-Tibshirani 2004]

2 Gradient Projection Methods
Gradient Projection Sparse Representation (GPSR) [Figueiredo-Nowak-Wright 2007]
Truncated Newton Interior-Point Method (TNIPM) [Kim-Koh-Lustig-Boyd-Gorinevsky 2007]

3 Iterative Thresholding Methods
Soft Thresholding [Donoho 1995]
Sparse Reconstruction by Separable Approximation (SpaRSA) [Wright-Nowak-Figueiredo 2008]

4 Proximal Gradient Methods [Nesterov 1983, Nesterov 2007]
FISTA [Beck-Teboulle 2009]
Nesterov’s Method (NESTA) [Becker-Bobin-Candés 2009]

MATLAB Toolboxes

SparseLab: http://sparselab.stanford.edu/

`1 Homotopy: http://users.ece.gatech.edu/~sasif/homotopy/index.html

SpaRSA: http://www.lx.it.pt/~mtf/SpaRSA/

http://www.eecs.berkeley.edu/~yang Multiple-View Object Recognition
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Distributed Object Recognition in Smart Camera Networks

Outlines:

1 How to enforce nonnegativity in decoding SIFT histograms?

2 How to enforce joint sparsity across multiple camera views?
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Enforcing Nonnegativity

Polytope Pursuit Algorithms (MP, PFP, LARS):
1 Algebraically: Do not add antipodal vertexes

y = [A; -A ]x̃

2 Geometrically: Pursuit on positive faces

x2a2

a2

a3

c2
x1a1

Interior-Point Algorithms (Lasso, Homotopy, SpaRSA):
Remove any sparse support that have negative coefficients.
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Sparse Innovation Model

Definition (SIM):

x1 = x̃ + z1,
...

xL = x̃ + zL.

x̃ is called the joint sparse component, and zi is called an innovation.

Joint recovery of SIM 24 y1

...
yL

35 =

24 A1 A1 0 ··· 0

...
. . .

. . .
AL 0 ··· 0 AL

35
264

x̃
z1

...
zL

375
⇔ y′ = A′x′ ∈ RdL.

1 New histogram vector is nonnegative and sparse.

2 Joint sparsity x̃ is automatically determined by `1-min: No prior training, no assumption about fixing
camera positions.

3 Worst case scenario (x̃ = 0) has the same computational condition as solving individual projections.
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Experiment I: Simulation

Comparison between matching pursuit, polytope faces pursuit, and sparse innovation
model:

Table: Simulation of solving 1000-D sparse histograms with d = 200, k = 60, and L = 3.

Sparsity (60,0) (40,20) (30,30)

`0
MP 56.14 56.14 56.14

`2
MP 1.76 1.76 1.76

`0
PFP 3.48 3.48 3.48

`2
PFP 0.05 0.05 0.05

`0
SIM 1.85 1.65 1.95

`2
SIM 0.02 0.02 0.02
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Experiment II: COIL-100 object database

Database: 100 objects, each provides 72 images captured with 5 degree difference.

Setup:
Dense sampling of overlapping 8× 8 grids. Standard SIFT descriptor.
4-level hierarchical k-means (k = 10): Leaf-node histogram is 1000-D.
Classifier via intersection-kernel SVM: 10 random training images per class.
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Distributed Object Recognition in Band-Limited Smart Camera Networks

1 To harness the smart camera capacity, the system is separated in two components:
distributed feature extraction and centralized recognition.

2 Gaussian random projection as universal dimensionality reduction function: J-L lemma.

3 `1-minimization exploits two properties of SIFT histograms:
Sparsity.
Nonnegativity.

4 Sparse innovation model exploits joint sparsity of multiple-view histograms.

5 Complete system implemented on Berkeley CITRIC sensors.

References

Distributed Compression and Fusion of Nonnegative Sparse Signals for Multiple-View Object Recognition. Information
Fusion, 2009. (best paper award)

Multiple-View Object Recognition in Band-Limited Distributed Camera Networks. ICDSC, 2009.
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1 To harness the smart camera capacity, the system is separated in two components:
distributed feature extraction and centralized recognition.

2 Gaussian random projection as universal dimensionality reduction function: J-L lemma.

3 `1-minimization exploits two properties of SIFT histograms:
Sparsity.
Nonnegativity.

4 Sparse innovation model exploits joint sparsity of multiple-view histograms.

5 Complete system implemented on Berkeley CITRIC sensors.
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Berkeley Multiple-view Wireless Database

(a) Campanile

(b) Bowles

(c) Sather Gate
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Sensing and Perception in Resource-Constrained Distributed Networks

Centralized Perception

Up: powerful processors
Up: unlimited memory
Up: unlimited bandwidth

Down: single modality

Distributed Perception

Down: mobile processors
Down: limited onboard memory
Down: band-limited communications

Up: distributed, multi-modality

Whether the total network is greater than the sum of its parts?
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Sensing ⇒ Perception ⇒ Action

1 Perception on Smart-Phone Architecture 2 Active Sensing

3 Parallel Computing and Networked Computing Services

Figure: NVidia Tesla Solution: 240 core per GPU, up to 4 GPUs per server = 4 teraflops computing power.
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